
Gene expression

MixTwice: large-scale hypothesis testing for peptide

arrays by variance mixing

Zihao Zheng 1,2, Aisha M. Mergaert2,3, Irene M. Ong4,5,6, Miriam A. Shelef2,7 and

Michael A. Newton1,46,*

1Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA, 2Department of Medicine, University of

Wisconsin-Madison, Madison, WI 53705, USA, 3Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison,

Madison, WI 53705-2281, USA, 4Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI

53726, USA, 5Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53792, USA, 6University of

Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA and 7William S.

Middleton Memorial Veterans Hospital, Madison, WI 53705, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on November 12, 2020; revised on February 13, 2021; editorial decision on February 26, 2021; accepted on March 5, 2021

Abstract

Summary: Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a
tool to measure the abundance of different antibodies in patient serum samples. The high dimensionality and small
sample size of many experiments challenge conventional statistical approaches, including those aiming to control
the false discovery rate (FDR). Motivated by limitations in reproducibility and power of current methods, we advance
an empirical Bayesian tool that computes local FDR statistics and local false sign rate statistics when provided with
data on estimated effects and estimated standard errors from all the measured peptides. As the name suggests, the
MixTwice tool involves the estimation of two mixing distributions, one on underlying effects and one on underlying
variance parameters. Constrained optimization techniques provide for model fitting of mixing distributions under
weak shape constraints (unimodality of the effect distribution). Numerical experiments show that MixTwice can ac-
curately estimate generative parameters and powerfully identify non-null peptides. In a peptide array study of
rheumatoid arthritis, MixTwice recovers meaningful peptide markers in one case where the signal is weak, and has
strong reproducibility properties in one case where the signal is strong.

Availabilityand implementation: MixTwice is available as an R software package https://cran.r-project.org/web/pack
ages/MixTwice/.

Contact: newton@stat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Peptide microarray technology is used in biology, medicine and
pharmacology to measure various forms of protein interaction. Like
other microarrays, a peptide array contains a large number of very
small probes arranged on a glass or plastic chip. Each probe occu-
pies a spatial position on the array and is comprised of many mo-
lecular copies of a short amino-acid sequence (a peptide) anchored
to the surface, perhaps 12–16 amino acids in length, depending on
the design. In antibody profiling experiments, the array is exposed
to serum derived from a donor’s blood sample; antibodies in the
sample that recognize an anchored peptide epitope may bind to the
probe. In order to measure these antibody/antigen binding events, a
second, fluorescently tagged antibody is applied, which binds to

exposed sites on the already-bound antibodies, providing quantita-
tive readout at probes where there has been sufficient binding of
serum antibody recognizing the peptide epitopes. High-density pep-
tide microarrays have emerged as a powerful technology in immuno-
proteomics, as they enable simultaneous antibody binding
measurements against millions of peptide epitopes. Such arrays have
guided the discovery of markers for viral, bacterial and parasitic
infections (Bailey et al., 2020; Mishra et al., 2018; Tokarz et al.,
2020) and have illuminated the serological response to cancer (Yan
et al., 2019) and cancer immunotherapy (Hoefges et al., 2020). The
photolithographic design allows for custom arrays, which have
benefited studies of autoimmunity, for example, where various
forms of post-translational modification (e.g. citrullination) create
targets for autoantibodies (Bailey et al., 2017; Zheng et al., 2020).
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The high dimensionality and small sample size of many peptide
array experiments challenge conventional statistical approaches.
Zheng et al. (2020), for example, reported a custom peptide array
having 172 828 distinct features and array data from 60 human sub-
jects across several disease subsets. This dimensionality is relatively
high compared to gene expression studies, but quite low compared
to other peptide array studies; arrays that probe the entire human
proteome carry over 6 million peptide features, for example.
Methods for large-scale hypothesis testing respond to these chal-
lenges, often aiming to control the false discovery rate (FDR) (e.g.
Efron, 2012). FDR-controlling procedures are more forgiving than
techniques that control the probability of any type I errors (e.g.
Bonferroni correction), but they still extract a high penalty for
dimensionality in the peptide array regime involving 105–106 fea-
tures. When additional data are available, it may be possible to fur-
ther limit penalties associated with large-scale testing.

Continuing with Zheng et al. (2020), the authors sought to iden-
tify peptides for which antibody binding levels differ between con-
trol subjects and rheumatoid arthritis (RA) patients expressing a
specific disease marker combination [cyclic citrullinated peptide
(CCP)þ and rheumatoid factor (RF�)]. Sera from 12 subjects in
each group were applied to their custom-built array. After pre-
processing, a univariate statistic (t-statistic) measured statistical
changes at each peptide. Peptides with the most extreme statistics
(and smallest P-values) would be set aside for further validation. In
the CCPþ RF� RA example, no peptides had a FDR-adjusted P-
value <10% by either the Benjamini–Hochberg (BH) method
(Benjamini and Hochberg, 1995) or the more sensitive q-value
method (Storey, 2003), although the latter method estimated that
21% of the peptides in fact have differential binding between the
two groups.

Improving power while maintaining robustness and reproduci-
bility is a theme of contemporary large-scale inference that we ex-
plore in the peptide array setting. The BH and q-value procedures
yield no discoveries in the CCPþ RF� RA example at one conven-
tional FDR level. If this is due to low statistical power, it may not be
surprising since these procedures enter quite late in data analysis,
after all P-values have been computed. Procedures that intervene
earlier have access to more information, and thereby may have bet-
ter overall operating characteristics. Efron’s local FDR approach,
locFDR, intervenes on test statistics just prior to P-value computa-
tion and has improved power properties in some settings (Efron
et al., 2001). Independent filtering combines a selection statistic,
such as marginal sample variance, and then applies an FDR-
controlling procedure to the selected peptides (Bourgon et al.,
2010). Neither locFDR nor independent filtering at 50% yielded
any results in the CCPþ RF� RA example, as it happens. We have
the same null finding by independent hypothesis weighting (IHW),
which generalizes independent filtering in not requiring a specific se-
lection rate (Ignatiadis et al., 2016).

Adaptive Shrinkage (ASH) is a recent innovation for large-scale
testing that intervenes after each peptide yields both an estimated ef-
fect and an estimated standard error (Stephens, 2017). There are
several variations of its empirical Bayesian formulation; when using
the t-distribution sampling model version of ASH (say ASH-t), we
discover 76 peptides to have differential antibody binding in the
CCPþ RF� RA comparison, also at 10% FDR control. This may re-
flect increased power and is consistent with numerical studies show-
ing increased power of ASH in many settings. A recent report from
Professor Stephens’s group points out a technical limitation of ASH-
t that could cause FDR inflation. It proposes a two-step ASH pro-
cedure that pre-processes the standard error estimates and then fol-
lows with the ASH-t procedure on modified input (Lu and Stephens,
2019). It happens that we discover 12 peptides with differential
binding affinity by two-step ASH at 10% FDR. The different behav-
ior of FDR-controlling procedures in the CCPþ RF� RA example
exposes ongoing practical challenges that are also revealed in com-
prehensive numerical studies (Korthauer et al., 2019).

Data analysts face many issues as they filter high-dimensional
measurements into short lists for experimental follow-up. In study-
ing this problem, we propose and evaluate a flexible empirical

Bayesian mixture method that, like ASH, intervenes after effect esti-
mates and standard errors are computed on each testing unit. The
proposed MixTwice procedure involves shape-constrained mixture
distribution for latent effects and also a separate non-parametric
mixture for variance parameters (Section 2). We leverage existing
tools for constrained optimization in order to estimate the underly-
ing mixing distributions, and we present a variety of comparative
numerical experiments on the operating characteristics of
MixTwice. The CCPþ RF� RA peptide array example happens to
yield 44 peptides having significant differential antibody binding at
10% FDR. A closer look at the identified peptides reveals binding
patterns consistent with other biological information about RA, and
thus provides a measure of confidence that these discoveries are not
artifacts. In a second RA example where differential signals are
stronger, MixTwice shows a higher level of reproducibility than
other approaches when presented with two independent datasets on
the same populations.

2 Mixture model

We index peptides by i ¼ 1; 2; . . . ;m and suppose that the two-
group peptide array data have been obtained and pre-processed in
order to yield two summary statistics per peptide: (xi, si). The first
component, xi, is an estimated effect. It measures the difference be-
tween the two groups, such as a difference in sample means of log-
transformed data, and is viewed as statistical estimate of an underly-
ing effect, say hi. In this view, xi is a random variable having some
sampling distribution, which we take to be Gaussian centered at hi;
this is warranted noting the behavior of suitably transformed fluor-
escence measurements coupled with central-limit effects for modest
to large sample sizes. The second component, si, is an estimated
standard error. In the Gaussian sampling model, EðxiÞ ¼ hi and
varðxiÞ ¼ r2

i , and s2
i is a sample-based estimate of the variance r2

i .
We seek inference about the value of hi using local data (xi, si) as
well as data fðxi0 ; si0 Þg from all peptides, which informs the distribu-
tion of effect and variance parameters across the array.

Our formulation is common in large-scale inference, and we
could infer hi values in a number of ways. For example, we could
produce a peptide-specific P-value from the test statistic ti ¼ xi=si

against the null hypothesis H0;i : hi ¼ 0. We might refer ti to a
Student-t distribution, obtain a two-sided P-value, and then process
the P-values through the BH or q-value methods to adjust for multi-
plicity (Benjamini and Hochberg, 1995; Storey, 2003).
Alternatively, we might use the collection ftig and model their fluc-
tuations as a discrete mixture of null and non-null cases, as in the
locFDR procedure (Efron et al., 2001; Strimmer, 2008). Both
locFDR and q-value methods are based upon discrete mixtures;
interestingly, the reduction of ti’s to two-sided P-values entails a loss
of sign information that is enough to reduce statistical power in
some settings. A more ambitious approach goes beyond null/non-
null mixing to allow a full probability distribution of effects hi in
order to account for fluctuations across all the peptides. ASH is
appealing because it acquires robustness through a non-parametric
treatment of this distribution, say gðhÞ, while using reasonable shape
constraints to regularize the estimation (Stephens, 2017). Power
advantages of ASH over other methods stem in part from its use of
more data per peptide.

In the context of an estimated mixture model there are two use-
ful empirical-Bayesian inference statistics. The first is local FDR
(lfdr), li ¼ Pðhi ¼ 0jxi; s

2
i Þ. The term local FDR was coined by

Professor Efron, and the statistic may be computed in various set-
tings beyond the specific mixture deployed in Efron et al. (2001).
The list ‘ of statistically significant peptides will be ‘ ¼ fi : li � cg
for some threshold c. Notably, small li warrants peptide i to be
placed in ‘; but the value li is also the probability (conditional on
data) that such placement is erroneous (Newton et al., 2006). Given
the data, the expected rate of false discoveries in ‘ is dominated by c.
The local false sign rate (lfsr) is analogous to lfdr, but it avoids rely-
ing on effects being precisely zero; when the estimated effect is posi-
tive, for example, the lfsr is Pðhi � 0jxi; s

2
i Þ. Lists controlling lfsr
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may be constructed in the same way as ‘, and may be slightly smaller
for the same value of c. (In the CCPþ RF� RA example in Section 1,
ASH lfsr and lfdr lists are the same at the 10% level.)

With modest sample sizes, differences between estimated stand-
ard errors fsig and actual standard errors frig can affect the per-
formance of existing tools for lfdr and lfds. To better account for
these differences, we propose an additional mixture layer involving
a sampling model pðs2

i jr2
i Þ, which we derive from normal-theory

considerations, and a flexible nonparametric mixing distribution
hðr2Þ. For both nonparametric components—g on effects hi and h
on squared standard errors r2

i —we use finite grids and treat each
distribution as a vector of probabilities. We estimate g and h by
maximum likelihood, respecting unimodal shape constraints for g
(as in ASH), but otherwise allowing any distributional forms.

Suppose that effects take values in a finite, regular grid
fa�K; a�Kþ1; . . . ; a0; a1; . . . ; aKg where a0 is the presumed mode,
taken to be a0 ¼ 0 in typical applications in which we aim to retain
the null hypothesis of no group difference. We use K¼15 in numer-
ical work reported here. Unimodality of the mixing distribution g ¼
ðgkÞ is expressed as a set of ordering constraints: gk � gkþ1 for k ¼
0; 1; . . . ;K and gk � gkþ1 for k ¼ �K;�Kþ 1; . . . ;�1. We also set
a second regular grid f0 < b1;b2; . . . ;bLg for squared standard
errors, and impose no constraints on the mixing distribution h ¼
ðhlÞ aside from the basic nonparametric essentials: hl � 0 andP

l hl ¼ 1.
The contribution to the likelihood objective from peptide i is

pðxi; s
2
i jg; hÞ:

¼
X

k

X
l

Pðhi ¼ akÞPðr2
i ¼ blÞpðxi; s

2
i jhi ¼ ak;r

2
i ¼ blÞ

¼
X

k

X
l

gkhlpðxijhi ¼ ak;r
2
i ¼ blÞpðs2

i jr2
i ¼ blÞ

¼
X

k

X
l

gkhl
1ffiffiffiffi
bl

p /
xi � akffiffiffiffi

bl

p� � �

bl
v2;�

�s2
i

bl

 ! (1)

where / is the standard normal probability density, v2;� is the
density of a chi-square random variable on � degrees of free-
dom. Under a normal data model, � is determined by design
(e.g. total samples minus two in the traditional two-sample
comparison). The chi-square model is accurate asymptotically
for a wide range of non-normal sampling distributions, however
the degrees of freedom needs estimation in these cases (O’Neill,
2014).

To estimate the mixing distributions h and g, we use the log-
likelihood objective function, with terms as in (1). In MixTwice, we
solve the constrained optimization:

min
g;h
�lðg; hÞ ¼ �

Xm
i¼1

log pðxi; s
2
i jg; hÞ

Subject to : gk;hl � 0 8k; lX
k

gk ¼
X

l

hl ¼ 1

gk � gkþ1; k 2 f�K;�Kþ 1; . . . ;�1g
gk � gkþ1; k 2 f0; 1; . . . ;Kg

(2)

The gradient and Hessian of l(g, h) are readily available, and so
(2) may be solved efficiently using augmented Lagrangian for con-
strained optimization, using the Broyden–Fletcher–Goldfarb–
Shanno algorithm (BFGS) algorithm for inner loop optimization,
which is implemented in the R package alabama (Varadhan, 2015).
We extract lfdr and lfsr statistics from the peptide-specific posterior
distributions at the optimized vectors ĝ; ĥ: Pðhi ¼ akjxi; s

2
i Þ

¼
X

l

Pðhi ¼ ak; r
2
i ¼ bljxi; s

2
i Þ

/ ĝk

X
l

ĥl
1ffiffiffiffi
bl

p /
xi � akffiffiffiffi

bl

p� � �

bl
v2;�

�s2
i

bl

 !
:

(3)

Proportionality is resolved by summation over the grid k, and we get:

lfdri ¼ Pðhi ¼ a0jxi; s
2
i Þ;

lfsri ¼ minf
X
k�0

Pðhi ¼ akjxi; s
2
i Þ;
X
k�0

Pðhi ¼ akjxi; s
2
i Þg:

It may be helpful to recognize that in contrast to (3), ASH-
normal would entail

Pðhi ¼ akjxi; s
2
i Þ / ĝk

1

si
/

xi � ak

si

� �
; (4)

and ASH-t would replace the normal density / in (4) with a Student
t density; in both cases, the ASH-estimated mixing density ĝ would
come not from (2) but from an objective in which mixing over var-
iances is not explicitly accommodated. The initial implementation
of MixTwice invokes unimodality shape constraint, but not sym-
metry, and, for computational convenience, allows that a random
subset of the testing units is used in the optimization. We investigate
this approximation in Supplementary Material.

3 Simulation study

We are interested in the performance of MixTwice in scenarios
reflecting what might be expected to occur in practice and have per-
formed numerical experiments involving different generative distri-
butions of both effects (g) and variances (h). Noting the special role
of the null value, h¼0, our experiments involve mixtures
gðhÞ ¼ p0d0 þ ð1� p0ÞgaltðhÞ, where p0 ¼ Pðhi ¼ 0Þ and galt pro-
vides various ways to distribute mass away from zero. Following
Stephens (2017) and Lu and Stephens (2019), we entertain different
general shapes, including the so-called big-variance, bi-modal, flat-
top, normal and spiky. MixTwice accounts for explicit differences
between sample and underlying standard errors, and mixes nonpara-
metrically over these underlying standard errors. Our numerical
experiments consider the simplest case in which the data generating
h is a point mass, a case involving a finite mixture of two values,
and also a continuous case of inverse-Gamma-distributed parame-
ters. Patterns in the error of estimation and the hypothesis testing
error rates are very comparable across different choices of h, and so
for simplicity here we report only experiments when this true h is a
point mass distribution. Figures 1 and 2 summarize, respectively,
properties of estimation accuracy and testing error rates.
Experiments are based on Gaussian samples with unit variance,
m¼1000 peptides, and various sample size settings for the two-
group comparison.

If a method tends to overestimate p0, then power may be
reduced; in case of underestimation the FDR may be inflated.
Figure 1B focuses on the estimation of this marginal null fre-
quency for one choice of sample size, namely n¼10 observations
per group. In each setting of g (column), 500 datasets are gener-
ated, each drawn after its own p0 value was uniformly drawn in
½0:5; 1�. All methods respond appropriately to changes in p0,
though they exhibit different biases; MixTwice tracks the identity
line (no bias) case closely in all scenarios except the challenging
spiky case of galt. In contrast, locFDR is conservatively biased,
tending to over-estimate p0 in most cases. Our experiments in-
clude an oracle case, namely ASH-normal, which takes the
underlying standard errors as known. This numerical control
helps us gage the magnitude of statistical errors induced by esti-
mation error of the variance profile.

Figure 1C amplifies one case from the second row, when
p0 ¼ 0:9, and shows how estimation error drops as the sample size
per peptide grows. Most methods display a level of convergence in
this setting, with MixTwice performing relatively well especially at
low sample sizes. Going beyond the estimation of p0, we compared
methods by their 1-Wassertstein error in estimating the entire mix-
ture distribution g; MixTwice showed relatively small error in this
setting also (data not shown). MixTwice shares with other nonpara-
metric mixture methods the identifiability problem that only an

MixTwice 2639

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab162#supplementary-data


upper bound on p0 may be reliably estimated from limited data
(Efron et al., 2001; Stephens, 2017). This may be appreciated by
considering a single unit, i, on which the estimated effect ĥ i is a
normal deviation from hi, say with known variance r2 ¼ 1, and
ignoring the second level of mixing. If galt concentrates enough
mass near h¼0, then the null predictive density /ðxÞ, of ĥ i, may
be partially absorbed by the alternative predictive density: i.e.
there may be a c>0 such that for all x,
c/ðxÞ �

Ð
/ðx� hÞgaltðhÞdh, in which case an amount cð1� p0Þ

of putatively alternative mass could be swapped into the null
component without changing the marginal predictive density.
Sampling scenarios that allow for decreasing standard errors for
at least a fraction of the units resolve this methodological issue.
We can show, for symmetric galt for example, that the gap c van-
ishes to zero as the standard error r similarly converges (see
Supplementary Material). This is consistent with numerical be-
havior of MixTwice in large samples (Fig. 1C), and is also con-
sistent with work on mixture identification as information per
unit increases (Aragam et al., 2020; Ritchie et al., 2020).

Figure 2 confirms that most methods are controlling FDR as
advertised. The empirical FDR is plotted against the controlled rate;
the latter is the nominal target FDR value where we threshold the
lfdr’s; the former is what is evident from knowing the simulation
states (in other terminology, it is the average, over simulated data-
sets, of the false discovery proportion). Colored lines are used to dis-
tinguish different levels of p0, when the signal is dense (with a lower
null proportion p0) or when the signal is sparse (with a higher null
proportion p0). Recall we simulated independent datasets each gov-
erned by a randomly chosen p0 from ½0:5; 1�. In order to visualize
the results, we stratified datasets into four groups and averaged in-
ternally: 0:5 � p0 � 0:625; 0:625 � p0 � 0:75; 0:75 � p0 �
0:875; 0:875 � p0 � 1. The FDR inflation by ASH-t at high p0 is
evident in this simulation.

4 Empirical studies

4.1 Antibodies in RA
RA is a chronic autoimmune disease characterized by inflammation
and pain, primarily in the joints. RA patients produce autoantibod-
ies against many different ‘self’ proteins. Most famously, they gener-
ate antibodies against proteins in which arginine amino acids have
been post-translationally modified to citrullines (Schellekens et al.,
1998), as well as antibodies that bind to antibodies, called RF
(Waaler, 2009). Both autoantibody types appear to be pathogenic
(Sokolove et al., 2014) and both are used diagnostically (Aletaha
et al., 2010), the former detected by the anti-CCP test. Most RA
patients make both autoantibody types (CCPþ RFþ RA), but some
have only one type like in CCPþ RF� RA. Little is known about
why CCPþ RFþ versus CCPþ RF� RA develops. However, a better
understanding of the autoantibody repertoires in each RA subset
could provide insights, a task for which peptide arrays are perfect.

The custom high-density peptide array reported in Zheng et al.
(2020) probed 172 828 distinct 12 amino acid length peptides
derived from 122 human proteins suspected to be involved in RA,
including peptides in which all arginines were replaced by citrul-
lines. We reconsider here two distinct comparisons from that study,
namely the comparison between CCPþ RF� RA patients and con-
trols, and a second comparison between CCPþ RFþ RA patients and
controls, in which differential signals are much stronger. Both com-
parisons have 12 subjects in each group. To assess reproducibility,
we take advantage of a second peptide array dataset derived from an
independent set of eight controls and eight CCPþ RFþ RA patients.

4.2 CCP1RF2 RA: weak signals
We applied MixTwice to fit the shape-constrained mixture model of
Section 2. Fitted mixing distributions are visualized in Figure 3 and
provide a measure of the magnitude of changes in mean antibody
levels as well as the magnitude of sampling variation. For example,
the effect-size distribution estimates no probability for effects larger
than 0.037. Also, the median standard error is 0.10 (squared stand-
ard error 0.01), which is large compared to the probable effect sizes.

In Section 1, we presented summary counts of peptides identified
at 10% FDR that exhibits differential binding between CCPþ RF�
RA patients and non-RA controls. MixTwice, ASH-t and two-step
ASH distinguish themselves in being the only methods among many
standard large-scale tools to populate nonempty lists of discovered
peptides at that FDR level. Recognizing that the magnitude of signal
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intensities on the peptide array is an important aspect of down-
stream analysis, Figure 4 shows a summary of the identified peptides
by various methods. Notably, MixTwice and two-step ASH detect
peptides in this case with higher average signal intensity than ASH-t;
these may correspond to higher antibody abundance or affinity and
potentially easier validation. ASH-t tends to select peptides with low
standard errors, even when the estimated effects are very low.

Interestingly, the 44 peptides found by MixTwice have a strong
pattern in their peptide sequences: all are citrulline (B)-containing
peptides (which would be predicted for CCPþ RA patients) and con-
tain citrulline next to glycine (B-G or G-B), as shown in the motif in
Figure 5. Binding of antigens in which citrulline is next to glycine is
consistent with a growing body of literature on the reactivity of
anti-citrullinated protein antibodies in RA (e.g. Burkhardt et al.,
2002; Steen et al., 2019; Szarka et al., 2018; Zheng et al., 2020).

As a further negative control calculation, we applied MixTwice
to each of 500 permuted datasets obtained by fixing the peptide
data and randomly shuffling the 24 subject labels (12 control, 12
CCPþ RF� RA). In 493 cases, the 10% FDR list is empty; 6 cases
find a single peptide and 1 case finds 2 peptides at this threshold.

Among a number of large-scale testing methods applied to the
CCPþ RF� RA example, MixTwice identifies comparatively a large
number of statistically significant peptides. In contrast to other
methods, these peptides contain patterns in their amino acid sequen-
ces consistent with emerging evidence on this disease, and they cor-
respond to relatively high fluorescence intensity measurements.
Together, these observations provide some assurance that the
MixTwice findings are not artifacts.

4.3 CCP1RF1RA: strong signals
One of the findings from Zheng et al. (2020) concerns the extensive
antibody-profile differences between RA patients who are positive
for both biomarkers (CCPþ RFþ) and control subjects. Statistically,
it represents an interesting nonsparse, large-scale testing situation,
and the immunological mechanisms driving this remain only partial-
ly understood. To check the reproducibility of peptide array find-
ings, a new experiment was performed using the same procedures
and 172 828 peptide array to detect IgG binding as in Zheng et al.
(2020), but with serum samples from 16 different subjects: 8 CCPþ

RFþ RA and 8 controls. CCPþ RFþ RA and control subjects were
similar in regards to age, sex, race, ethnicity and overall health.
Preprocessing followed the same protocol and provided a dataset
(study 2) for us to look at reproducibility of large-scale hypothesis
testing methods.

Z-score histograms in Figure 6A show that both studies reveal
extensive increased antibody binding in the CCPþ RFþ RA group.
The scatterplot in Panel B reveals concordance between the studies
on this z-score metric. The color-coding highlights discovered pepti-
des at the 0.1% FDR method by MixTwice, both uniquely in one
study (green or yellow) and reproducibly in both studies (blue). Of
course, MixTwice uses more information than is in the z-score sum-
mary, but the scatterplot provides a convenient visualization. The
lower panels in Figure 6 compare reproducibility statistics of differ-
ent testing methods at various FDR thresholds. Denoting by ‘jðaÞ
the list of significant peptides in study j and FDR level a, we have
j‘1ðaÞ \ ‘2ðaÞÞj as the number of peptides identified in both studies
(Panel D) and j‘1ðaÞ\‘2ðaÞÞjj‘1ðaÞ[‘2ðaÞÞj as the common fraction (Panel C). By con-
necting separate, independent studies of the same group difference,
these statistics measure the reproducibility of various large-scale
testing methods. MixTwice shows substantially better reproducibil-
ity than other testing methods, such as ASH-t, two-step ASH and
locFDR in this example.

5 Discussion

High-throughput biomedical experiments, such as those involving
peptide arrays and immunological studies, continue to provide chal-
lenging problems for large-scale hypothesis testing. Readily applied
techniques, such as q-value, locFDR, IHW and ASH are often very
effective at reporting lists of testing units (peptides) showing
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Fig. 3. Estimated mixing distributions: for both effect distribution g (A) and

squared-standard-error distribution h (B), shown are the maximum likelihood esti-

mated mixing distributions as cumulative distribution functions (cdfs) in double nat-

ural log scale. The CCPþ RF� RA example is shown on the left and the two CCPþ

RFþ RA examples are on the right

Fig. 5. Motif logo for significant peptides in CCPþ RF� RA: consensus sequences

were generated using online software MEME Suite (Bailey et al., 2009) and the sig-

nificant peptides from the different methods: ASH-t (left), MixTwice (middle) and

two-step ASH (right). Each position of the motif logo represents the empirical distri-

bution of amino acids at that site, with size proportional to frequency. B found in

the middle and right panels is citrulline, a post-transitionally modified arginine. The

overall height of each stack is an information measure (bits) related to the concen-

tration of the empirical distribution on its support
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statistically significant effects at a targeted FDR. In the case of high-
density peptide arrays, we find several examples where these tools
are deficient. One issue is the number of testing units, which is
an order of magnitude larger than what is seen in transcript stud-
ies, for example. In the CCPþ RF� RA comparison, most exist-
ing tools exhibit low power, which may stem in part from when
they intervene in the data analysis. Methods that intervene earlier
have access to more information and thereby may gain some ad-
vantage. The risk to intervening early is that more assumptions
may be required to deliver relevant testing statistics (e.g. lfdr,
lsdr). We rely on external validation, such as on sequence proper-
ties of the identified peptides, to assess practical utility. The
CCPþ RFþ RA example showcases a situation where power is
high by all methods, and the differences boil down to how test-
ing units are prioritized. The proposed MixTwice procedure
shows impressive reproducibility in this case.

Structurally, MixTwice is similar to the ASH method for
large-scale testing: it aims to estimate a mixing distribution of
effects in an empirical Bayesian formulation. It adopts ASH’s
non-parametric, shape-constrained model for effects, but deviates
from that approach by incorporating a second mixing layer over
underlying effect-variance parameters. A number of methodo-
logical issues deserve further study. For example, MixTwice treats
the sampling model of squared standard errors as chi-square on a
design-based degrees of freedom, which is rooted in a normal-
data model. We expect that suitable transformation of the origin-
al data will make this treatment reasonable; for example, Zheng
et al. (2020) proposed a double-log transform to stabilize

variance. An interesting alternative is to use a bootstrap scheme
to assess the sampling distributions directly, in order to thereby
estimate the degrees of freedom that would be justified asymptot-
ically for non-normal cases.

There are computational issues that warrant further investiga-
tion. The objective function (2) may not be convex in the pair of
arguments (g, h). Numerical experiments indicate good perform-
ance of the augmented Lagrangian optimization approach in a
range of scenarios, though alternative approaches may have bene-
fits. For example, the conditional optimizations of g given h or h
given g are both convex, though attempts so far to leverage this
have been less computationally efficient than the augmented
Lagrangian method. Related to this are questions of grid sizes K
and L, which have to balance fidelity to the data and computa-
tional efficiency.

Though our presentation has focused on the classical two-group
comparison problem, it should be evident that the core methodology
is not restricted to this case. Estimated effects xi, for example, could
arise from a contrast of interest after adjusting for blocking variables
or other covariates. These will be useful to consider as we expect
them to emerge in experiments that further investigate mechanisms
of immune-system disregulation.

Finally, we point out that other forms of information may be
usefully integrated with the testing methodology. Peptides tile pro-
teins, though we have treated them as anonymous testing units.
More sophisticated peptide prioritization could leverage amino-acid
structure, protein content or other features of the immunological
context.

Fig. 6. Reproducibility comparison. (A) Empirical z-score distributions for CCPþRFþRA versus control at 172 828 peptides in two independent studies. The scatterplot in (B)

highlights peptides identified uniquely at 0.1% FDR by MixTwice in either study (yellow, green) and those reproducibly found in both studies (blue). Metrics in (C) and (D)

compare performance of MixTwice as a function of FDR threshold
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