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A B S T R A C T   

Coronavirus Disease-19 (COVID-19) has lead global epidemics with high morbidity and mortality. However, 
there are currently no proven effective drugs targeting COVID-19. Identifying drug-virus associations can not 
only provide insights into the understanding of drug-virus interaction mechanism, but also guide and facilitate 
the screening of compound candidates for antiviral drug discovery. Since conventional experiment methods are 
time-consuming, laborious and expensive, computational methods to identify potential drug candidates for vi-
ruses (e.g., COVID-19) provide an alternative strategy. In this work, we propose a novel framework of Hetero-
geneous Graph Attention Networks for Drug-Virus Association predictions, named HGATDVA. First, we fully 
incorporate multiple sources of biomedical data, e.g., drug chemical information, virus genome sequences and 
viral protein sequences, to construct abundant features for drugs and viruses. Second, we construct two drug- 
virus heterogeneous graphs. For each graph, we design a self-enhanced graph attention network (SGAT) to 
explicitly model the dependency between a node and its local neighbors and derive the graph-specific repre-
sentations for nodes. Third, we further develop a neural network architecture with tri-aggregator to aggregate 
the graph-specific representations to generate the final node representations. Extensive experiments were con-
ducted on two datasets, i.e., DrugVirus and MDAD, and the results demonstrated that our model outperformed 7 
state-of-the-art methods. Case study on SARS-CoV-2 validated the effectiveness of our model in identifying po-
tential drugs for viruses.   

1. Introduction 

Coronavirus Disease-19 (COVID-19) is an infectious disease caused 
by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) [1]. 
SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA beta-
coronavirus of the family Coronaviridae [2,3]. Coronaviruses (CoVs) 
typically affect the respiratory tract of mammals, including humans, and 
lead to mild to severe respiratory tract infections [4]. COVID-19 has lead 
to global epidemics with high morbidity and mortality. However, there 
are currently no antiviral drugs with proven clinical efficacy for the 
treatment of COVID-19. As COVID-19 is a new disease and our knowl-
edge about SARS-CoV-2 is limited, it thus brings great challenge to 
develop new antiviral drugs against COVID-19 in a short time. 

Recently, numerous research scientists around the world have 
focused on identifying potential drugs that can be repurposed to 

effectively treat COVID-19. Many common drugs approved for treating 
other human diseases are discovered to be effective for COVID-19 and 
are undergoing clinical trials. For example, Choy et al. [5] demonstrated 
remdesivir and lopinavir could inhibit SARS-CoV-2 replication in vitro. 
After that, Zhu et al. [6] indicated that Arbidol had superior effectivity 
to lopinavir/ritonavir in treating COVID-19. In the past decades, 
numerous drug-virus associations have been experimentally or clinically 
confirmed. For example, it was demonstrated that Azacytidine could 
generate activity against adenoviruses types 1, 2, 5 by inhibiting syn-
thesis of viral DNA and protein [7]. Stadler et al. [8] showed that 
Amiodarone could alter late compartments of the endocytic pathway 
and inhibits SARS coronavirus infection. Hence, identifying drug-virus 
associations is very useful for disease prevention and treatment, as 
well as drug development. Considering that conventional experiment 
methods are time-consuming, laborious and expensive, computational 
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methods provide a low cost complementary and can guide the screening 
of candidate compounds for drug discovery. 

More recently, several computational methods have been proposed 
for drug-microbe association prediction. For example, Zhu et al. [9] 
presented a KATZ-based method named HMDAKATZ for drug-microbe 
predictions using drug chemical similarity and Gaussian kernel simi-
larity. Long et al. [10] proposed a novel computational model named 
HNERMDA to predict drug-microbe associations based on a heteroge-
neous network. Following that, Long et al. [11] developed another 
prediction model called GCNMDA to infer latent drug-microbe associ-
ations combining with microbial protein interactions and drug chemical 
information. GCNMDA first encoded node representations using graph 
convolutional network (GCN), and then used the learned representa-
tions to identify potential associations between drugs and microbes. 
However, all the above existing methods do not fully consider the bio-
logical knowledge associated with viruses. Very recently, Andersen et al. 
[12] released a comprehensive database called DrugVirus that records 
experimentally and clinically validated drug-virus associations. In 
addition, there are many other available knowledge databases for drugs 
and viruses, such as Drugbank [13], Uniprot [14] and Virhostnet [15]. 
The availability of these rich data provides a golden opportunity for us to 
develop deep learning methods for drug-virus association predictions. In 
particular, graph neural network, e.g., graph attention network (GAT) 
proposed by Veličković et al. [16], is a promising deep learning tech-
nique due to its powerful capability for graph-structured data. For 
example, GAT has been successfully applied in various bioinformatics 
tasks, such as microbe-disease prediction [11] and enhancer-promoter 
prediction [17]. As such, we are motivated to generalize GAT for 
novel drug-virus predictions. 

However, there exist several challenges when using GAT for drug- 
virus predictions. First, biological data related to drugs and viruses are 
often heterogeneous and different source data represent distinct bio-
logical meanings. Thus it is a challenge to integrate them as effective 
input features in a GAT framework for drug-virus predictions. Second, 
the observed/known drug-virus associations are limited and sparse so 
that it brings great challenges for using GAT to model drug-virus asso-
ciations. To deal with above issues, we developed a novel Heterogeneous 
Graph Attention Network (HGAT) based framework for Drug-Virus As-
sociation prediction (HGATDVA). In particular, we first built two net-
works/graphs for drug-virus prediction, i.e., a drug-virus heterogeneous 
network with known drug-virus associations and a drug-host-virus het-
erogeneous network by integrating drug-target interactions with virus- 
host (human) protein interactions. Then we exploited multiple 
biomedical data, e.g., virus genome sequences, drug chemical structure 
information, viral protein sequences, drug-drug interactions, etc., to 
derive input features for drugs, viruses and proteins. For each graph, we 
designed a self-enhanced attention mechanism to learn graph-specific 
representation for each node. We further developed a Multilayer per-
ceptron (MLP) based tri-aggregator to combine graph-specific repre-
sentations and thus generated the final representations for nodes. 
Comprehensive experiments on two datasets (i.e., DrugVirus and 
MDAD) showed that our proposed HGATDVA model consistently out-
performed seven state-of-the-art methods. Case study for SARS-CoV-2 
further confirmed the effectiveness of our proposed model in identi-
fying potential related drugs for viruses. 

Overall, our contributions are summarized as follows. 

• We integrated various data sources and constructed two heteroge-
neous networks, namely a drug-virus heterogeneous network and a 
drug-host-virus heterogeneous network, for drug-virus association 
prediction.  

• We proposed a novel GAT-based framework for novel drug-virus 
prediction on two heterogeneous networks.  

• We designed an self-enhanced attention mechanism to learn node 
representation, which explicitly models the dependency between 
nodes and their local neighbors in each heterogeneous network. We 

further developed a tri-aggregator to combine graph-specific repre-
sentations as final representations.  

• Comprehensive experiments on two datasets and case study for 
SARS-CoV-2 demonstrated that our model was a promising tool to 
identify potential drugs for viruses. 

2. Materials 

2.1. Networks constructions for drugs and viruses 

We use two different datasets for known drug-virus/microbe asso-
ciations, i.e., DrugVirus [12] and MDAD [18]. DrugVirus dataset records 
activities and development statuses of 118 compounds/drugs which 
altogether target 83 human viruses, including recently occurred novel 
coronavirus named SARS-CoV-2. Besides, we manually curate 140 
clinically or experimentally validated drug-virus associations between 
84 drugs and 21 viruses from existing literature. Overall, we obtain 1016 
observed drug-virus associations involving 202 drugs and 104 viruses. 
MDAD includes 5505 clinically or experimentally verified microbe-drug 
associations between 1388 drugs and 174 microbes. After removing the 
repeated data, we finally attain 2470 associations between 1373 drugs 
and 173 microbes. The statistics for each database are shown in Table 1. 
We construct a drug-virus/microbe heterogeneous network named Net1 
by connecting Gaussian kernel drug similarity network to Gaussian 
kernel virus/microbe similarity network, via drug-virus/microbe 
bipartite network. Following the method [11], we calculate Gaussian 
kernel similarity for drugs and viruses/microbes based on known drug- 
virus/microbe associations. 

We further construct a drug-host-virus heterogeneous network 
named Net2 by integrating drug-target interactions (DTIs) with virus- 
host (human) protein–protein interactions (PPIs). In particular, we 
download DTIs from the latest version of Drugbank [13] and PharmGKB 
[19] databases. PPIs are derived from Virhostnet [15] and mentha [20] 
databases. After mapping the shared proteins (i.e., targets) between DTIs 
and PPIs, we finally obtained 180 DTIs between 202 drugs and 119 host 
proteins, and 256 PPIs between 83 viral proteins and 119 host proteins. 
Note that we only select viral proteins that are associated with more 
than one out of 104 viruses. 

For each graph, we define an adjacent matrix as inputs of the model. 
For Net1, taking drug-virus pairs as example, we first use an binary 
matrix I1 ∈ Rnd×nv to represent drug-virus associations, with nd and nv 
denoting the numbers of drugs and viruses respectively. If the associa-
tion between drug di and virus vj is clinically or experimentally 
confirmed, (I1)ij is equal to 1, otherwise 0. Then we represent its adja-

cent matrix A1 ∈ R(nd+nv)×(nd+nv) as follows, 

A1 =

[
Sd I1

IT
1 Sv

]

, (1)  

where Sd ∈ Rnd×nd and Sv ∈ Rnv×nv represent Gaussian kernel similarity 
matrices for drugs and viruses respectively. Similarly, for Net2, we 
denote drug-target interactions and virus-host protein interactions as 
I2 ∈ Rnd×nm and I3 ∈ Rnp×nm, respectively. nm and np represents the 
numbers of host proteins and viral proteins respectively. Hence, the 
adjacent matrix A2 ∈ R(nd+nm+np)×(nd+nm+np) for Net2 is formulated as 
follows: 

Table 1 
The statistics for each drug-virus/microbe association dataset.   

DrugVirus MDAD 

# Drugs  202 1373 
# Viruses/ microbes  104 173 
# Associations  1016 2470 
Density 4.836% 1.040%  
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A2 =

⎡

⎢
⎢
⎣

0 I2 0
IT

2 0 IT
3

0 I3 0

⎤

⎥
⎥
⎦. (2)  

2.2. Features for drugs and viruses 

In this work, we construct rich features for drugs, viruses, host pro-
teins and viral proteins from different biological databases, including 
Drugbank [13], DrugVirus [12] and UniProt [14]. Specifically, we first 
download drug chemical structure information and drug-drug in-
teractions from Drugbank database. Then we measure drug structure 
similarity using the method proposed by Hattori et al. [21]. We finally 
generate drug feature Fd ∈ Rnd×r1 (r1 is the dimension of drug feature) by 
concatenating drug structure similarity matrix, drug-drug interaction 
matrix with Gaussian kernel drug similarity matrix. 

Furthermore, we collect genome sequences for viruses, and protein 
sequences for host proteins and viral proteins from UniProt database. 
Here we use k-mer feature representation method [22] to extract 
sequence features for viruses, host proteins and viral proteins from the 
collected sequences. For viruses, we concatenate the virus sequence 
features with Gaussian kernel virus similarity as their final features, 
denoted as Fv ∈ Rnv×r2 (r2 represents feature dimension). For host pro-
teins and viral proteins, we utilize the extracted sequence features Fm ∈

Rnm×r3 and Fp ∈ Rnp×r4 as their features respectively. r3 and r4 denote the 
feature dimensions of host and viral proteins respectively. The whole 
process to generate features for drugs, viruses, host and viral proteins is 
shown at the left part of Fig. 1. In consistent with Eq. (1) and Eq. (2), the 
feature matrices F1 ∈ R(nd+nv)×(r1+r2) and F2 ∈ R(nd+nm+np)×(r1+r3+r4) for 
Net1 and Net2 are constructed as follows: 

F1 =

[
Fd 0
0 Fv

]

, (3)  

F2 =

⎡

⎣
Fd 0 0
0 Fm 0
0 0 Fp

⎤

⎦. (4)  

3. Methods 

In this work, we propose a novel heterogeneous graph attention 
network (HGAT) based framework named HGATDVA to predict novel 
drug-virus associations. As shown in Fig. 1, HGATDVA consists of three 
main steps. First, we design an attentive representation learning module 
with self-enhanced attention mechanism to learn two graph-specific 
representations for each node from the constructed two graphs respec-
tively. Second, we further develop a neural network architecture to 
aggregate graph-specific representations for nodes. Third, we recon-
struct the drug-virus bipartite graph based on the learned representa-
tions. Next, we introduce the above three steps in details. 

3.1. Self-enhanced GAT for representation learning 

Graph attention network (GAT) [16], which aims to preserve the 
importance of different neighbors, possesses excellent performance in 
addressing graph-structured data. However, while standard GAT con-
siders the importance of neighbors, it simultaneously weakens the 
importance of centre node itself. In fact, node itself plays more impor-
tant role than neighbors during the representation learning process. In 
this work, we adopt Self-enhanced Graph Attention Networks (SGATs) 
to learn node representations for drug-virus predictions. The key idea 
behind SGATs is to retrieve the importance of node itself to strengthen 
node representation learning. 

3.1.1. Preliminary representation learning 
Recall that we have derived adjacent matrices (i.e., A1 and A2) and 

feature matrices (i.e., F1 and F2) for Net1 and Net2 respectively. As such, 

Fig. 1. The overall architecture of HGATDVA for drug-virus predictions.  
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we can use them to learn node representations. Specifically, we imple-
ment multi-layer SGATs on each graph and thus can obtain a graph- 
specific representation for each drug and virus. More specifically, 
given a node, we first learn the importance of its neighbors, then derive 
its neighbor representation by aggregating the representations of all 
local neighbors according to their attention coefficients, and finally 
generate its self-enhanced representation by concatenating current 
representation with the aggregated neighbor representation. Mathe-
matically, the attention score of a pair between drug di and virus vj is 
formulated as follows: 

el
ij = f

(
W1h(l− 1)

i ,W1h(l− 1)
j

)
, (5)  

where f(⋅) , parameterized by a weight matrix W1 ∈ Rd1×d2 (d1 and d2 are 
the dimensions of h(l− 1) before and after transformation respectively), 
represents a feed-forward neural network, which transforms linearly 
input features into high-level features. el

ij is attention score that repre-

sents the importance of neighbor vj to di in the l-th layer. h(l− 1)
i denotes 

the output representation of node di in the (l − 1)-th layer. Note that h0
i is 

defined as the raw input features Fi of node di. To make attention co-
efficient across different nodes easily comparable, we further normalize 
attention scores across all neighbors using the softmax function: 

αij = softmax(el
ij) =

exp(el
ij)

∑
t∈N i

exp(el
it)
, (6)  

where αij is attention coefficient and N i represents the set of local 
neighbors of node di . 

After that, we can obtain the neighbor representation hN i for di by 
aggregating the representations of all its neighbors N i according to their 
attention coefficients as follows. 

hN i = ReLU

(
∑

t∈N i

αit⋅W1h(l− 1)
t

)

. (7)  

where ReLU denotes activation function. 
As mentioned above, the representation learned from standard GAT 

may be insufficiently informative since the parts of weight values are 
assigned to neighbors and thus lead to the importance of node itself 
reduced. Motivated by that, we explicitly model the dependencies be-
tween nodes and neighbors to enrich node representation. Formally, we 
yield a self-enhanced representation for di by concatenating its neighbor 
representation hN i with current representation h(l− 1)

i as follows: 

hl
i = hN i‖W1h(l− 1)

i . (8) 

Finally, we adopt multi-head attention to stabilize the learning 
process of attention coefficients. 

hl
i = ‖

K

k=1
ReLU

((
∑

t∈N i

αk
it⋅W

k
1h(l− 1)

t

)⃦
⃦
⃦
⃦
⃦

Wk
1h(l− 1)

i

)

, (9) 

K denotes the number of attentional heads, αk
ij represents the k-th 

attention coefficient between di and vj. Here we adopt multi-layer SGATs 
to learn node representations. As the layer iterates, nodes incrementally 
gain more and more information from global neighbors. Empirically, we 
set l as 2. 

3.1.2. Modeling virus-protein interactions 
We carry out SGATs on Net2 and can then derive the second repre-

sentations Hd
2 ∈ Rnd×Kd2 for drugs, as well as viral protein representation 

Hp ∈ Rnp×Kd2 , as shown in the middle of Fig. 1. Considering a virus vi, we 
use N vi to denote the set of its proteins, termed ego-network. To char-
acterize the first-order connectivity structure of virus vi, we generate the 
second representation (Hv

2)i for vi through the following linear combi-
nation of its ego-network. 

(Hv
2)i =

∑

t∈N vi

Hp
t . (10)  

3.2. Multi-Layer Perceptron-based representation aggregation 

After implementing SGATs on two graphs (i.e., Net1 and Net2), we 
can derive two graph-specific representations named H1 and H2 for 
nodes respectively. In fact, different graphs include distinct semantic 
information between nodes. To more accurately capture this valuable 
information, we further design a Multi-Player Perceptron (MLP) based 
aggregation architecture with tri-aggregator to integrate graph-specific 
representations. Specifically, the tri-aggregator is defined as follows:   

where LeakyReLU denotes activation function, ‖ and ⊙ denote concat-
enation and element-wise product operations respectively. W2 ∈

RKd2×d3 ,W3 ∈ R2Kd2×d3 ,W4 ∈ RKd2×d3 represent learnable weight 
matrices with d3 denoting the number of neurons in the MLP. b2 ∈ Rd3 , 
b3 ∈ Rd3 , b4 ∈ Rd3 represent learnable bias matrices. Here we introduce 
three types of aggregators, i.e., sum, concatenation and element-wise 
product, to aggregate graph-specific representations, which enables 
our model to fully capture rich semantic information hidden in different 
graphs. 

3.3. Decoder for drug-virus associations re-construction 

We have derived feature representations Zd ∈ Rnd×d3 for drugs and 
feature representations Zv ∈ Rnv×d3 for viruses. Then we can utilize them 
to reconstruct drug-virus associations in Eq. (12) and define the loss 
function in Eq. (13). 

P = sigmoid
(
ZdW5(ZvW6)

T)
, (12)  

L REC =
∑

(i,j)∈O +∪O −

Θ(Pij,Aij), (13)  

where W5 ∈ Rd3×d4 ,W6 ∈ Rd3×d4 are trainable weight matrices that 
project representations back into original features. d4 denotes the 
dimension of weight matrix. sigmoid means activation function and Θ is 
MSE (i.e., mean square error) loss function. For better training our 
model, here we adopt negative sampling strategy to train the model. O +

and O − represent the sets of positive and negative samples respectively. 

3.4. Model training 

In the decoder, there are two trainable weight matrices W5 and W6. 
We add a regularization term in Eq. 14 to limit their influences on our 
model. Thus the overall loss function can be defined as follows. 

Z =

[
Zd

Zv

]

= LeakyReLU(W2(H1 +H2)+ b2)+ LeakyReLU(W3(H1‖H2)+ b3)+ LeakyReLU(W4(H1 ⊙ H2)+ b4), (11)   
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L Overall = L REC + γ(‖W5‖
2
F +‖W6‖

2
F) (14)  

where γ denotes weight factor that regularizes the influences of pa-
rameters W5 and W6. 

Following Long et al. [11], we adapt Adam optimizer [23] to train 

our model. After that, we obtain the predicted score matrix P and pri-
oritize candidate drugs for viruses (e.g., SARS-CoV-2) according to their 
probability scores to screen the most possible antiviral drugs. 

Table 2 
The AUC and AUPR for various methods on two datasets. The best results are marked in bold and the second best is underlined.  

Methods DrugVirus MDAD 

AUC AUPR AUC AUPR 

HMDAKATZ 0.7750 ± 0.0038 0.7525 ± 0.0031 0.9015 ± 0.0007 0.9053 ± 0.0006 
WMGHMDA 0.7337 ± 0.0013 0.7693 ± 0.0025 0.8097 ± 0.0012 0.8657 ± 0.0016 
NTSHMDA 0.7680 ± 0.0028 0.7268 ± 0.0030 0.8325 ± 0.0033 0.8028 ± 0.0026 
WNN-GIP 0.8002 ± 0.0193 0.8436 ± 0.0183 0.8721 ± 0.0162 0.8922 ± 0.0137 
IMCMDA 0.6235 ± 0.0245 0.6962 ± 0.0302 0.7466 ± 0.0102 0.7773 ± 0.0113 

GCNMDA 0.8685 ± 0.0125  0.8567 ± 0.0132  0.9122 ± 0.0112  0.9169 ± 0.0087  
EGATMDA 0.8405 ± 0.0123 0.8264 ± 0.0112 0.8517 ± 0.0088 0.8311 ± 0.0110 
GCMDR 0.8485 ± 0.0062 0.8509 ± 0.0040 0.8243 ± 0.0168 0.8206 ± 0.0141 
GCN 0.8182 ± 0.0122 0.8093 ± 0.0290 0.8666 ± 0.0164 0.8778 ± 0.0164 
GAT 0.7402 ± 0.0212 0.6942 ± 0.0196 0.8213 ± 0.0206 0.8371 ± 0.0286 

HGATDVA-GAT 0.8701 ± 0.0168 0.8542 ± 0.0152 0.8981 ± 0.0140 0.9142 ± 0.0086 
HGATDVA 0.8895 ± 0.0171 0.8856 ± 0.0103 0.9254 ± 0.0092 0.9246 ± 0.0059  

Fig. 2. Network and parameter sensitivity analysis for HGATDVA on DrugVirus in 5-fold CV.  
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4. Results 

In this section, we first briefly introduce experimental settings and 
then validate the effectiveness of our proposed model of HGATDVA 
through the comparison with seven state-of-the-art methods and case 
study. 

4.1. Experimental settings 

In this work, we implemented standard 5-fold cross-validation (5- 
fold CV) on two datasets, i.e., DrugVirus and MDAD, to validate the 
effectiveness of our proposed HGATDVA model. Specifically, we 
randomly divided all known drug-virus association pairs into five 
groups. For each round, we selected in turn four groups of drug-virus 
pairs (i.e., positive samples) as training samples while the rest of one 
group of drug-virus pairs were employed as test samples. Here we 
adopted negative sampling strategy to better train our model. For each 
iteration, together with training positive samples, we randomly sampled 
an equal-size sets of pairs from unknown drug-virus pairs as negative 
samples to train the model. Similarly, we randomly selected the same 
number of negative samples as that of test positive samples for testing. 

In our model, the training epoch was set to 600 and the learning rate 
in the optimization algorithm was set to 0.005. In the next section, we 
would discuss the influences of several important parameters on our 
model in detail, including the number of attentional heads K, the 
number of neurons of MLP network d3 and weight factor γ in the overall 
loss. All the experiments in this work were implemented based on the 
open source machine learning framework Tensorflow (https://github. 
com/tensorflow/tensorflow). 

4.2. Baseline methods 

As mentioned above, identifying drug-virus associations is a new 
issue and few computation methods have been developed for this 
important task. Thus we compare our proposed HGATDVA model with 2 
approaches developed for microbe-drug predictions, as well as 5 ap-
proaches proposed for addressing other biological link/association 
prediction problems. Baseline methods are introduced as follows:  

• GCNMDA [11]: is a novel graph convolutional network (GCN)-based 
framework, designed for microbe-drug prediction. 

• HMDAKATZ [9]: is a KATZ-based computational model for identi-
fying microbe-drug associations. 

• WMGHMDA [24]: is a meta-graph based computational model pro-
posed for microbe-disease association prediction.  

• WNN-GIP [25]: is a weighted nearest neighbor-Gaussian interaction 
profile model, developed for drug-target prediction.  

• NTSHMDA [26]: is a random walk with restart based model, proposed 
to predict microbe-disease associations.  

• GCMDAR [27]: is a graph convolutional network based approach for 
identifying miRNA-drug resistance associations.  

• IMCMDA [28]: is a inductive matrix completion (IMC) based method, 
designed for miRNA-disease predictions.  

• HGATDVA-GAT: is a variant of our proposed HGATMDA model, 
which uses standard GAT to learn node representation. 

For a fair comparison, all existing six baseline methods adopted the 
default parameter values which were suggested in their original papers 
and were implemented on the same benchmark datasets, i.e., DrugVirus 
and MDAD. Note that for MDAD, all baseline methods used Gaussian 
kernel similarities for microbes and drugs as input features. Besides, 
machine learning-based baseline models (e.g., GCNMDA, GCMDAR and 
IMCMDA) utilized the same number of randomly sampled unknown 
pairs (i.e., negative samples) as that of positive samples for training. 

Table 2 shows the results on two datasets, which indicate that our 
proposed HGATDVA model consistently outperforms 7 baseline 

methods in terms of AUC and AUPR. In particular, HGATDVA achieves 
an average AUC of 0.8895 and AUPR of 0.8856 on dataset DrugVirus, 
which are 2.42% and 3.37% higher than the second best method 
GCNMDA. For MDAD, our model also performs better than all baseline 
methods with average AUC of 0.9254 and average AUPR of 0.9246, 
which are 1.32% and 0.84% better than that of the second best method 
GCNMDA. From Table 2, we can also observe that HGATDVA-GAT 
achieves lower AUC and AUPR values than HGATDVA, which demon-
strates that SGATs is useful for enriching node representation learning. 
This is one of main reasons why our model is superior to baseline 
methods. In addition, we design a tri-aggregator to aggregate repre-
sentations learned from different graphs, which enables our model to 
more accurately capture semantic information between nodes and thus 
helps to enhance the prediction capability of our model. 

From Table 2, it is found that compared with MDAD dataset, all 
methods achieve worse performance on DrugVirus in terms of AUC and 
AUPR. As shown in Table 1, DrugVirus is sparse and much smaller than 
MDAD, which results in less known pairs available for training for most 
methods and thus reduces the prediction accuracy. However, our model 
still achieves relatively satisfactory prediction performance. 

4.3. Effect of different data source 

Recall that we construct two heterogeneous network for drugs and 
viruses, i.e., Net1 and Net2, respectively. To assess their influences on 
HGATDVA, we implement our model on DrugVirus dataset with one of 
both networks as input and used 5-fold CV to evaluate its performance. 
The results are displayed in Fig. 2 (a), from which we can observe that 
both networks help to improve the prediction performance of our model. 
Besides, we can conclude that Net1 contributes much more than Net2. 
The main reason is because the second network Net2 is sparser 
compared to the first network Net1. Thus the node representations 
learned from Net2 may relatively weak. 

4.4. Parameter analysis 

In our work, there are several important parameters that can influ-
ence the performance of our proposed HGATDVA model, such as the 
number of neurons of MLP network d3, the number of attentional heads 
K and the weight factor γ. Here we conduct parameter analysis for these 
parameters. All the experiments are implemented on DrugVirus dataset 
and evaluated by 5-fold CV. 

In our proposed framework, the number of neurons of MLP network 
d3 determines the dimension of node representation. To measure its 
impact on our model, we select its value from {4, 8, 16, 32, 64, 128, 
256}. Fig. 2 (b) shows the performance first slightly increases and then 
decreases with d3 = 8 achieving the best results. Our model adopts 
multi-attention heads to stabilize the process of attention coefficient 
learning. We evaluate our model by changing the number of attentional 
heads K from 1 to 8 with a step value of 1. From Fig. 2 (c), we observe a 
small or larger value is not good for the model performance. Our model 
will obtain more desirable performance when K is set to 4. In the 
decoder, we use a weight factor γ to control the influences of weight 
matrices W5 and W6. We choose its value from {0.0001, 0.0005, 0.001, 
0.005, 0.01, 0.05, 0.1, 0.5} to assess its impact. The results from Fig. 2 
(d) indicate that a small value of γ regularizes the impact of weight 
matrix well, and when γ is more than 0.001, the performance will 
gradually decrease and the best performance is reached when γ is set to 
0.001. 

4.5. Case study 

For further validating the effectiveness of our proposed HGATDVA 
model, we carry out case study on dataset DrugVirus for SARS-CoV-2. 
We first remove all known entries, and then prioritize all candidate 
drugs according to their prediction scores. We finally evaluate the 
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performance of our model by checking how many drugs could be 
confirmed by previously published literature among the top 10 and 20 
ranking list. 

As mentioned above, SARS-CoV-2, the causative agent of COVID-19, 
is an enveloped, positive-sense, single-stranded RNA betacoronavirus of 
the family Coronaviridae [2], which can affect the respiratory tract of 
humans and lead to mild to severe respiratory tract infections [4]. 
Recently some drugs, which are approved for treating other diseases, 
have been demonstrated to be promising candidate drugs against 
COVID-19. For example, it was demonstrated that Chloroquine and 
Hydroxychloroquine have in vitro activity against SARS-CoV-2 [29]. 
Wang et al. [30] showed that Remdesivir could inhibited virus infection 
efficiently in a human cell line, which was sensitive to COVID-19. 

The results in Table 3 indicate that 9 and 19 out of the top 10 and 20 
predicted drugs which are associated with SARS-CoV-2 can obtain val-
idations from previous reports. It is found that the majority of drugs can 
be verified by wet-lab or clinic trials. For example, Risner et al. [31] 
conducted a screen of small molecules in cell culture and finally 
discovered that Nitazoxanide was able to inhibit SARS-CoV-2 infection. 
Lanevski et al. [32] identified that obatoclax was an potential antiviral 
drugs against SARS-CoV-2 by screening safe-in-man broad-spectrum 
antivirals against the SARS-CoV-2 infection in Vero-E6 cells. Dong et al. 
[33] found that favipiravir had potential antiviral action on SARS-CoV-2 
by undergoing clinic trials. Also, some identified drugs are successfully 
predicted by previous in silico approaches, such as Darunavir, Indinavir 
and Brequinar. The high prediction accuracy, i.e., 90% and 95%, in-
dicates our model has powerful capability to predict candidate drugs for 
a given virus, and thus is a promising tool to assist pharmacologists and 
biologists in screening potential compounds for drug discovery. 

5. Discussion and conclusion 

COVID-19 has lead global epidemics with high morbidity and mor-
tality. Due to the lack of proven available drugs against COVID-19, there 
is an urgent need to develop effective approaches to accelerate the 
development of vaccines and drugs. Identifying drug-virus associations 
can not only provide great insight into the understanding of interaction 
mechanisms between drugs and viruses, but also assist to narrow the 
screening scopes of compound candidates for drug discovery. Consid-
ering that conventional experiment methods are time-consuming, 
laborious and expensive, computational methods are an alternative 
strategy. However, to the best our knowledge, few computational 
methods have been proposed for this critical task. 

In this work, we propose a heterogeneous graph attention network 
framework named HGATDVA for novel drug-virus predictions. First, we 
take full advantage of multiple biomedical data, including virus genome 
sequences, drug chemical structure information, and Gaussian kernel 
similarity, to construct rich features for drugs and viruses. Besides, we 
build two heterogeneous networks for drugs and viruses by utilizing 

different genres of biological link data, such as drug-virus associations, 
drug-target interactions and virus-host protein interactions. Second, we 
introduce a self-enhanced graph attention network (SGAT) for node 
representation learning, which explicitly models the dependency be-
tween nodes and neighbors, leading to more informative representa-
tions. To capture rich semantic information from different graphs, we 
further design a tri-aggregator to aggregate graph-specific representa-
tions for nodes. Extensive experiments on two datasets (i.e., DrugVirus 
and MDAD) demonstrated that our proposed HGATDVA model out-
performed 7 state-of-the-art methods. Case study on SARS-CoV-2 further 
confirmed the effectiveness of our model in identifying potential drugs 
for viruses. 
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