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Due to the increase of life expectancy, the world aging popu-
lation has been increasing significantly and is expected to tri-
ple by 2050. Aging is a physiological change characterized by
a progressive decline of biological functions and of the organ-
ism’s ability to adapt to metabolic stress, and it is considered
one of the main factors for neurodegenerative diseases [1].
Among these, Alzheimer’s disease (AD) is the most common
neurodegenerative pathology characterized by memory
decline and dementia [2]. Markers of oxidative stress have
been observed in brains of patients affected by amnestic Mild
Cognitive Impairment (aMCI), and of late AD patients [3, 4].
Accumulation of oxidized molecules is caused by an imbal-
ance between the production of reactive oxygen/nitrogen
species (ROS/RNS) and the antioxidative cell systems, and
has been indicated as one of the molecular events that char-
acterize the pathogenesis of multiple neurodegenerative dis-
eases [5]. In addition to oxidative stress, dysregulated
chronic neuroinflammation has been described to be a driv-
ing force of decade-long neurodegenerative processes [6]. A
large body of studies in the last decades detected an associa-
tion between these two pathogenic events in brains of
patients affected by neurodegeneration and in mouse models
of various neurodegenerative diseases [7–9]. Hence, limiting
these two intertwined pathologic factors may have greater
efficacy for the treatment of neurodegenerative diseases [10].

This special issue collected a set of 7 multidisciplinary
studies addressing the function of molecular mechanisms
underlying the production of reactive oxidation and inflam-

mation in different in vitro and in vivo models, and the
potential therapeutic role of natural antioxidants.

The study conducted by Kent et al. focused on the role of
the mitochondrial permeability transition pore (mPTP)
which is a protein involved in ROS expansion [11]. mPTP
opening is also associated with chronic inflammation and
can be controlled by nicotinamide adenine dinucleotide
(NAD+), an antioxidant agent declining with age [12]. The
authors covered a large part of literature describing the role
of mPTP in neurodegenerative diseases, particularly on Par-
kinson’s disease (PD) and Alzheimer’s disease (AD). Both
AD and PD are associated with an increased oxidative dam-
age of DNA, both of which are linked to mPTP opening and
consequent ROS release [13]. Targeted therapies aiming at
reducing the frequency and duration of mPTP opening
may therefore be a promising path for the development of
specific drugs against age-related declines of the central ner-
vous system.

Lin and colleagues dissected the pathway leading to car-
bon monoxide releasing molecule-3 (CORM-3)-induced
upregulation of heme oxygenases-1 (HO-1), a key enzyme that
plays an important role inmaintaining cellular homeostasis, in
rat brain astrocytes (RBA-1) [14]. They observed that CORM-
3-induced HO-1 expression was mediated through ROS
generation by NADPH oxidase (Nox), and a mitochondria/
ROS-dependent PI3K/Akt/mTOR cascade triggering FoxO1.
The authors concluded that in RBA-1 cells, CORM-3-
induced HO-1 expression is, at least partially, mediated
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through Nox, and their findings strengthened the previous
observations indicating HO-1 potentiation as a potential ther-
apeutic target [15].

In the experimental study conducted by Moon et al., cal-
cineurin, a calcium-related protein phosphatase of type 2B
expressed in the brain, was found to act as a critical check-
point in the prion-dependent control of different cellular
functions [16]. PrPsc can accumulate in the brain in patho-
logical conditions and induce mitochondrial dysfunctions
and reactive oxygen species (ROS) generation in neurons
[17]. The authors observed that the human prion peptide
increases mitochondrial ROS by activating calcineurin, and
that calcineurin inhibition prevented the mitochondrial dys-
function and neuronal apoptosis induced by PrPsc. These
results suggest that calcineurin plays a role in PrPsc-
induced ROS release and neuronal apoptosis, and indicate
it as another potential pharmacological target.

The systematic review of literature conducted by
Adeyemi et al. focused on implications and therapeutic pros-
pects of hypoxia and the kynurenine pathway in Alzheimer’s
disease (AD) [18]. Although the underlying molecular
events or mechanisms connecting hypoxia to neurodegener-
ation are not well-understood, hypoxia-inducible factor 1-
alpha (HIF-1α) is a master regulator of the cellular/tissue
response to hypoxia and seems to be correlated with the
pathogenesis of different neurodegenerative diseases, includ-
ing AD [19]. The authors focused on HIF-1α role and hyp-
oxia in the progression of AD underlining in a simple and
schematic approach HIF-1α and kynurenine pathway and
the possible connection between these two signaling cas-
cades. This work indicated that hypoxia is related to oxida-
tive stress and inflammation, which in turn affect
tryptophane catabolism through indoleamine 2,3-dioxigen-
ase (IDO) enzyme, resulting in neurotoxic metabolites that
contribute to neurodegeneration. Despite the significant
achievements in this field, the authors suggest that further
in vitro and in vivo experiments are necessary to fully under-
stand hypoxia and IDO roles in the kynurenine pathway in
order to identify novel therapeutic targets.

The study conducted by Alvi et al. in pentylenetetrazole
(PTZ)-kindled epileptic rats focused on carveol, a natural
compound that possesses robust antioxidant, anti-inflam-
matory, and protective properties in various degenerative
models [20]. It has been reported that oxidative stress can
exacerbate epilepsy and the degree of oxidative damage is
proportional to epileptic episodes [21]. Hence, the aim of
this work was to investigate the effective dose of carveol, its
mechanism of action in regulating Nrf2, and ultimately its
neuroprotective effects. The authors reported that PTZ-
kindled animals experienced oxidative stress and revealed
diminished levels of superoxide dismutase (SOD), catalase
(CAT), glutathione-S-transferase (GST), and glutathione
(GSH) associated with elevated lipid peroxidation (LPO)
and inflammatory cytokines level such as tumor necrosis
factor-alpha (TNF-α), and mediators like cyclooxygenase
(COX-2), and nuclear factor kappa B (NFκB). Carveol was
demonstrated to increase these antioxidants and reduced
LPO levels together with a positive modulation of the anti-
oxidant gene Nrf2 and its downstream target HO-1. More-

over, Nrf2 pathway activation inhibited proinflammatory
cytokine release and downregulated the p-NF-κB pathway,
highlighting the anti-inflammatory potential of carveol. The
strong involvement of Nrf2 pathway in the cytoprotective
nature of carveol was confirmed by all-trans retinoic acid
(ATRA) treatment, which abolished carveol effects and exac-
erbated PTZ toxicity. Furthermore, different studies have sug-
gested that local immune response and inflammation are
associated with the upregulation of hippocampal acetylcholin-
esterase (AChE) levels, resulting in cholinergic imbalance and
epileptogenesis. In this context, the authors also reported that
increased brain AChE level was significantly inhibited by car-
veol treatment, indicating a modulating effect of carveol on
cholinergic transmission that is further linked to attenuated
neuroinflammatory cascade. Additionally, carveol treatment
was also found to ameliorate VEGF expression, indicating an
improvement in PTZ-mediated angiogenesis. Altogether,
these findings suggest that carveol, acting as a Nrf2 activator,
attenuates seizure severity and neuroinflammation in PTZ-
kindled epileptic rats.

Extensive research over the last few years has demon-
strated the potential neuroprotective role of phytochemicals
and their beneficial effects on the prevention of neurodegen-
erative diseases including Parkinson’s disease. Epidemiolog-
ical studies have shown that a diet based on the
consumption of beverages such as tea, coffee, fruit, and veg-
etables is associated with a reduced risk of neurological dam-
age or pathologically related diseases [22].

Balakrishnan et al. performed a comprehensive evalua-
tion of various phytochemicals present in foods such as
chrysin, vanillin, ferulic acid, thymoquinone, ellagic acid,
caffeic acid, epigallocatechin-3-gallate, theaflavin, and other
plant-derived antioxidant phytochemicals highlighting their
beneficial and neuroprotective effects in different experi-
mental models. In light of this, dietary antioxidant and
anti-inflammatory phytochemicals or extracts from waste
products of the food industry could be a potential new ther-
apeutic strategy against the symptoms or progression of neu-
rodegenerative diseases [23].

In line with this topic, Angeloni et al. provided an exper-
imental study detecting the phenolic profile and the antiox-
idant and anti-inflammatory activity of spent coffee ground
(SCG) extracts in cellular models of neuroinflammation.
The main SCG components—caffeine, 5-O-caffeoylquinic
acid, 3-O-caffeoylquinic acid, and 3,5-O-dicaffeoylquinic
acid—proved to be efficient in counteracting oxidative stress
and neuroinflammation in vitro by upregulating endogenous
antioxidant enzymes such as thioredoxin reductase, heme
oxygenase 1, NADPH quinone oxidoreductase, and glutathi-
one reductase. Based on these findings, SCG extracts could
represent a valuable source of potential neuroprotective bio-
active molecules for the treatment of neurodegeneration [24].
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