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Simple Summary: Despite advances in therapeutic modalities, the five-year overall survival for
pancreatic cancer is still less than 10%. Pancreatic tumors are characterized by a highly fibrotic
stroma comprised of activated cancer-associated fibroblasts (CAFs) which surrounds the cancer
cells. Pancreatic CAFs are involved in creating an immunosuppressive tumor microenvironment
by secretion of immunoregulatory and chemoattractive factors, which prevent tumor-reactive T-cell
responses. This review article discusses recent discoveries about the role of different subsets of
CAFs as regulators of anti-tumor immunity in pancreatic cancer, with emphasis on chemokines and
suppressive factors. Understanding the interactions between T cells and CAFs as well as their spatial
distribution within the tumor is of great importance for the development of novel targeted therapies
to overcome immunosuppression and to enhance immunotherapy.

Abstract: Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC)
survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic
tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity
of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a
desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pan-
creatic CAFs have emerged as important regulators of the tumor microenvironment by contributing
to immune evasion through the release of chemokines, cytokines, and growth factors, which alters
T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed
that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here,
we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and
summarize different therapy strategies targeting the CAF–T cell axis with focus on CAF-derived
soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF
subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for
the development of an effective combinational treatment for PDAC.

Keywords: pancreatic ductal adenocarcinoma (PDAC); cancer-associated fibroblasts (CAFs); T cells;
tumor microenvironment; immune checkpoint inhibitors; chemokines

1. Introduction

Pancreatic cancer is projected to be the second leading cause of cancer-related deaths
in 2030 as a result of the lack of an effective treatment and the increasing incidence rate [1].
The only potential cure for pancreatic cancer is surgery, but due to its late detection only
15–20% of the diagnosed patients present with resectable tumors, and with surgery alone,
less than 10% survive 5 years or more. Resection followed by chemotherapy increases
the 5-year overall survival to only 16–20% [2,3]. The standard treatment for unresectable
tumors is chemotherapy but the median overall survival is at best 16 months [4]. Therefore,
there is a pressing need to find new therapies.
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Although cancer immunotherapy has been shown to be effective against a variety of
cancers during the last decade, there is very little progress in pancreatic cancer [5]. The
majority of pancreatic tumors are defined as pancreatic ductal adenocarcinoma (PDAC),
which is characterized by a dense stroma surrounding the cancer cells [6]. Activated cancer-
associated fibroblasts (CAFs) represent the major cellular component in the pancreatic
tumor stroma. Release of extracellular matrix components by CAFs triggers fibrosis which
obstructs the intra-tumoral vessels and prevents therapy delivery and infiltration of tumor-
reactive immune cells. Therefore, it is likely that immunotherapy combined with other
treatments targeting the stromal barrier could be promising for pancreatic cancer patients.

CAFs release a number of different factors, including chemokines, cytokines, and
growth factors, that promote immunosuppression through recruitment of immunosup-
pressive cells such as T regulatory cells (Tregs) and myeloid cells, upregulation of immune
checkpoint molecules on T cells, and regulation of T-cell migration. It is still not well under-
stood which factors are involved in regulating T-cell exhaustion and migration. However,
several recent studies and subsequent clinical trials support that reprogramming of the
suppressive microenvironment by blocking certain chemokine/chemokine receptor axes
can improve immunotherapy outcomes in pancreatic cancer patients.

In this review, we will discuss the interactions between CAFs and T cells and ex-
plore therapeutic treatments that target the CAF–T-cell axis, with a focus on the role of
immunosuppressive factors and chemokines.

2. Pancreatic Tumor Microenvironment
2.1. The Biology and Function of CAFs in Pancreatic Cancer

PDAC tumor nests are encapsulated by the desmoplastic stroma and CAFs can con-
stitute up to 90% of the total tumor mass in PDAC. The main cellular source of CAFs are
resident pancreatic stellate cells, but recruitment of mesenchymal stromal cells from the
bone marrow has also been suggested to contribute to the fibroblastic stroma [7]. Under
normal conditions, pancreatic stellate cells are in a state of quiescence and their main
function is to maintain tissue homeostasis. In the presence of cancer cells or during injury,
pancreatic stellate cells acquire an increased contractile ability similar to that in wound
healing, which promotes the expression of α-smooth muscle actin (α-SMA) and desmin and
loss of their characteristic cytoplastic lipid droplets [6,8]. Unlike wound healing, fibroblasts
in tumors remain activated, which results in a pathological release of extracellular matrix
components which triggers fibrosis [9]. It has been suggested that extracellular matrix
stiffness plays a role in promoting cancer progression [10], and activated pancreatic stellate
cells also stimulate angiogenesis and facilitate the invasion and extravasation of cancer
cells [11].

2.2. Strategies to Target CAFs

Since the desmoplastic stroma has been suggested to play a tumor-supporting role and
function as a physical barrier to delivery of chemotherapies to the tumor [12,13], attempts
have been made to eradicate CAFs from tumors. However, recent studies and subsequent
clinical trials suggest that local depletion or inhibition of CAFs is associated with increased
tumor aggressiveness and progression rather than reduction [14–16]. Ablation of α-SMA+

cells in a murine PDAC model led to reduced desmoplasia, but the tumors were more
aggressive and exhibited an undifferentiated phenotype, resulting in shorter survival [14].
Neoplastic cell deletion of Sonic Hedgehog 1, a major driver of the desmoplasic reaction, led
to similar results in murine PDAC [16,17]. A clinical trial that combined chemotherapy with
a Hedgehog inhibitor was terminated prematurely due to shortened patient survival [15].
Fibroblast activation protein (FAP) is expressed by the majority of pancreatic CAFs (90%)
with a higher expression intensity on CAFs localized close to the tumor nests, and high
FAP expression is associated with shorter overall survival [18]. Several in vivo studies
have shown that FAP inhibition leads to reduced tumor progression by favoring immune
control [19–21]. FAP inhibition enhanced the anti-tumor activity of immune checkpoint
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inhibitors [19], but it did not improve survival in a PDAC mouse model in one of the
studies [20]. Adoptive transfer of chimeric antigen receptor (CAR) T cells directed to FAP
inhibited pancreatic cancer cell growth [22], but infusion of FAP reactive CAR T cells has
also been reported to trigger bone marrow toxicity and cachexia [23], a condition often
seen in advanced PDAC.

Focal adhesion kinase (FAK1) is often overexpressed in PDAC and promotes tumor
fibrosis, and is associated with low infiltration of effector T cells. Targeting FAK reduces
fibroblast activation and decreases immunosuppressive cell infiltration [24]. The combina-
tion of FAK inhibitors and PD-1 blockade has shown promising synergistic effects in mouse
models [24]. Several clinical trials targeting both FAK and PD-1 are currently ongoing
(NCT02546531, NCT03727880, NCT02758587).

Another approach has been to reverse reactive CAFs towards a quiescent state. Vita-
min D3 metabolites (1,25-dihydroxyvitamin-D3 or calcipotriol) have been shown to reverse
activated CAFs to quiescent fibroblasts [25]. Activation of the vitamin D3 receptor on
fibroblasts resulted in a reduction in pancreatic fibrosis and also increased the response
to chemotherapy in a murine model. In vitro studies also suggest that calcipotriol pro-
motes an anti-tumorigenic phenotype of CAFs, but that it also impairs T-cell-mediated
immunity [26]. Ongoing clinical trials are investigating stroma remodeling combined with
vitamin D3 and immunotherapy (NCT03331562, NCT03519308, NCT034415854).

Rho-associated protein kinase (ROCK) is an effector protein of the Rho GTPase family
which is often overexpressed in pancreatic cancer [27]. ROCK regulates several cell func-
tions, including cell contraction, cell adhesion, and cell migration, through the regulation of
the cytoskeleton [27,28]. ROCK inhibitors have been shown to reduce CAF activation by re-
ducing α-SMA and collagen I expression, leading to an enhanced gemcitabine delivery and
improved survival [27]. In line with this, ROCK inhibitors have been also shown to reduce
extracellular matrix deposition by CAFs, which led to an impaired cancer cell invasion and
increased response to gemcitabine in in vitro 3D models and mouse models [29,30].

A prodrug of the plant-derived chemotherapeutic substance triptolide, Minnelide, has
been shown to inactive CAFs and promote tumor regression in a TGF-β-dependent manner
in a preclinical model [31]. Furthermore, Minnelide reduced extracellular matrix contents
in the stroma which led to improved vascular patency and a more efficient delivery of
standard of care chemotherapy [32]. To summarize, these studies highlight the importance
of remodeling activated CAFs to a quiescent state to improve the delivery and efficacy of
standard therapies.

2.3. CAF Heterogeneity

One plausible explanation for the findings that CAFs acts to restrain rather than
support tumor cell growth and invasion is that there are different subpopulations of CAFs
in the tumor stroma with diverse functions. Öhlund et al. identified two phenotypically
and functionally distinct CAF subsets within pancreatic tumors [33]. Myofibroblastic CAFs
(myCAFs) expressing high levels of α-SMA are generally localized in close proximity to
the tumor nests, whereas inflammatory CAFs (iCAFs) are positioned more distantly from
the malignant cells in the desmoplastic stroma (Figure 1a). iCAFs secrete an array of
inflammatory mediators with pro-tumorigenic functions, such as interleukin (IL)-6, IL-8,
leukemia inhibitory factor (LIF), CCL2, and CXCL2. IL-1α was shown to induce iCAFs
by downstream JAK/STAT activation, whereas tumor-derived TGF-β and SMAD2/3
signaling counteracts this process, resulting in differentiation into myCAFs [34]. Both
subsets can dynamically revert from one phenotype to another, suggesting that CAFs
display plasticity based on spatial location and microenvironmental factors [33]. Another
study based on microarray data revealed that the pancreatic tumor stroma can be divided
into normal and activated subtypes, where normal stroma was associated with better
prognosis [35]. Normal stroma was characterized by high expression of the genes encoding
α-SMA, vimentin, and desmin, whereas the activated subtype was characterized by high
expression of FAP and genes associated with macrophages.
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Figure 1. Schematic representation of the immunoregulatory functions of cancer-associated fibroblasts (CAFs) and
chemokines on T cells in the pancreatic tumor microenvironment. (a) Two different subsets of CAFs with diverse functions
have been identified in pancreatic cancer: myofibroblastic (myCAFs), which are located close to the tumor nests and
likely suppress tumor cell growth, and inflammatory CAFs (iCAFs) which are located more distantly from the tumor
nests and secrete inflammatory factors with pro-tumorigenic functions. (b) The pro-tumorigenic factors can regulate the
differentiation, migration, and function of myeloid cells such as myeloid-derived suppressor cells (MDSC), M2 macrophages,
and dendritic cells (DC) which in turn inhibit T-cell migration, activation, proliferation, and differentiation. CAFs also
disrupt T-cell functionality by promoting expression of immune checkpoint inhibitors (PD-1, TIM-3), restricting T-cell
infiltration into the tumor nests, and promoting T regulatory cells (Tregs). (c) CAFs can entrap T cells in the tumor stroma
through the CXCL12–CXCR4 axis and recruit MDSCs, M2-type macrophages, and neutrophils through the CCL2–CCR2
axis and CXCR2 ligation. Other chemokines in the tumor microenvironment such as CXCL10 and CCL5 can have a dual
role by promoting the infiltration of T cells but also of Tregs. Abbreviations: M-CSF, macrophage colony-stimulating factor;
LIF, leukemia inhibitory factor; TSLP, thymic stromal lymphopoietin; PGE2, prostaglandin E2; TGF-β, transforming growth
factor β. Figure created with BioRender.com.

Single-cell RNA sequencing has further revealed several subsets of CAFs in
PDAC [36–39] and other types of cancer [40,41]. A population of CAFs with antigen-
presenting capacities (apCAF) expressing MHC class I-related genes could activate CD4+

T cells in an antigen-specific manner, but they lacked the expression of co-stimulatory
markers suggesting that they would fail to prime a naïve T-cell response [37]. However,
another study suggested that this subset of cells were mesothelial cells that had acquired
expression of fibroblast genes in the tumor microenvironment [36]. It was recently shown
that inhibition of Hedgehog signaling alters CAF composition, with a reduction in myCAF
numbers and an increase in iCAF numbers [42]. This was also correlated with a decrease in
cytotoxic T cells and expansion in regulatory T cells and PD-L1+ macrophages, suggest-
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ing that enrichment of iCAFs is associated with immunosuppression. A recent study by
Chen et al. showed that deletion of type I collagen in α-SMA+ myCAFs aggravates pan-
creatic tumor progression in a murine model [38], supporting that myofibroblast-derived
fibrillar proteins act to prevent tumor advancement. Thus, current knowledge suggests
that myCAFs restrain tumor cell growth, whereas iCAFs display a more pro-tumorigenic
function by secretion of inflammatory factors that promote tumor growth.

CAF heterogeneity can also be induced by the genetic status of the tumor suppressor
gene p53 in pancreatic tumor cells. A study using a genetically engineered pancreatic
cancer mouse model showed that cancer cells with a gain-of-function mutant p53 gene
(GOF p53) promoted an aggressive CAF phenotype, resulting in an increased expression of
contractile markers as compared to CAFs cultured with p53 null mutant cancer cells (p53
null) [43]. Moreover, CAFs educated by GOF p53 cancer cells promoted invasion of the
p53 null cancer cells to the same extent as the highly invasive GOF p53 cancer cells. In the
same way, CAFs cultured with p53 null cancer cells can adopt an aggressive phenotype
when cultured with GOF p53 tumor cells, further supporting that CAFs display plasticity.
The authors identified an extracellular matrix proteoglycan, perlecan, secreted by GOF
p53 educated CAFs, as a key factor for promoting a permissive environment for cancer
cell invasion and metastasis in vivo [43]. Exosomes derived from mutant-p53-expressing
tumor cells also confer stromal architecture remodeling by affecting normal fibroblasts in
the microenvironment to deposit a pro-invasive extracellular matrix, which can pave the
way for metastasis [44].

2.4. Tumor-Infiltrating Lymphocytes

T cells have the capacity to recognize and kill tumor cells, but malignant cells can evade
immune surveillance by inducing T-cell exhaustion. Pancreatic tumors have generally been
considered as immune-privileged in nature, but accumulation of CD8+ cytotoxic T cells
in the tumor is correlated with a better prognosis in PDAC [45,46]. The use of immune
checkpoint inhibitors has provided a paradigm shift in the treatment of some malignancies,
including melanoma [47]. These include antibodies directed to the co-inhibitory markers
PD-1, PD-L1, and CTLA-4, which can allow T cells to regain their function and mediate
killing of tumor cells [48]. In PDAC, blockade of co-inhibitory receptors has so far been
unsuccessful. The mutational burden in PDAC is low, which leads to poor antigenicity,
as reflected by little expression and presentation of neoantigens which potentially can be
detected by T cells as foreign. Melanoma and other types of cancer that are responsive
to immune checkpoint inhibition are associated with high mutational burden [49], and
there is a positive correlation between objective response rate to PD-1 inhibition and tumor
mutational burden in multiple cancer types [50]. Nevertheless, it has been demonstrated
that clonally expanded T cells with tumor specificity are present in pancreatic tumors [51],
suggesting that T-cell responses to PDAC tumors should be feasible but that it may be
limited by the microenvironment in the pancreas.

A novel treatment with the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib,
has recently been approved by the FDA as a first-line maintenance treatment in BRCA-
mutated metastatic pancreatic cancer. PARP inhibitors block the DNA repair machinery
and may thus enhance cell death and chemotherapy efficacy. A randomized phase III
clinical trial showed that patients who received olaparib had a median progression-free
survival of 7.4 months compared to 3.8 months in the placebo group [52]. Due to their
role in preventing DNA repair, PARP inhibitors may contribute to an increased tumor
mutational burden and thus contribute to augmented anti-tumor T-cell responses [53].
Ongoing clinical trials are exploring the synergistic effects of immune checkpoint inhibitors
and PARP inhibitors in several cancers, including pancreatic cancer (NCT02660034) [53].

Several studies suggest that the majority of T cells are entrapped in peritumoral
stromal areas of pancreatic cancer with little infiltration in tumor nests [45,54–57]. The
reason for this is not entirely clear, but it could be due to CAF-mediated retainment of
immune cells [51,58] and due to an influx of suppressive Tregs and myeloid cells, such as
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myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. PDAC-
infiltrating T cells readily express co-inhibitory markers, including PD-1, LAG-3, and
TIGIT [59], and it has been suggested that CAFs contribute to their exhausted pheno-
type [55]. Wartenberg et al. performed an integrated genomic and immunophenotypic
classification of PDAC which displayed different subtypes with prognostic value [60]. The
“immune escape” subtype, which was associated with poor outcome and occurred in more
than half of the patients, contained few T cells and B cells but was enriched in FOXP3+

Tregs. This subtype also displayed a high-grade tumor budding, which is characterized
by de-differentiated tumor cells dispersed as single cells or small clusters of tumor cells
within the stroma. Tumor budding is associated with epithelial-to-mesenchymal transition,
metastasis, and reduced patient survival [61]. It was recently shown that the number of
both tumor- and stroma-infiltrating CD4+ and CD8+ T cells were reduced in pancreatic
tumors with high tumor budding [62].

Other spatial computational studies in PDAC showed higher numbers of CD8+ T cells
together with Tregs, MDSC, neutrophils, and TAMs at the tumor margins compared to the
tumor center [63]. Importantly, higher CD8+ T-cell density in the tumor center was associ-
ated with prolonged patient survival. An immune profile including high M2 macrophages
and neutrophils with low M1 macrophages was correlated with shorter overall survival,
whereas high CD4+ and CD8+ T cells together with low Tregs was associated with longer
overall survival in PDAC [64]. Similarly, a high CD8+/Tregs ratio was correlated with
longer overall survival in another computational analysis in PDAC patients [65]. A recent
study found that high CD4+/CD3+ ratio together with a low α-SMA/vimentin ratio on
CAFs was correlated with shorter overall survival in pancreatic cancer of the body and
tail [66].

Combining both quantification and localization of T cells within the tumor could
provide promising prognostic tools for predicting survival in pancreatic cancer. However,
further studies assessing the prognostic value of the spatial distribution of T cells in
combination with different CAF subtypes in pancreatic cancer would be of great interest
for better personalized combination therapies.

3. CAFs Modulate T-Cell Function in the Pancreatic Tumor Microenvironment

In order to reach and eradicate the tumor cells, effector T cells infiltrating the pancreas
not only need to overcome the dense fibrotic barrier, but also the suppressive CAF secre-
tome (Figure 1b). Activated CAFs contribute to immune evasion through the release of
suppressive factors, chemokines, and expression of immune checkpoint ligands that can
directly or indirectly, through the modulation of antigen-presenting cells, hamper T-cell ef-
fector functions. Table 1 summarizes immunological effects after targeting stromal-derived
factors in preclinical models.

Table 1. Immunosuppressive targets in the pancreatic tumor microenvironment used in preclinical models and clinical
trials with the reported observations on the effects on immune cells and the primary end point of the clinical trial.

Target
Observations in
Preclinical
Models [ref]

CLINICAL TRIALS

NCT Treatment Phase Condition Status Primary Endpoint//
Observations [ref]

IL-6

NCT00841191 Siltuximab I/II Unresectable Completed

CBR//
No benefit

=inflammatory
cytokines

=Angiogenesis markers
↓pSTAT3 [67]

NCT02767557
Tocilizumab
Gemcitabine
Nab-paclitaxel

II Unresectable Recruiting OS
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Table 1. Cont.

Target
Observations in
Preclinical
Models [ref]

CLINICAL TRIALS

NCT Treatment Phase Condition Status Primary Endpoint//
Observations [ref]

IL-6 + ICI

↓Tumor growth
↑Survival

↑T-cell infiltration
[68]

NCT04258150

Nivolumab
Ipilimumab
Tocilizumab
SBRT

II Unresectable Active ORR

NCT04191421 Siltuximab
Spartalizumab I/II Unresectable Recruiting Determine dose

COX-2

NCT00176813
Celecoxib
Gemcitabine
Cisplatin

II Unresectable Completed OS//
No benefit [69]

Celecoxib
Gemcitabine II Unresectable Completed

DFS/OS/tolerability//
No benefit
↓VEGF [70]

Celecoxib
Gemcitabine II Unresectable Completed

Toxicity/ORR//
↑OS

↓CA19.9 [71]

Celecoxib
Gemcitabine
Irinotecan

II Unresectable Completed
Toxicity/ORR//

↑OS
↓CA19.9 [72]

NCT03838029
Etodolac
Propranolol
Placebo

II Resectable Recruiting DFS/biomarkers in
blood

NCT03498326 Celecoxib
Gemcitabine II Resectable Recruiting DFS

COX-2 + ICI

↓Tumor growth
↑CD8+ T-cell

infiltration [73]
NCT03878524

Multiple drugs
including Celecoxib
Nivolumab

II Unresectable Recruiting Find the best
combination of drugs

TGF-β

NCT00844064 AP 12009 I Unresectable Completed MTD//
↑OS

NCT04624217 SHR-1701 I/II Unresectable Recruiting RP2D/ORR

NCT03666832 TEW-7197 I/II Unresectable Recruiting DFS

NCT03685591 PF-06952229
Enzalutamide I Unresectable Recruiting DLT

TGF-β + ICI

↓Tumor growth
↑T-cell infiltration

↑CD8+ T-cell
cytotoxicity [74,75]

NCT02734160 Galunisertib
Durvalumab I Unresectable Completed DLT//

Limited effects [76]

NCT04429542 BCA101
Pembrolizumab I Unresectable Recruiting Safety/tolerability/DLT

NCT02947165 NIS793
PDR001 I Unresectable Active DLT

ref, reference; ICI, immune checkpoint inhibitor; NCT, clincialtrials.gov identifier; CBR, clinical benefit response; OS, overall survival; ORR,
objective response rate; DSF, disease-free survival; MTD, maximum tolerated dose; RPD2, recommended phase 2 dose; DLT, dose-limiting
toxicities; CA19.9, carbohydrate antigen; =, no changes; ↓, decrease; ↑, increase; //, separation between primary endpoint and observations.

3.1. Modulatory Functions of Pancreatic CAFs in Myeloid Cells

Priming of tumor-specific CD8+ T cells and CD4+ T helper (Th) 1 cells is key to
mounting an effective immune response. However, CAFs can jeopardize the presentation
of tumor-associated antigens to T cells by modulating the function and maturation of
MDSCs, macrophages, and dendritic cells (DCs), and thus, suppress adaptive Th1 and
cytotoxic immune responses.

clincialtrials.gov
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Paracrine signaling by CAFs can promote the differentiation of monocytes and granu-
locytes to MDSCs. A study by Mace et al. showed that IL-6 released by primary pancreatic
CAFs induced differentiation of peripheral blood mononuclear cells into functional MDSCs
via STAT3 activation, which in turn suppressed T-cell proliferation [77]. Three-dimensional
cultures of monocytes with spheroids containing pancreatic tumor cells and fibroblasts
have been shown to increase the expression of immunosuppressive cytokines, such as
IL-6 and macrophage colony-stimulating factor (M-CSF), known to induce MDSCs and
M2-like macrophages [78]. M2 macrophages are low-efficiency antigen-presenting cells
and their immunosuppressive activity in the tumor microenvironment is well established.
CAF-derived IL-6 and M-CSF have been shown to directly promote the polarization of
M2 macrophages in two different in vitro studies [78,79]. Consequently, differentiated
M2 macrophages inhibit T-cell migration, activation, and proliferation within the tumor
microenvironment and thus support PDAC progression [77,80,81]. Taken together, these
findings show that CAF-derived IL-6 plays a key role in modulating the immune cell
population towards a suppressive phenotype. Importantly, IL-6 has been shown to be
mostly expressed by the stroma and not by the tumor cells [68]. Combined blockade of IL-6
and PD-L1 in mice models of pancreatic cancer led to attenuated tumor growth, prolonged
survival, and increased infiltration of T cells [68].

Along with IL-6, CAF-derived LIF has also been identified as a major promoter of
suppression in the tumor microenvironment. This member of the IL-6 family is also aber-
rantly expressed in pancreatic CAFs, in iCAFs in particular [26,33,82], and is correlated
with poor prognosis [83]. We have shown that vitamin D3 metabolites altered the immuno-
suppressive CAF secretome and downregulated LIF secretion [26]. Moreover, experimental
models of pancreatic cancer have shown that CAF-derived LIF activated pancreatic cancer
cells and that it was correlated with tumor progression [82]. Interestingly, in glioblastoma
models, LIF promoted the recruitment of M2 macrophages and the silencing of CXCL9, a
cytokine that recruits T cells into the tumors [84]. These studies identify LIF as a promising
therapeutic target in pancreatic cancer, but further studies evaluating CAF-mediated T-cell
inhibition in response to LIF are necessary.

DCs are the most efficient antigen-presenting cells for priming naïve tumor-specific T
cells to induce proliferation and activation and, thus, to drive Th1 differentiation. However,
as shown in PDAC mice models, DCs in the tumor milieu and in the tumor-draining lymph
nodes can be very few and express low costimulatory and maturation markers, impairing T-
cell priming [85]. Studies showing a direct impact of CAFs on DCs in pancreatic cancer are
scarce. However, an in vitro study suggested that DCs cultured in CAF supernatants adopt
a suppressive phenotype in a thymic stromal lymphopoietin (TSLP)-dependent manner
and promote Th2 differentiation of naïve CD4+ T cells [86]. Another study with hepato-
cellular CAFs showed that IL-6 induced the differentiation of regulatory DCs through the
upregulation of IDO, which resulted in low costimulatory molecules expression, disabling
T cells’ functions and inducing Tregs’ expansion [87].

Taken together, these studies suggest that targeting the stromal signaling may reduce
myeloid-mediated suppression of anti-tumor T-cell activity and improve the efficacy of
immune checkpoint therapeutics. Furthermore, the factors identified as the main drivers of
immunosuppression in this context are produced in high levels from iCAFs, suggesting that
this subset of CAFs play an important role in modulating myeloid and antigen-presenting
cells in the tumor microenvironment.

3.2. Modulatory Functions of Pancreatic CAFs in T Cells

T-cell dysfunction in the tumor microenvironment comes with the expression of
immune checkpoint molecules which triggers loss of proliferative and cytotoxic capacity
upon binding to their ligands. The upregulation of immune checkpoints on T cells occurs
due to a chronic tumor antigen stimulation and the exposure to suppressive cytokines.
Significantly, co-expression of multiple co-inhibitory markers is associated with a worse
functionality [88,89].
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Pancreatic CAFs express some immune checkpoints, including PD-L1 and PD-L2 [55],
and PD-L1/L2 overexpression in PDAC has been correlated with poor prognosis [90–92].
Even though it is well established that cancer cells upregulate these ligands as a mechanism
of tumor immune evasion [93], very few studies have explored the immunomodulatory
consequences of these ligands on CAFs. We and others have previously shown that block-
ade of PD-L1/L2 can partially restore CAF-mediated T-cell suppression [55,94]. However,
further studies are needed to evaluate the direct interactions between CAFs and T cells in
this context.

Besides immune checkpoints, CAFs can also disrupt T-cell functionality through the
secretion of soluble factors. Prostaglandin E2 (PGE2) is the main metabolite generated
by the enzyme cyclooxygenase 2 (COX-2), which is often overexpressed in the stroma
of pancreatic cancer [95,96]. We have previously shown that PGE2 secreted by primary
pancreatic CAFs inhibit T-cell proliferation and contribute to an upregulation of the immune
checkpoint markers TIM-3 and PD-1 on activated T cells [55]. Another study found that
COX-2 knockdown in tumor cells suppressed tumor growth and increased the number of
tumor-infiltrating cytotoxic CD8+ T cells, which led to an improvement in immunotherapy
in pancreatic mouse models [73]. This has also been demonstrated in experimental models
of ovarian and colon carcinomas, which showed that the COX-2/PGE2 axis excludes T cells
from the tumor milieu and that blockade of COX-2 or PGE2 increases the number and the
cytotoxic effects of CD8+ T cells, which boosted the efficacy of anti-PD-1 therapy [97,98].

TGF-β is a pleiotropic cytokine and a major contributor to immunosuppression in the
tumor microenvironment. Pancreatic CAFs express high amounts of TGF-β [8,96], which
has been associated with tumor cell growth and extracellular matrix deposition [31,99].
The role of TGF-β in disabling the cytotoxic activity of T cells has been extensively stud-
ied [100,101]. Moreover, recent studies with other tumor types have also reported that CAF-
derived TGF-β contributes to immune evasion by restricting T-cell infiltration [102–105].
However, studies in pancreatic cancer showing how CAF-derived TGF-β affects T cells are
few. A recent study by Dominguez et al. identified a TGF-β–CAF subset associated with
poor response to immune checkpoint blockade therapies [36]. Interestingly, two recent
studies using experimental models showed that inhibition of TGF-β reduced CAF activa-
tion, resulting in reduced fibrosis and increased T-cell infiltration, which in turn improved
PD-1 and PD-L1 treatment by enhancing CD8+ T-cell cytotoxicity [74,75]. Taken together,
these findings suggest that blockade of TGF-β in pancreatic cancer could be promising for
enhancing immune checkpoint therapies.

CAFs can also regulate the activity and the phenotype of other T-cell subsets in the tu-
mor microenvironment, such as Tregs, natural killer (NK) cells, and γδ T cells. In vitro func-
tional assays have shown that CAFs increase the proportion of FOXP3+CD4+ T cells [55].
Similarly, CAFs derived from other tumor types also promote the expression and recruit-
ment of FOXP3+CD4+ T cells into the tumor milieu [41,106,107]. Importantly, increased
numbers of Tregs are associated with reduced survival in pancreatic cancer [108]. Another
study showed that CAFs can inhibit NK-cell cytotoxic activity [109]. However, the study
did not assess which factors were responsible for the modulation of the NK phenotype.

In PDAC, γδ T cells might have a pro-tumoral activity by inhibiting T-cell responses [110].
A recent study by Seifert et al. showed a high correlation between the presence of γδ T cells
and fibrosis. Moreover, it was found that γδ T cells were in close proximity to pancreatic
CAFs and that they promoted the expression of IL-6 in CAFs [111]. To our knowledge, there
are no studies showing the effects of CAFs on γδ T cells, but it is possible that there is a
bidirectional interaction.

In conclusion, CAFs modulate T-cell effector functions by multiple mechanisms. Dis-
rupting CAF-mediated signaling in the tumor microenvironment is a promising therapeutic
strategy to boost the efficacy of immunotherapies in pancreatic cancer. However, it may be
of great importance to target particular subsets of CAFs, such as iCAFs and TGF-β–CAFs,
in order to achieve the desired effect.
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4. Therapeutic Treatments to Target CAF-Derived Immunosuppressive Factors

Several clinical trials have evaluated the benefit of targeting immunosuppressive
factors in pancreatic cancer patients measured by clinical outcomes. However, to our
knowledge, there are no studies investigating the effects on the immune profile after
therapy. Table 1 includes a summary of the completed and active clinical trials targeting
CAF-derived immunosuppressive factors in pancreatic cancer.

A phase I/II clinical trial (NCT00841191) assessing the safety and efficacy of anti-IL-6,
siltuximab, administered as a monotherapy to patients with pancreatic cancer, showed
a good tolerance, but did not detect any clinical benefit [67]. The efficacy of anti-IL-6
combined with immune checkpoint inhibitors or with chemotherapy is currently being
studied in several clinical trials (NCT04258150, NCT04191421).

The benefits of the COX-2 inhibitor, celecoxib, administered in combination with stan-
dard chemotherapy treatment, have been studied in several phase II clinical trials [69–72].
The treatment was well tolerated by the patients in all the studies but with varying clinical
effects. In two of the trials, the COX-2 inhibitor did not demonstrate any significant clinical
improvement [69,70]. However, two other clinical trials showed that the administration of
COX-2 inhibitors partially improved the clinical outcomes. One study reported an overall
clinical benefit rate of over 50% but the median survival was 9 months [71]. Another study
showed a 4-fold increase in one-year overall survival for patients treated with combination
therapy compared to chemotherapy alone [72]. The benefits of COX-2 inhibitors are being
further investigated in several clinical trials (NCT03838029, NCT03498326, NCT03878524).

A phase I clinical trial (NCT02734160) evaluating anti-TGF-β-R1 combined with anti-
PD-L1 in metastatic pancreatic cancer patients showed limited clinical effects with an
objective response rate of only 3% and a median overall survival of 5 months [76]. The
synergistic effect of anti-TGF-β and immune checkpoint inhibitors is being evaluated in
different ongoing clinical trials (NCT04624217, NCT04429542, NCT02947165). Further-
more, a phase I/II clinical trial (NCT00844064) with advanced pancreatic cancer patients
who received the TGF-β2 anti-sense oligonucleotide, OT-101, followed by subsequent
chemotherapy, showed an improved overall survival [112]. Further clinical trials with
anti-TGF-β are ongoing (NCT03666832, NCT03685591).

5. The Role of Chemotactic Factors in Pancreatic Tumor Immune Cell Infiltration

The spatial distribution of tumor-reactive immune cells in the tumor microenviron-
ment is of great importance for efficient tumor eradiation. Since most T cells are localized
in the desmoplastic stroma of the PDAC tumor [45,54–56], means to increase their mobility
to reach the malignant cells could be crucial. Chemokines are low-molecular-weight pro-
teins with chemoattractive capacities that, after signaling through their cognate receptors,
promote cell migration towards and within tissues. The putative role of chemokines in
the localization of immune cells within the tumor is only starting to be unraveled, but
several recent studies point to the fact that chemokines can stimulate recruitment of both
immunosuppressive and tumor-reactive immune cells into the tumor microenvironment
(Figure 1c). Furthermore, accumulating data suggest that chemokines may play a key role
in regulating immune cell infiltration and access to the tumor nests. Table 2 summarizes
the outcomes of targeting stromal-derived chemokines in preclinical models.
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Table 2. Inhibitors of chemokines used in preclinical models and clinical trials with the reported observations on the effects
on immune cells and the primary endpoint of the clinical trials.

Target
Observations in
Preclinical Models
[ref]

CLINICAL TRIALS

NCT Treatment Phase Condition Status Primary Endpoint//
Observations [ref]

CCR2

+ CXCR2 target:
↓ MDSC infiltration
[113]

NCT01413022 PF-04136309
Folfirinox Ib Unresectable Completed

Optimal dose and
toxicity//
↓TAMs
↑CD8+ and CD4+ T-cell
infiltration [114]

NCT02732938
PF-04136309
Gemcitabine
Nab-paclitaxel

Ib/II Unresectable Completed

DLT//
No benefit
Pulmonary toxicity
[115]

CCR5 + ICI

NCT04721301
Maraviroc
Nivolumab
Ipilimumab

I Unresectable Active Safety and tolerability

CCR2 + CCR5 + ICI

NCT03184870
Multiple drugs
including BMS813160
Nivolumab

I/II Unresectable Active Toxicity/Tregs
numbers/ORR/PFS

CXCR1/2 + ICI

↑ CD4+ and CD8+

T-cell infiltration
[116,117]
↑ CD4+ and CD8+

T-cell cytotoxicity [116]
↓Neutrophils [116]
↓Metastasis
↓Tregs [117]

NCT04477343 SX-682
Nivolumab I Unresectable Recruiting MTD

CXCL12/CXCR4 axis

NCT02179970 AMD3100 I Unresectable Completed

Safety//
↑ T-cell, NK-cell
infiltration and
activation
↑ B-cell activation
↓CXCL8 [118]

CXCL12/CXCR4 axis + ICI

↑CD8+ T-cell
infiltration and
cytotoxicity [51]

NCT03168139 NOX-A12
Pembrolizumab I/II Unresectable Completed

Safety//
Stable disease
↑Th1 cytokines [119]

NCT02826486 BL-0840
Pembrolizumab IIa Unresectable Completed

ORR//
↑OS
↑CD8+ T-cell
infiltration
↓MDSC
↓Tregs [120]

NCT04177810 AMD3100
Cemiplimab II Unresectable Recruiting ORR

NCT02907099 BL-0840
Pembrolizumab II Unresectable Active ORR

NCT04543071

BL-0840
Cemiplimab
Gemcitabine
Nab-paclitaxel

II Unresectable Recruiting ORR

ref, reference; NCT, clinicaltrials.gov identifier; ↓, decrease; ↑, increase; MDSC, myeloid-derived suppressor cells; TAM, tumor-associated
macrophages; ICI, immune checkpoint inhibitor; NK, natural killer cells; Th1, T helper type 1 cells; OS, overall survival; DLT, dose-limiting
toxicities; ORR, objective response rate; PFS, progression-free survival; MTD, maximum tolerated dose; // separation between primary
endpoint and observations.

clinicaltrials.gov
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5.1. The Role of the CXC12/CXCR4 Axis in T-Cell Retention and Tumor Growth

Chemotactic factors can stimulate recruitment of immune cells to the tumor microenvi-
ronment via engagement with their corresponding receptors. However, certain chemokines
have also been suggested to retain active immune cells in the stromal compartment. In
a murine PDAC model, it was shown that CAFs prevent CD8+ T cells from reaching
the tumor cells, a mechanism mediated by production of CXCL12 that retains CD8+ T
cells in the stroma via CXCR4 ligation [58]. In line with this, Biasci et al. showed that
CXCL12 suppresses directed migration of human immune cells towards other chemokines,
including CXCL10 and CXCL16 [118]. iCAFs express higher levels of CXCL12 compared
to myCAFs [33], suggesting that iCAFs may play a more prominent role in preventing T
cells from entering the tumor nests. Feig et al. identified FAP+ CAFs as the main source of
CXLC12 [19]. Blockade of CXCR4 led to an increased accumulation of T cells in a PDAC
tumor model which synergized with blockade of PD-L1 [19]. The combined blockage of
CXCR4 and PD-1 has also been shown to lead to an increased migration of T cells from the
stroma into cancer-cell-rich regions in in vitro organotypic models of pancreatic cancer [51].
Perivascular CAF-derived CXCL12 is also implicated in attracting CXCR4+ macrophages
toward blood vessels, which in turn leads to tumor cell intravasation in murine mod-
els [121]. It was further shown that radiation exposure increases secretion of CXCL12 from
CAFs, which in turn promotes pancreatic cancer cell epithelial-to-mesenchymal transition
and invasion in vitro and metastasis in vivo in a CXCL12–CXCR4-dependent manner [122].
PDAC-derived exosomes secreting macrophage migration inhibitory factor (MIF), another
CXCR4 ligand with chemokine-like functions, has been suggested to be involved in initiat-
ing pre-metastatic niche formation in the liver in PDAC [123]. Thus, CXCR4 and its ligands
not only prevent T cells from migrating from the stroma to the malignant cells, but also
appear to be involved in tumor cell migration and invasiveness.

5.2. CXCR2 and CCR2 and Their Ligands Promote Infiltration of Suppressive Myeloid Cells

CXCR2 is the receptor for the chemokines CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,
CXCL7, and CXCL8 in humans. The primary immune function of CXCR2 is to regulate neu-
trophil migration from the bone marrow and recruitment to inflammatory sites, but recent
studies also suggest that CXCR2 is involved in tumor progression by promoting accumula-
tion of MDSCs, neutrophils, and other suppressive cells in pancreatic tumors [38,116,117].
Inhibition of CXCR2 abrogates tumorigenesis and metastasis in murine models and was
also associated with an increased infiltration of T cells [116,117]. Furthermore, combined
blockage of CXCR2 and PD-1 resulted in an improved animal survival [117]. In line
with this, deletion of type I collagen in α-SMA+ CAFs was associated with an increased
production of CXCL5 and subsequent influx of CD206+ARG1+ MDSCs into the tumor
microenvironment [38]. Inhibition of CXCR2 and CCR2 in this model reversed infiltration
of MDCSs and tumor progression and increased T-cell influx. CAFs have also been shown
to express CXCR2 in PDAC and it was recently shown that macrophage-derived CXCL3
promotes differentiation of α-SMA+ CAFs by CXCR2 ligation [124]. CXCL3-primed CAFs
promoted cancer metastasis and expression of CXCL3 was correlated with poor patient
survival. To summarize, CXCR2 and its ligands promote recruitment of immunosuppres-
sive myeloid cells with a concomitant decrease in T-cell infiltration. However, CAR T cells
modified to express CXCR2 showed persistence in tumors and complete tumor regression
in murine models of pancreatic cancer [125], suggesting that tumor-reactive immune cells
can be modified to take advantage of the CXCR2 ligands in the tumor.

As with CXCR2, the CCR2/CCL2 axis is also involved in recruiting myeloid cells to
the tumor microenvironment. It plays a particularly important role in attracting monocytes,
which, after interactions with tumor- and stromal-derived factors, differentiate into sup-
pressive tumor-associated macrophages at the site [126]. A combined blockage of CCR2
and CXCR2 in a murine PDAC model prevented both CCR2+ macrophages and CXCR2+

neutrophils from entering the tumor, which led to an improved anti-tumor immunity and
response to chemotherapy [113]. CAFs, and iCAFs in particular, likely play a role in the
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recruitment of monocytes into peritumoral areas since they express high levels of CCL2 [33].
CCL2 has also been implicated in attracting myeloid cells to the central nervous system to
mediate cachexia [127].

5.3. Dual Role of CCR5 in PDAC

The CCR5/CCL5 axis appear to have dual functions in PDAC. Murine models treated
with CD40 agonists showed an increased influx of CD4+ T cells into tumors, with a
concomitant increased response to immunotherapy which was dependent on CCL5 [128].
However, it has also been shown that Tregs generally express higher levels of CCR5
compared to effector T cells and that tumor-derived CCL5 promoted an influx of Tregs,
which resulted in increased tumor growth [129]. Singh et al. demonstrated that CCR5
and CCL5 are highly expressed in metastatic human PDAC and that CCL5 promoted
proliferation and invasion of tumor cells, suggesting that the CCR5/CCL5 axis is involved
in metastasis [130]. It was subsequently shown that CCR5 inhibition led to remission of
liver metastasis in a human xenograft model, which was mediated by the downregulation
of cell cycle processes in human PDAC cells [131].

5.4. The CXCR3 Axis Can Promote T-Cell Infiltration but also Contribute to
Chemotherapy Resistance

The chemokines that signal through CXCR3, including CXCL9 and CXCL10, have
been suggested to promote T-cell infiltration and activation in melanoma and other solid
tumors [42,132,133]. Expression of CXCR3 was necessary for CD8+ T-cell anti-tumor
responses after treatment with PD-1 inhibitors in mouse models of melanoma [134]. Levels
of CXCL9 and CXCL10 were also correlated with the presence of tumor-infiltrating T
cells in melanoma patients and migration assays confirmed that these chemokines were
critical for T-cell influx [42]. In advanced PDAC, high levels of CXCL9 and CXCL10
in plasma were associated with better survival and response to chemotherapy [135]. A
stimulator of interferon genes (STING) agonist promoted expression of CXCR3 ligands in a
murine model of PDAC, which led to increased effector T-cell infiltration and a decrease in
suppressive immune cells [136]. Conversely, high expression of CXCL10 and CXCR3 in
the tumor microenvironment has been shown to be associated with a poor prognosis in
human PDAC in several studies [137–140]. It has been suggested that CXCR3+ regulatory
T cells are attracted to the tumor microenvironment as a result of intratumoral CXCL10
secretion [139]. Likewise, CXCL9 has been suggested to promote tumor progression by
inducing STAT3-dependent suppression of cytotoxic T cells [141]. The disparity between
the studies both within pancreatic cancer and between other types of solid tumors such as
melanoma is not known, but it is possible that CXCR3 and its ligands affect malignant cells
differently in various types of cancer. Indeed, the majority of human PDAC tumors contain
a subset of tumor cells expressing CXCR3 and exposure to CXCL10 induced resistance
to gemcitabine [138]. Furthermore, the role of CAFs in CXCR3-mediated modulation of
tumor immune cells is as yet not known.

6. Therapeutic Treatments to Target Chemokines

T-cell infiltration into the tumor nest is crucial for a good prognosis in pancreatic cancer
patients. Targeting chemokines may putatively have an impact on the immune profile and
enhance the impact of both standard therapies and immunotherapies. As described above,
many antagonists have been tested in preclinical animal models. However, only a few
are currently being evaluated in clinical trials to treat pancreatic cancer patients. These
include blocking of CCR2, CCR5, CXCR2, and CXCR4. Table 2 includes a summary of the
completed and active clinical trials targeting chemokine receptors in pancreatic cancer.

6.1. Targeting CCL2/CCR2 Chemokine Axis

The safety and the efficacy of CCR2 blockade with PF-04136309, in combination with
chemotherapy (folfirinox), has been shown in a phase Ib clinical trial in pancreatic cancer
patients with advanced or borderline resectable tumors [114]. The mechanism of action of
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this molecule is to inhibit the circulation of monocytes from the bone marrow to the tumor.
Blockade of the CCL2/CCR2 chemokine axis was well tolerated by the patients, which
also showed a partial response. Combination treatment with chemotherapy resulted in a
reduction in tumor-associated macrophages and an increased number of CD8+ and CD4+ T
cells in the primary tumor compared to chemotherapy alone [114]. However, another safety
and pharmacokinetics/pharmacodynamics phase Ib study which combined PF-04136309
and chemotherapy (gemcitabine/nab-paclitaxel) in patients with metastatic PDAC showed
no significant improvement compared to chemotherapy alone but showed possible toxic
effects in the lungs [115].

6.2. Targeting CCL5/CCR5 Chemokine Axis

Maraviroc is a CCR5 antagonist drug approved by the FDA to treat HIV patients.
Preclinical models in pancreatic cancer have shown that inhibition of the CCL5/CCR5
axis with maraviroc leads to tumor cell apoptosis and growth arrest [131]. Clinical trials
in colorectal cancer with this drug (NCT01736813, NCT03274804) have shown promis-
ing results [142,143], with reduced proliferation of tumor cells and a shift towards M1
macrophages in one of the trials [142]. After these encouraging results, clinical trials
with maraviroc combined with immune checkpoint inhibitors are currently ongoing for
metastatic pancreatic cancer (NCT04721301). To boost the specific and encouraging ef-
fects of CCR2 and CCR5 antagonists, a phase Ib/II clinical trial with dual blockade of
CCR2 and CCR5 with BMS 813160 as a monotherapy or in combination with chemother-
apy or immunotherapy is currently ongoing for advanced pancreatic cancer patients
(NCT03184870) [144].

6.3. Targeting CXCR1/2 and Their Ligands Chemokine Axis

Another chemokine antagonist that has been shown to alter the tumor immune
environment is the CXCR1/2 antagonist SX-682. The main function of CXCR2 is to regulate
the recruitment and migration of neutrophils and MDSCs. SX-682 has been shown to
enhance Th1 immune response in several animal models including melanoma, breast, lung,
and prostate cancer [145–147]. This inhibitor is currently undergoing a safety evaluation
in a phase I clinical trial for pancreatic cancer patients in combination with anti-PD-1
treatment (NCT04477343).

6.4. Targeting CXCL12/CXCR4 Chemokine Axis

The CXCL12/CXCR4 axis excludes effector T cells from the tumor nests, impacting
the efficacy of immune checkpoint inhibitors. The administration of the CXCR4 antagonist
AMD3100 induced CD8+ T cells infiltration and promoted a rapid activation and response
of intratumoral T cells, natural killer cells, and B cells in a phase I clinical trial for metastatic
PDAC [118]. The safety and clinical benefit of AMD3100 combined with anti-PD-1 treat-
ment is being assessed in a phase II clinical trial (NCT04177810). A phase I/II clinical
trial with the CXCL12 inhibitor NOX-A12 in combination with PD-1 inhibition showed an
increased immune response in approximately half of the patients [119]. Similarly, another
phase II clinical trial targeting CXCR4 with BL-804 together with PD-1 inhibitors showed
an increased T-cell infiltration and enhanced CD8+ T-cell cytotoxicity [120]. The study also
showed a decrease in intratumoral MDSCs and circulating Tregs with a modest increase
in overall survival [120]. Other ongoing phase II clinical trials targeting both CXCR4
with BL-804 and PD-1 will determine whether immunotherapy combined with chemokine
blockade can rescue the patients’ anti-tumor immunity (NCT02907099, NCT04543071).

7. Conclusions

Pancreatic CAFs have emerged as important regulators of the tumor microenviron-
ment, both as restrainers of tumor growth but also as suppressors of tumor-reactive immu-
nity. The recent discoveries about the diverse functions of different CAF subpopulations
have significantly increased our understanding of the complex pancreatic stroma, but many
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questions still remain. The low mutational burden and the suppressive milieu in pancreatic
cancer have been suggested to contribute to the lack of response to immune checkpoint
inhibitors, but a key issue may be to assist T cells to efficiently come within close proximity
of the malignant cells. Several lines of evidence suggest that chemokines and their cognate
ligands play an important role in promoting T-cell exclusion from the tumor and further
preclinical and clinical studies evaluating the role of chemokines are necessary to take full
advantage of immune checkpoint therapeutics.
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