
An integer linear programming approach for finding
deregulated subgraphs in regulatory networks
Christina Backes1,*, Alexander Rurainski2,*, Gunnar W. Klau3, Oliver Müller4,
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ABSTRACT

Deregulation of cell signaling pathways plays a
crucial role in the development of tumors. The iden-
tification of such pathways requires effective
analysis tools that facilitate the interpretation of ex-
pression differences. Here, we present a novel and
highly efficient method for identifying deregulated
subnetworks in a regulatory network. Given a
score for each node that measures the degree of
deregulation of the corresponding gene or protein,
the algorithm computes the heaviest connected
subnetwork of a specified size reachable from a
designated root node. This root node can be inter-
preted as a molecular key player responsible for the
observed deregulation. To demonstrate the poten-
tial of our approach, we analyzed three gene ex-
pression data sets. In one scenario, we compared
expression profiles of non-malignant primary
mammary epithelial cells derived from BRCA1
mutation carriers and of epithelial cells without
BRCA1 mutation. Our results suggest that oxidative
stress plays an important role in epithelial cells of
BRCA1 mutation carriers and that the activation of
stress proteins may result in avoidance of apoptosis
leading to an increased overall survival of cells with
genetic alterations. In summary, our approach

opens new avenues for the elucidation of pathogen-
ic mechanisms and for the detection of molecular
key players.

INTRODUCTION

In the last decade, microarray-based gene expression
profiles played a crucial role in the study of disease-related
molecular processes. Initially, microarray studies focused
on single differentially expressed genes. Later, gene set
analysis (GSA) and related approaches were taking into
account that genes do not act individually but in a
coordinated fashion (1–3). The disadvantage of this type
of methods is that they can only reveal the enrichment of
genes in predefined gene sets, e.g. canonical biological
pathways. Other approaches like GRAIL (4) use text
mining to identify key disease genes and the biological
relationship among those key genes. In recent years,
the research focus has shifted toward analysis methods
that integrate topological data reflecting biological
dependencies and interactions between the involved
genes or proteins. In general, these graph-based
approaches use scoring functions that assign scores or
weights to the nodes or/and edges and make strong
efforts to identify high-scoring pathways or subgraphs.
A seminal work in this area is the publication by Ideker
et al. (5) who proposed a method for the detection of
active subgraphs by devising an appropriate scoring
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function and search heuristics. Other groups reported
similar methods, which are all based on scoring protein–
protein interaction (PPI) networks given experimental
data (6–8).
In 2008, Ulitsky and co-workers presented an algorithm

for detecting disease-specific deregulated pathways by
using clinical expression profiles (9). In the same year,
two Integer Linear Programming (ILP)-based
approaches for uncovering deregulated networks have
also been published (10,11). Recently, Dao et al. presented
a randomized algorithm for efficiently finding discrimina-
tive subnetworks, which is based on color coding tech-
niques (12).
Vandin et al. published a computational framework for

a related problem, the de novo identification of significant-
ly mutated subnetworks, in which they consider the neigh-
borhood of mutated genes (13). Due to space constraints a
complete overview of all related subnetwork-based
approaches is out of scope of this work. An overview of
several network algorithms and tools is given in
Supplementary Table S1.
Considering regulatory networks, our group recently

proposed a dynamic programming algorithm (14) to
identify deregulated paths of a certain length relying on
standard Gene Set Enrichment Analysis (GSEA)
(1,15,16).
In the present work, we do not consider single

deregulated paths, but subgraphs and present a novel
branch-and-cut based approach for the determination of
deregulated subgraphs that can be applied to both
directed (e.g. regulatory networks) and undirected
graphs (e.g. PPI networks). Given a network and node
scores indicating the deregulation of the corresponding
genes or proteins, our approach identifies the heaviest con-
nected subnetwork of size k, i.e. the most deregulated sub-
network with the highest sum of node scores. In the case
of directed graphs, we denote a subgraph as connected if
all nodes of the subgraph are reachable from a designated
root node via paths that contain only nodes belonging to
the subgraph. We chose this connectivity model to find
molecules (root nodes) that exert a dominating influence
on their downstream targets. Such root nodes are very
likely to be molecular key players responsible for the
observed deregulation and may, thus, serve as promising
targets for therapy purposes.
Since we are especially interested in the identification of

genes and proteins that may play a key role in pathogenic
processes, we evaluated the new approach by carrying
out three different tests studying differences of regulatory
processes based on the KEGG human regulatory
pathways (17–19) and expression data. First, we
analyzed gene expression profiles of non-malignant
mammary epithelial cells from BRCA1 mutation carriers
and non-BRCA1 mutation carriers (20) to explore the
effect of the mutations on the regulatory processes and
to gain new insights on how these mutations may contrib-
ute to the development of breast cancer. Second, we
studied activity differences in regulatory networks
between groups of short- and long-time survivors of
astrocytomas using a freely available dataset of high-grade
(grades III and IV) astrocytomas (21,22). Using these

datasets, we also compared our novel approach with
state-of-the-art methods.

Finally, we applied our algorithm to a dataset generated
at Roche Pharma Research. This dataset consisted of gene
expression data from two different colorectal adenocarcin-
oma cell lines treated with a cytotoxic substance. The goal
of the experiment was to elucidate the mode of action of
the employed agent. The binaries of the implementation of
our algorithm and the used graph and gene score lists are
freely available on our homepage http://genetrail.bioinf
.uni-sb.de/ilp/.

MATERIALS AND METHODS

We present a novel branch-and-cut (B&C) approach for
detecting deregulated subgraphs in biological networks
based on expression differences of the involved genes
or proteins. We will start with a detailed problem
definition.

Problem definition

As input, the algorithm requires a directed graph that rep-
resents the biological network G=(V, E) and scores for
each node. Given this labeled directed graph, we are inter-
ested in finding connected subgraphs of size k that
maximize the sum of the scores. Here, we denote a
subgraph G0 �G as connected if it contains at least one
root node vr from which all other nodes in G0 are reach-
able, i.e. for each node v in G0, a path from vr to v con-
sisting only of nodes in G0 exists.

Workflow

The workflow of our approach consists of three steps. In
short, using normalized expression data, we compute a
score for each gene that mirrors the expression differences
of the gene between the sample and the reference group
and that can be interpreted as its degree of deregulation.
These gene scores are mapped to the corresponding nodes
of the biological network G. Finally, we apply our
approach to this labeled directed graph. An overview of
the workflow is presented in Figure 1.

We start with the description of the methods for
calculating the node scores and the procedures for
preparing the input network. After the presentation of
the ILP and the B&C approach, we list the tools used
for the visualization and statistical evaluation of the
obtained deregulated subgraph.

Normalization and calculation of the gene scores

Given the expression datasets of the sample and reference
group, we first carried out quantile normalization (24) of
the microarrays if necessary. To demonstrate the flexibility
of our tool with respect to different pre-processing
approaches, we selected three common methods, including
fold-difference, two-tailed unpaired t-test and fold
changes to determine a score for each transcript, and
applied these to three different microarray data sets. In
the next step, the transcript IDs are mapped to NCBI
Gene IDs. If two or more transcript IDs are mapped to
the same gene, we select the median score of the
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corresponding transcripts as its score. Hence, the resulting
gene list contains one score for each gene on the micro-
array and this score mirrors its degree of deregulation.

Preparing the biological network

The B&C approach requires a directed graph as input. In
this study, we considered the union of all KEGG human
regulatory pathways including the KEGG cancer
pathways. In the following, we denote this merged
network as the KEGG human regulatory network.

We imported the KEGG regulatory pathways via the
Biochemical Network Database (BNDB) (25) that facili-
tates the merging and integration of various external
network databases. The usage of the BNDB has the ad-
vantage that we have access to the data of different data-
bases using the same interface. For details of the import

and merging procedures, see Refs (23,25) and the
Supplementary Methods.
Since KEGG pathways also contain nodes for protein

families, we transformed the original KEGG pathways by
splitting the nodes of protein families into their compo-
nents. Given a protein family, we replace the family node
by a set of nodes where each node represents a family
member. Each new node is connected to all neighbors of
the original family node, i.e. it has the same set of in- and
outgoing edges as the original family node, and receives
the score of its corresponding gene. Here, we assume that
all family members interact in the same manner with the
neighboring nodes of the original family node. We also
have to deal with nodes that still have no score. Here,
we decided to set these scores to a constant value of ‘0’.
The corresponding nodes do not contribute to the total
score of the subnetwork, but may be chosen for

Figure 1. Workflow of our algorithm for the computation of deregulated subgraphs. As input, it requires a biological network and a list of genes
with scores that have been derived from expression data and mirror the degree of deregulation. After the scores of the genes have been mapped to the
corresponding nodes of the network, our ILP-based B&C approach calculates the most deregulated subgraph that can be visualized using BiNA (23).
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connectivity reasons. Finally, for the mapping of the genes
and their scores to the nodes of the network, we used the
NCBI Gene identifiers.

ILP formulation and the B&C algorithm

For each node vi2G, we introduce two binary variables xi
and yi. While the variable xi2 {0, 1} indicates whether its
corresponding node vi is contained in the selected
subgraph (xi=1) or not (xi=0), the variable yi2 {0, 1}
indicates whether its corresponding node vi is the root
node (yi=1) or not (yi=0). Let si be the score of node
vi then the optimization problem can be formulated as
follows:

max
x

X

i

sixi:

The following constraint ensures that the subgraph
consists of k nodes:
X

i

xi ¼ k: ð1Þ

We ensure that we obtain one root node by the constraint
X

i

yi ¼ 1:

The inequalities

yi � xi for all i

ensure that the designated root node belongs to the nodes
of the selected subgraph.
All remaining constraints concern the connectivity of

the desired subgraph. Let In(i) be the set of indices of
the predecessors of node vi, where a node vj is a predeces-
sor of vi if there is a directed edge from vj to vi. We ensure
that a chosen node has either a predecessor in the selected
subgraph or it is the designated root node by

xi � yi �
X

j2InðiÞ

xj � 0 for all i:

Unfortunately, this kind of constraints is also fulfilled by
cycles as every node in a cycle has a predecessor. Hence, a
subgraph fulfilling the above constraints may contain dis-
connected cycles. Let C be the set of node indices of a
cycle, and analogously In(C) the set of indices of nodes
which share an in-edge into this cycle, then the extension
of the above constraint to the cycle C is given by
X

i2C

ðxi � yiÞ �
X

j2InðCÞ

xj � jCj � 1 for all C: ð2Þ

In theory, the complete description of our optimization
problem as given above requires one constraint for every
cycle, resulting in a large number of inequalities of type (2)
for the considered problem instances.
In practice, branch-and-cut-algorithms (B&C-algo-

rithms) start with a basic set of constraints, solve the
current mathematical problem and check afterwards if
the result violates not yet considered constraints. If so,
violated constraints are added (cut) and the solver is

restarted. This process iterates until no further violated
constraint could be identified.

In order to solve the mathematical problems efficiently,
see e.g. Ref. (26), the integrality contraints are dropped
(relaxation) and we obtain common linear problems.
Unfortunately, the above constraints can also be fulfilled
by non-integer values, i.e. xi2 [0, 1] but xi =2 {0, 1}.
Therefore, we expect usually non-integer solutions of the
relaxed problems. However, it can be efficiently decided,
whether the variable values of a result are integer and
whether non-zero (not necessarily integer) values form dis-
connected cycles. Evaluating both criteria is equivalent to
deciding if a result of the relaxed problem is a valid
solution candidate for the original problem.

In case of a non-integer result and no further violated
constraint, a so-called branching step is needed. The math-
ematical problem is subdivided into two or more
subproblems (branch). An ordinary decision strategy is,
e.g. assigning one variable to the next upper integer ac-
cording to its value in the recent intermediate solution
(first subproblem) and to the next lower integer (second
subproblem). In this case, we have to deal with two new
subproblems where one more variable is fixed. The
subproblems are also addressed by the above proced-
ure and the best solution is selected. This scheme is
iterated until we obtain a feasible solution that does not
violate any possible contraint and where all values are
integer.

As our set of basic cycle constraints, we only consider
cycles with two or three nodes. In order to identify
violated constraints during the B&C process, we imple-
mented an efficient algorithm that searches for unsatisfied
inequalities of type (2).

In this study, we used the ‘traditional mixed integer
search’ B&C framework of CPLEX (27), version 12.1,
which is freely available for academic applications. A
general workflow of B&C algorithms is presented in
Figure 2. For a detailed survey of B&C algorithms, the
interested reader is referred to Refs (26) and (28).

Visualization of the resulting subgraphs

For the visualization of the deregulated subgraphs, we use
the Biological Network Analyzer (BiNA) (23), which is a
Java application for the visualization of metabolic and
regulatory networks. For our purpose, we implemented
a plugin for BiNA, which can visualize the disease- or
condition-specific subgraphs and facilitates the navigation
through different network sizes k. In addition, the plugin
provides the option to visualize different condition-specific
networks in a union graph. If only two such networks are
chosen for comparison, the edges are drawn using two
different colors according to their affiliation, and
common edges are painted using a third color. This way,
the differences and similarities between the two studied
conditions or states are graspable at a glance.

Statistical methods for the evaluation of the results

For testing the significance of a computed subgraph of size
k and root node vr, we carried out 1000 permutation tests
where we permuted the scores of the network nodes and
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computed the best subgraph of size k with root vr. The
P-value was calculated as the number of permutations
reaching an equal or better score than our original
subgraph rooted in vr divided by the number of
permutations.

To compare our method to the results of standard GSA
methods, we analyzed the input lists (sorted by their
scores) with standard unweighted GSEA using
GeneTrail (16,29). Among other functional categories
already provided by GeneTrail, we also analyzed the
curated gene set ‘c2.all.v2.5.symbols.gmt’ from the
Molecular Signatures Database (MSigDB) (30), which
contains additional gene sets from online pathway
databases, publications in PubMed and knowledge of
domain experts. Furthermore, we performed an over-
representation analysis (ORA) of the nodes/genes of the
deregulated subgraph as test set and the genes of the regu-
latory graph as reference set with GeneTrail.

RESULTS

To validate our B&C approach, we studied three different
application scenarios that will be presented below. For all
applications, we considered the KEGG human regulatory

network and prepared the datasets as described in the
‘Materials and methods’ section. Preliminary tests with a
broad range of sizes have shown that the most stable,
significant and biologically interesting results are
obtained for k ranging from 10 to 25 nodes. Hence, we
will consider that range of subgraph sizes in all three
applications.

Nonmalignant primary mammary epithelial cells

For a first test, we downloaded and analyzed the
GSE13671 dataset (20) (Affymetrix HG-U133 Plus 2.0
microarray) from GEO (Gene Expression Omnibus) (31)
that provides expression data from non-malignant
primary mammary epithelial cells with and without
BRCA1 mutations. We computed the fold difference for
the mean of the BRCA1 mutation carriers against the
mean of non-mutation carriers given the normalized and
log-transformed expression values. The Affymetrix chip
IDs were mapped to NCBI Gene IDs and the resulting
list containing genes and corresponding scores served as
input for our algorithm. As described above, we computed
the most deregulated subgraphs for different subgraph
sizes ranging from 10 to 25 nodes. To study the stability
of the results, we considered the union of all nodes and

Figure 2. B&C workflow for solving the ILP. The ILP problem with only basic constraints is added to the instance pool (pool for considered ILP
subproblems). After choosing one subproblem, the integrality contraints are dropped in order to solve the problem efficiently. In the case of identified
violated constraints, they are added to the problem. If not, it has to be decided whether the solution is integer. If this is not the case, the current
problem is subdivided into two or more subproblems depending on the branching strategy.
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edges that occur in at least one of the 16 optimal
subgraphs. The compactness of this so-called union
graph is an indicator of the stability of the identified
deregulated components, i.e. the less nodes this union
graph contains, the more stable are the identified core
components.
Figure 3 shows the best subgraph for 25 nodes

(P< 0.001) and, additionally, the remaining nodes of the
union graph as isolated vertices. The number of occur-
rences listed in Table 1 indicates the presence of a stable
core component. This component consists of the path
EGLN3 (PHD3) ! EPAS1 (HIF-2a) ! VEGF !
KDR (VEGFR2) with the designated root node EGLN3
and, located farther downstream, the subgraph rooted in
MAPK13 consisting of the nodes TP53, DDIT3, RRM2
and GADD45B.
When performing an ORA for the genes of the

subgraph of size 25 as test set and the genes of the regu-
latory network as reference set, we find many KEGG and
MSigDB pathways significantly enriched that are
associated with cancer. An overview of significantly
enriched pathways which cover at least four genes of the
deregulated subgraph is given in Supplementary Table S2.
Further elaborations on the pathways are given in the
‘Discussion’ section.

Comparison of high-grade glioma

As a second test, we analyzed the dataset GDS1815
(Affymetrix HG-U133A microarray) from GEO
providing expression data of high-grade gliomas, for
which additional clinical data is also available. Here, we
were interested in the identification of deregulated
processes that contribute to the malignancy of the brain
tumors. To this end, we compared two groups of patients
with strongly differing survival times. While the first group
had survival times �40 weeks (Group 1, 12 expression
profiles, average age 42 years, 12� WHO grade 4), the
second group had survival times �300 weeks (Group 2,
12 expression profiles, average age 40 years, 9� WHO
grade 3, 3� WHO grade 4). We used the independent
two-tailed t-test to compute a score and a P-value for
each gene. The P-values were required for the comparison
of our method with two competing approaches (see
below).
On a workstation with an Intel(R) Xeon(R) CPU

(W3540, 2.93 GHz, 11 GB RAM), the calculation of the
subgraphs of size 10–25 took 71 s in single thread mode.
The results are again very stable, which is shown in the
compactness of the union graph of size 10–25 consisting in
total of 28 nodes. The subgraph of size 25 is shown in
Figure 4. Many genes in this subgraph have been
associated with glioma, including FYN, PIK3R3, RAC3,
XIAP and several caspases. Other genes like TP53, NFKB,
MAPK1 and IFNG are associated with cancer in general.
An interpretation of these findings is given in ‘Discussion’
section.
We compared our results for this dataset with the

results of the BioNet (32) implementation of the
ILP-based approach by Dittrich et al. (11). A comparison

with the ILP approach of Zhao et al. (10) was not possible
as no software was available.

Since BioNet has been designed for undirected graphs,
we could only apply it to the ‘undirected’ version of the
KEGG human regulatory network. BioNet calculated an
optimal subgraph of size 37 overlapping with our
deregulated network of size 25 in 9 nodes (running time:
16 min). When reconsidering the original directed edges,
the calculated deregulated network was not connected in
our sense, i.e. not all nodes in the subgraph could be
reached from the root node. This complicated the inter-
pretation of the result. However, the subgraph of 37 nodes
comprises the central component of our subgraph of
size 25 consisting of the nodes FYN, GAB2, JAK1,
PIK3R3, RAC3, MAPK10, TP53, SESN1 and CD82
(Supplementary Figure S1). To assess the significance of
the overlap of the results of BioNet and our computed
subnetwork, the hypergeometric test was applied. The
chance for finding such an overlap by coincidence is
<10�12.

We also applied jActiveModules (version 2.23) (5) to
our input graph and this dataset. A first iteration of the
algorithm resulted in five networks with sizes ranging from
502 to 611 with scores from 11.354 to 11.678, which took
about 90 min for the computation. The overlap with our
deregulated subnetwork was between 17 and 24 nodes. We
used the highest scoring network of size 573 (overlap with
our subnetwork 24, score 11.678, P-valueoverlap< 10�18)
for an additional iteration, which yielded a best scoring
network of size 1 with score 3.114. The second best scoring
network was of size 138 and had an overlap of 17 nodes
with our network. A third iteration using the latter
network resulted in a best scoring network of size 65
(score 2.812) with an overlap of 16 nodes compared with
our network. Another iteration on this network yielded
only networks of sizes 1 or 2. Due to the differences in
the subgraph sizes, a more detailed comparison of the two
approaches is difficult.

Colorectal adenocarcinoma cell lines

In a third test, we analyzed gene expression data from two
different colorectal adenocarcinoma cell lines (HT-29 and
HCT-116). Both cell lines were treated with a cytotoxic
substance and samples were taken at two different time
points (8 and 24 h), untreated samples were used as
control. Gene expression data for all treated and untreated
samples was generated using the Affymetrix HG-U133
Plus 2.0 microarray. The raw and normalized expression
data are available on our homepage (http://genetrail
.bioinf.uni-sb.de/ilp). We compared the mean of the
treated with the mean of untreated cell lines and
computed fold changes for each comparison. Affymetrix
Probeset IDs were mapped to NCBI Gene IDs and the
resulting four different lists containing genes and their
corresponding fold changes (scores) served as input for
our algorithm. For the four resulting input lists, we
determined the most deregulated subgraphs for k
ranging from 10 to 25 nodes. The four obtained sets of
subgraphs are again very stable. For example, in case of
HCT-116, 24 h, we observed that, except for one
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Figure 3. The most deregulated subgraph for BRCA1 mutation carriers against non-mutation carriers for a network size of 25 (red edges) with root
node EGLN3 (P < 0.001). The nodes connected by gray edges are part of the union network of the deregulated subgraphs of size 10–25. The nodes
are colored by the computed scores (fold differences), where shades of green correspond to downregulated and shades of red correspond to
upregulated genes. The more intense the color, the higher the level of deregulation.
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transition, with increasing k only new nodes were added to
the previous subgraph. This resulted in a union graph
consisting of only 26 nodes. An overview of the genes
along with their number of occurrences in the subgraphs
can be found in the Supplementary Tables S3, S5, S7, S9
For the following analysis, we consider the computed

subgraphs of size 25 (P< 0.001, see ‘Materials and
Methods’ section). We performed an ORA with
GeneTrail (29) using the subgraph’s genes as test set and
the regulatory graph’s genes as reference set
(Supplementary Tables S4, S6, S8, S10). For visual repre-
sentation of the ORA results, we colored the subgraphs
using the most significantly enriched regulatory pathways
(Supplementary Figure S2).
When comparing these most significantly enriched regu-

latory pathways, the HCT-116 and the HT-29 subgraph
both contain parts of the ‘TP53 signaling pathway’ at 8 h
after treatment. Twenty-four hours after treatment only
the subgraph of the HCT-116 cell line was significantly
enriched for the ‘TP53 signaling pathway’. The compo-
nents of the HT-29 subgraph showed a shift to chemokine
signaling and toll-like receptor signaling.

DISCUSSION

We presented a novel ILP-based B&C approach for de-
tecting deregulated connected subgraphs in biological
networks. The optimization approach can be combined
with every additive node-based scoring function that is
appropriate to measure the deregulation of the corres-
ponding genes or proteins. In this study, we used the regu-
latory pathways from KEGG. However, we can apply the
method to any type of biological network. Using BN++
(23), we can access different data sources, e.g. regulatory
network databases as KEGG (17–19) or Transpath (33)
and PPI databases as DIP (34), HPRD (35), MINT (36)
and IntAct (37). Only slight modifications are required to
adapt the approach to undirected PPI networks or even to
a combination of regulatory and PPI networks. In this
case, each undirected edge has to be replaced by two
directed edges. However, in the undirected case the
concept of the root node does not apply, since every
node is reachable from any node in the connected undir-
ected network. In this case, our algorithm would only
compute the most deregulated connected part of the
input network. Since our algorithm was primarily

Table 1. List of genes found in the 16 computed deregulated subgraphs of sizes 10–25 and number of occurrences for BRCA1 mutation carriers

versus non-mutation carriers

Gene ID Gene symbol Gene description Number of occurrences
in the 16 deregulated
subgraphs

7157 TP53 Tumor protein p53 16
6241 RRM2 Ribonucleotide reductase M2 16
5603 MAPK13 Mitogen-activated protein kinase 13 16
4616 GADD45B Growth arrest and DNA damage-inducible, beta 16
1649 DDIT3 DN damage-inducible transcript 3 16
7422 VEGFA Vascular endothelial growth factor A 16
3791 KDR Kinase insert domain receptor (a type III receptor tyrosine kinase) 16
2034 EPAS1 Endothelial PAS domain protein 1 16
112 399 EGLN3 egl nine homolog 3 (Caenorhabditis elegans) 16
83 667 SESN2 Sestrin 2 15
998 CDC42 Cell division cycle 42 (GTP binding protein, 25 kD) 15
8503 PIK3R3 Phosphoinositide-3-kinase, regulatory subunit 3 (gamma) 14
5063 PAK3 p21 protein (Cdc42/Rac)-activated kinase 3 13
3576 IL8 Interleukin 8 11
5837 PYGM Phosphorylase, glycogen, muscle 9
51 806 CALML5 Calmodulin-like 5 9
5507 PPP1R3C Protein phosphatase 1, regulatory (inhibitor) subunit 3C 9
10 000 AKT3 v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma) 9
891 CCNB1 Cyclin B1 8
5533 PPP3CC Protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform 5
7043 TGFB3 Transforming growth factor, beta 3 5
3725 JUN Jun oncogene 2
8399 PLA2G10 Phospholipase A2, group X 1
5879 RAC1 Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding

protein Rac1)
1

5608 MAP2K6 Mitogen-activated protein kinase kinase 6 1
5602 MAPK10 Mitogen-activated protein kinase 10 1
5595 MAPK3 Mitogen-activated protein kinase 3 1
5106 PCK2 Phosphoenolpyruvate carboxykinase 2 (mitochondrial) 1
50 487 PLA2G3 Phospholipase A2, group III 1
399 694 SHC4 SHC (Src homology 2 domain containing) family, member 4 1
2353 FOS FBJ murine osteosarcoma viral oncogene homolog 1
2308 FOXO1 Forkhead box O1 1
9047 SH2D2A SH2 domain protein 2A 1
5747 PTK2 PTK2 protein tyrosine kinase 2 1
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Figure 4. The subgraph of size k=25 for the glioma dataset. The nodes connected by gray edges are part of the union network of the deregulated
subgraphs of size 10–25. The nodes are colored by the computed scores (t-test test statistic values), where shades of green correspond to
downregulated and shades of red correspond to upregulated genes. The more intense the color, the higher the level of deregulation.
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designed for directed networks, we did not try applying
our algorithm to the undirected case, so the effectiveness
of our algorithm in this case is unproven. However, we
are convinced that taking the direction of regulatory
networks into account is one of the main advantages of
our algorithm. Most other available algorithms neglect
the direction of the input network, whereas our algo-
rithm tries to use the additional information to identify
the causes and the molecular key players of the
deregulation.
The identification of patterns of pathway deregulation

is a crucial task in differential network analysis.
Moreover, the detection of the molecular key players
that trigger the observed differences is a major challenge.
With our connectivity model, we do not only identify the
most deregulated subgraph, but also a root node which
may be the cause for the deregulation as we have
demonstrated with the first example. We applied our
method to expression profiles of non-malignant primary
mammary epithelial cells (PMECs) isolated from BRCA1
mutation carriers and women without BRCA1 mutations.
BRCA1 germline mutations are associated with a predis-
position for developing breast cancer. The cumulative
breast cancer risk by 70 years of age in BRCA1
mutation carriers has been estimated to be 65% (38).
Although familial breast cancers have been intensely re-
searched, the exact processes influenced by the BRCA1
mutation which eventually result in the development of
breast cancer are still elusive. Burga and co-workers
found that the non-malignant PMECs from BRCA1
mutation carriers contained a subpopulation of progenitor
cells, which showed an altered proliferation and differen-
tiation in cell culture (20). In concordance to these mor-
phologic observations, the comparison of the expression
profiles of the PMECs with and without BRCA1 muta-
tions revealed an upregulation of the EGFR pathway,
which they discussed as possible cause for the altered
growth and differentiation properties. Our study
confirms these results as we also find EGF and p53 sig-
naling pathway significantly enriched in our deregulated
subgraph components (Supplementary Table S1).
Additionally, we find significantly enriched pathways
and categories that are associated with hypoxia and oxi-
dative stress, as e.g. ‘Hypoxia review’, ‘Hypoxia normal
up’ and ‘Oxstress breastca up’ from MSigDB. The
designated root node of our deregulated network is the
gene PHD3 (EGLN3), which is known to play an import-
ant role in hypoxia. Yan et al. (39) found that the
occurrence of a HIF-1a-positive phenotype and a
PHD3-negative phenotype is correlated with BRCA1
tumors. However, in this study we find that PHD3
is overexpressed in the non-malignant PMECs with
BRCA1 mutations. Ginouves et al. discussed
overactivation of PHDs during chronic hypoxia and its
effects on HIFa (40). They found that PHDs are the key
enzymes triggering a feedback mechanism, which leads to
a desensitization of HIF1/2a and protects cells against
necrotic cell death. Additionally, the GADD (growth
arrest and DNA damage-inducible) genes (GADD45B,
DDIT3) found in our deregulated subgraph are involved
in cell cycle arrest, repair mechanisms and apoptosis. An

increased expression of these genes has also been described
in studies examining cells in stressful conditions (41,42).
The genes GADD45B and DDIT3 (GADD153) are also
overexpressed in the BRCA1 mutation carrier expression
data. This is another indication that the cells seem to be in
a stressful state, which may have origins in the processes
involved in the hypoxia regulation. A study of Dai et al.
(43) discussed the role of oxidative stress in dependence of
obesity as a possible cause for increased breast cancer risk.
Regarding cell cultures of PMECs, as in our case, this
factor should admittedly be of no relevance. We hypothe-
size that the described different growth properties of the
PMECs with BRCA1 mutations are responsible for a dis-
turbance in O2 homeostasis, so that this may induce
oxidative stress. Additionally, the activation of the afore-
mentioned stress proteins can result in avoidance of
necrosis or apoptosis and in this way lead to an increased
overall survival of cells with genetic alterations. If the cells
in risk of cancerous transformation show a different
growth behavior that results in oxidative stress, targeting
the genes involved in these processes to induce cell death
may be a possible starting point for preventing the
outbreak of the disease. The idea of using, e.g. PHDs,
HIF-1a or its downstream targets as a potential therapeut-
ic strategy has been suggested by Ginouves et al. and Yan
et al., respectively.

To compare the results of our algorithm to a standard
GSEA, we subjected the input list containing the genes
sorted by the absolute values of their fold differences to
the GSEA variant implemented in GeneTrail. The analysis
revealed many significantly deregulated pathways
(P< 0.05, FDR adjusted), among others the KEGG
pathways ‘cell cycle’, ‘DNA replication’ and ‘mismatch
repair’. When regarding the MSigDB gene sets, we find
the breast cancer related categories ‘BRCA ER neg’,
‘BRCA ER pos’, ‘Breast cancer estrogen signaling’ and
‘Breast ductal carcinoma genes’, as well as the hypoxia
related category ‘Hypoxia reg up’ significantly
deregulated. Interestingly, in this analysis neither the p53
signaling pathway nor the EGF signaling pathway was
significantly deregulated.

Taken together, the non-malignant mammary epithelial
cells with BRCA1 mutations exhibit many properties that
are known from breast cancer. Our study indicates that
the cells are in a stressful state potentially originated from
the processes involved in the regulation of long-term oxi-
dative stress. Moreover, it seems that it is a very thin line
between a cancerous outcome and non-cancerous pheno-
type for BRCA1 mutated mammary epithelial cells con-
sidering the accumulated deregulation affecting multiple
signaling pathways visible in our computed subgraphs.
Finally, the GSEA analysis also reported hypoxia as a
significant finding. However, since the GSEA results are
presented as a long list of significant categories the rele-
vance of hypoxia might have been underestimated. Thus,
we can conclude that the causative chains of interactions
and reactions in the deregulated subgraphs provide more
structured information that facilitate the interpretation of
the results.

In our second example comprising high-grade glioma
expression data, the root node of the computed optimal
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subgraph was the gene FYN encoding a member of the Src
kinase family that is a downstream effector of EGFR sig-
naling, enhancing invasion and tumor cell survival in vivo
(44). Silencing of this gene by promotor hypermethylation
has been shown in gliomas and might be implicated in the
initiation of glioma from neural stem cells (45). Src kinases
including FYN are often activated in glioblastoma and
silencing of the kinases with dasatinib combined with a
monoclonal anti-EGFR antibodies significantly increased
survival of xenograft glioblastoma mouse models (44).
Another gene of the subgraph, PIK3R3, encodes a regu-
latory subunit of phosphoinositide 3-kinase and has been
shown to be overexpressed in highly proliferating glio-
blastomas, while knock-down of PIK3R3 expression in
cell lines strongly inhibited glioblastoma neurosphere
growth (46). Overexpression of RAC3 might be associated
with aggressive and invasive growth in glioblastoma
(47,48). The inhibitor of apoptosis XIAP that inhibits its
downstream targets CASP3 and CASP7 are also part of
the subgraph. XIAP is widely expressed in glioblastoma
and might be implicated in radio resistance of glioblast-
oma (49), while expression of CASP3 is generally low in
glioblastoma suggesting a low apoptotic activity in these
tumors (50). CASP7 is thought to be relevant for the
apoptosis/necrosis balance in glioma, with knockdown
of CASP7 resulting in an anti-apoptotic and pro-necrotic
response that is often seen in glioblastoma (51). Other
genes in the optimal subgraph include well-known
cancer-associated genes like TP53, NFKB, MAPK1 and
IFNG.

As a further application, we employed our algorithm to
a data set generated at Roche Pharma Research providing
the differential expression of two colorectal adenocarcin-
oma cell lines HCT-116 and HT-29 that were treated with
a cytotoxic substance. After treatment with the substance,
the cell lines were classified into weak responders and
strong responders according to the EC50 value. This
value reflects the dosage at which 50% of all cells die
off. In this experiment, we classified all cell lines with a
value <10 mM as strong responder, whereas weak
responder cell lines showed an EC50 value >70 mM.
According to in-house experiments, HT-29 shows a
weak response (71mM) after treatment with the
compound, in contrast to HCT-116 (5mM), which is a
strong responder (H. Burtscher, unpublished results). In
addition, it is known that HT-29 carries TP53 mutations,
whereas HCT-116 is TP53 wildtype [see IARC TP53 DB
(52), Roche Cancer Genome Database (53)]. Taken
together, one could hypothesize that TP53 mutation
status within these cell lines is a marker of response.
However, when performing experiments with several dif-
ferent weak responder and strong responder cell lines, no
correlation between TP53 mutation status and response
status was detected.

Our new method confirms these results: at the 8-h time
point, TP53 signaling is significantly enriched in the
subgraph of both cell lines. This changes after 24 h
where the TP53 signaling pathway is only significantly
enriched in HCT-116 but not in HT-29 cell line. We hy-
pothesize that, since HT-29 is a non-responder, other
regulatory processes than those involved in apoptosis

might become more important for the cell. In detail, we
detect a shift of significant regulatory processes to
chemokine signaling and toll-like receptor signaling with
genes triggering the immune response.
Our new B&C approach and the one given by Dittrich

et al. (11) differ in several important aspects. The key dif-
ference between the two approaches is the connectivity
model. While the approach of Dittrich et al. has been
designed for undirected graphs, the new formulation
takes the directions of the reactions and interactions ex-
plicitly into account in order to analyze the signal propa-
gation within the network, aiming especially at the
identification of molecular key players. While Dittrich
et al. transform the problem into a prize-collecting
Steiner tree problem, we work directly on the original
problem. Furthermore, we use a purely node-based for-
mulation where edges do not appear as variables. Hence,
we expect a better performance when the input graphs are
large and contain many edges. While our approach con-
siders subgraphs of a predefined size k, the network score
in Ref. (11) controls the size of the resulting networks.
Due to its efficiency, our algorithm enables the user to
determine subgraphs for a broad range of sizes k.
Furthermore, we observed that the incremental compari-
son and visualization of the resulting subgraphs
(k! k+1) does not only provide essential information
about the stability of the results, but also on signal propa-
gation spreading from the deregulated core components.
Moreover, it is possible to get rid of the pre-defined size k
if required or desired for a given application. This can be
achieved since our algorithm works for any node-based
scoring function, in particular also for the network score
used by Dittrich et al. Hence, it suffices to select a suitable
scoring function and to remove the size constraint (1). The
comparison of our approach with the one by Dittrich et al.
(11) on the glioma dataset showed that both approaches
find similar subgraphs; however, our approach provides
more structured information that facilitates the identifica-
tion of molecular key players and the interpretation of the
results.
In summary, the results of the three experiments

provide convincing evidence that the novel B&C
approach opens new avenues for the elucidation of patho-
genic mechanisms and for the detection of molecular key
players and putative target molecules. Since the ap-
proach is applicable for both directed and undirected
graphs and makes no strong assumptions concerning the
scoring function, it is suited for a broad range of applica-
tion scenarios. One such scenario is the extension of
our algorithm for the integration of miRNA data by
adding additional nodes for miRNAs and edges for
miRNA targets in our network, and by devising scoring
functions suitable for capturing the miRNA–mRNA rela-
tionships. Due to its efficiency, our algorithm enables the
user to scan a wide range of subgraph sizes in reasonable
time facilitating the stability analysis of the obtained
results. Furthermore, we showed that the application of
our algorithm to previously analyzed data can yield new
insights that may contribute to a better understanding of
diseases.
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