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The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled
by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen,
a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines
production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen,
the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process
involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T
cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences both in vitro and in
vivo suggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands.
The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers
interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.

1. Introduction

The immune system has evolved to allow robust responses
against pathogens while avoiding autoimmunity. This is
notably enabled by stimulatory and inhibitory signals which
contribute to the regulation of immune responses. Positive
costimulation is critical for the development of T-cell im-
mune responses against foreign pathogens, while negative
regulation is critical for the termination of immune re-
sponses, for peripheral tolerance, and to avoid inflamma-
tion-induced tissue damage [1–3].

When self/nonself antigens discrimination fails or when
invading pathogens are not controlled, the immune system
starts destroying cells and tissues of the body and conse-
quently causes autoimmune diseases and chronic syndromes.
In this regard, costimulatory and coinhibitory molecules are
involved in regulating the initiation and termination of T-cell
responses as well as spontaneous autoimmunity [3–5].

T-cell activation is determined by the presence of three
distinct signals: (1) TCR-MHC class I and II interaction,
(2) costimulatory molecules interaction, and (3) cytokines
signaling. In the past, the dogma, based on initial observa-

tions, was that the integration of the distinct signals triggered
T-cell activation, whereas the lack of complete positive
signals led to tolerance or anergy [6–8]. More recently, the
complexity of the model increased following the discov-
ery of coinhibitory molecules triggering inhibitory signals.
The functional outcome of costimulatory and coinhibitory
molecules signaling is either enhancement or inhibition of
TCR-mediated immune responses [9].

Over the past decade, four different families of costim-
ulatory and coinhibitory molecules able to modulate TCR
signaling have been identified: (1) B7-CD28 family including
CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4; CD152),
programmed death-1 (PD-1; CD279), inducible costimula-
tory molecule (ICOS; CD278), and B- and T-lymphocyte
attenuator (BTLA; CD272) [1]; (2) CD2/signaling lympho-
cyte activation molecule (SLAM) family including SLAM
(CD150), 2B4 (CD244), and CD48 [10, 11]; (3) Ig family
including T-cell immunoglobulin mucin-3 (TIM-3) [12, 13],
CD160 [14, 15], and lymphocyte-activation gene 3 (Lag-3)
[16]; and (4) TNF-receptor superfamily including CD27 [17]
(Figure 1).
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Figure 1: Regulatory molecules and their ligands. Schematic
overview of the different costimulatory and coinhibitory molecules
expressed by T cells (right panel) and association with their
respective ligands expressed by antigen-presenting cells (APCs) or
target cells (left panel). Coinhibitory molecules are color coded
according to their relevant families. The four families of regula-
tory molecules include (1) B7-CD28 family including CD28,
cytotoxic T-lymphocyte antigen-4 (CTLA-4; CD152), programmed
death-1 (PD-1; CD279), inducible costimulatory molecule (ICOS;
CD278), and B- and T-lymphocyte attenuator (BTLA; CD272);
(2) CD2/signaling lymphocyte activation molecule (SLAM) family
including SLAM (CD150), 2B4 (CD244), and CD48; (3) Ig family
including T-cell immunoglobulin mucin-3 (TIM-3), CD160, and
Lymphocyte-activation gene 3 (Lag-3); and (4) TNF-receptor
superfamily including CD27.

In the presence of a pathogen, a specific and effective
immune response must be induced and naı̈ve T cells undergo
activation upon encounter with their specific antigens [18,
19]. This leads to antigen-specific T-cell proliferation [20,
21], cytokines production, and induction of T-cell differ-
entiation toward an effector phenotype [22] combined to
survival signals [23, 24]. After clearance or control of the
pathogen, the immune response must be terminated in order
to avoid tissue damage and chronic inflammation [24, 25].
Two main mechanisms are involved in the contraction of
the effector phase of immune responses, that is, either the
inhibition of T-cell expansion [26] or the elimination of
activated cells by apoptosis [27]. The latter is referred to
as activation-induced cell death (AICD) [27, 28]. Direct
inhibition of T-cell proliferation is induced via signals
through coinhibitory molecules such as CTLA-4 or PD-1,
while 2B4 and SLAM are considered to be critical in the
regulation of AICD [29].

The role of coinhibitory molecules in regulating the
immune system is also evidenced by severe autoimmune
and lymphoproliferative diseases resulting from the lack or
aberrant expression of these molecules [30].

2. Expression of Coinhibitory Molecules on
Effector T Cells

T cells play an important role in the defense against infec-
tious agents and tumors. Upon recognition of their cognate
antigen, naı̈ve T cells get activated and differentiate into
effector cells [31]. This activation results in both phenotypic
and functional changes that will determine the fate of effector
T cells and the efficacy of the immune response [22]. Several
studies have aimed to better define the profile of effector
cells associated with the efficient control of infectious agents
or tumors [32, 33]. While most studies focused on the
differentiation state or functional profile of effector cells
[34, 35], a lot of attention has been paid recently to the role
of coinhibitory molecules [36].

SLAM family members, for instance, are immunomodu-
latory receptors associated with different functions including
costimulation, cytokines production, and cytotoxic activity
of immune cells (e.g., T cells or NK cells). Most members
of this family serve as their own ligand on target cells or
interact with molecules from the same family (e.g., CD48
and 2B4) [37, 38] and signal through a common messenger,
that is, the SLAM-associated protein (SAP). SAP consists
almost entirely of a single SH2 protein domain interacting
with the cytoplasmic tail of SLAM and related receptors. One
member of this family is SLAM and its signaling is involved
in the induction and regulation of CD8 T-cell effector
functions. In particular, SLAM is involved in the induction of
IFN-γ production, cytotoxic activity, proliferation capacity,
and activation-induced cell death (AICD) of activated CD4
and CD8 T cells [39–46]. In normal CD4 and CD8 T
cells, SLAM enhanced TCR-mediated cytotoxicity and IFN-
γ production [47], in contrast, T cells from SLAM-deficient
mice showed increased IFN-γ production upon stimulation,
thus supporting a negative role for SLAM in the regulation
of IFN-γ production by effector T cells [10, 48, 49]. 2B4
(CD244), which is another important member of SLAM
family, is a cell-surface glycoprotein structurally related to
CD2-like molecules such as CD2, CD48, CD58, CD84, and
Ly-9 [50] and seems to be particularly important for the
cytotoxic effector function of CD8 T cells and NK cells [51–
55].

Regarding the Ig family, CD160 which binds to classical
and nonclassical HLA I molecules (i.e., HLA class Ia/b, HLA-
C on NK cells) and Herpesvirus Entry Mediator (HVEM)
[56], was identified not only on most NK cells and γδ T
cells but also on a subset of CD8 αβ T cells [57, 58]. In
NK cells, CD160 engagement induces cytotoxicity [59, 60]
and has also been characterized as a marker of cytotoxic
effector CD8 T cells [15, 61, 62]. However, the expression
of CD160 on effector CD8 T cells is more controversial
since no association between CD160 expression and per-
forin content was observed in CMV-specific CD8 T-cells
[63] whereas, in HIV-1-infected patients, a CD160+CD8high

effector T cell subset containing high amount of granzyme
B (GrmB) has been described [64]. Furthermore, CD8
T cells expressing both 2B4 and CD160 were identi-
fied as a T-cell subset with a typical effector phenotype
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(i.e., CD27−CD45RA+CD56+CD57+) and expressing high
levels of perforin and GrmB [62, 65].

Finally, TIM-3 is expressed at low levels on TH1 cells at
a late stage of T-cell differentiation but not on TH2 cells,
naı̈ve T cells, B cells, macrophages, or dendritic cells. These
evidences suggest that TIM-3 does not contribute to T-cell
differentiation but has a role in the effector function of TH1
cells [66].

Also, during chronic viral infections, several inhibitory
molecules are overexpressed on virus-specific T cells and
this is associated with functional exhaustion. However, the
expression of these molecules is also associated with the
differentiation stage of T cells.

We have recently (Viganò et al., personal observation)
performed a comprehensive investigation of the expression
of PD-1, 2B4, CD160, CTLA-4, TIM-3, Lag-3, and SLAM
on CD4 and CD8 T-cell subsets identified according to their
differentiation state (i.e., Naı̈ve, memory, effector/memory).
These analyses showed that whereas virtually none of the
coinhibitory molecules tested was present on naı̈ve cells,
those were present on memory T cells but at low levels, and
more importantly, that effector/memory T cells expressed a
significantly higher density coinhibitory molecules simulta-
neously (Figure 2).

3. Role of Coinhibitory Molecules in
the Contraction of the Effector Phase of
Immune Responses

The immune system is able to mount strong and efficient
immune responses against pathogens without damaging
organs [67]. This is notably achieved by the induction of
the contraction and termination of the immune response
after control or elimination of the infectious agent. During
the contraction, the majority of effector T cells die, while
remaining cells survive as memory cells [24, 25]. The
elimination of effector cells mainly occurs via apoptosis
and a number of pro- and antiapoptotic molecules were
shown to be involved in this process [68]. The contraction
of the immune response and the determination of T-cell
fate depend on many transcription factors regulated during
the course of the immune response [69]. These factors
can be either induced or repressed by different signaling
pathways provided, with different strength and kinetics, by
costimulatory and coinhibitory molecules [70, 71].

One of the best-established mechanisms involved in
the regulation of TCR signaling is the interaction between
costimulatory (CD28) and coinhibitory (CTLA-4) molecules
with CD80 or CD86 expressed by dendritic cells (DCs).
Cross-linking of CD28 on T cells synergizes with TCR
signaling to induce activation. Conversely, cross-linking of
CTLA-4 induces an inhibitory signal which prevents T-cell
activation [26, 72]. CTLA-4 is upregulated on activated T
cells and, as a structural homologous to CD28 with higher
affinity for CD80 or CD86, it competes with CD28 to inhibit
TCR signaling [26].

PD-1 is another well-known regulatory molecule. It
is expressed on activated CD4 and CD8 T-cells, NKT, B
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Figure 2: Expression of regulatory molecules following pathogen
infection. Schematic overview of the pattern of expression of reg-
ulatory molecules. Following pathogen infection, key coinhibitory
molecules are upregulated with different kinetics and play a role
in regulating the development and the fate of effector T cells. In
most cases, pathogens replication is controlled by the immune
system leading to the contraction of effector T cells. Many different
coinhibitory molecules, that is, PD-1, CTLA-4, BTLA, SLAM, and
2B4, play a role during this process. The remaining memory T cells
(which are depending on the current models, derived either directly
from naı̈ve cells or from effector cells) express some coinhibitory
molecules which depend on the type and biology of the pathogens.
A hallmark of memory T cells is the lack of simultaneous expression
of multiple coinhibitory molecules. Some regulatory molecules,
however, are expressed by memory T cells, and this depends on
the type of memory subset, that is, central or effector memory
T cells. Conversely, when pathogens replication is not controlled,
continuous stimulation of T cells, due to antigen persistence,
prevents the full contraction of effector cells and leads to their
functional exhaustion. A hallmark of exhausted effector cells is
the simultaneous expression of several coinhibitory molecules.
The simultaneous expression of these coinhibitory molecules is
associated with their functional anergy.

cells, and activated monocytes [1, 73], and its expression
is induced by TCR- and BCR-mediated signaling [74]. The
two PD-1 ligands (i.e., PD-L1 and PD-L2) differ in their
expression pattern [75]. PD-L1 (B7-H1, CD274) is expressed
by a broad array of cells (e.g., vascular endothelial cells,
epithelial cells, muscles cells, hepatocytes) whereas PD-L2
(B7-DC, CD273) expression is restricted to hematopoietic
cell types (i.e., DC, macrophages, mast cells) [76]. PD-1/PD-
Ls pathway regulates the balance between stimulatory and
inhibitory signals needed for effective immune responses
against pathogens [77–80]. Engagement of PD-1 by PD-
L1 leads to the inhibition of CD28-mediated costimulation
and thus of TCR-mediated lymphocyte proliferation and
cytokines secretion. The relative levels of expression of
inhibitory (PD-Ls) and stimulatory (CD80/CD86) ligands
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by antigen-presenting cells (APC) can determine the extent
of T-cell activation while PD-L1 expression on nonlym-
phoid tissues may determine the extent of effector immune
responses at sites of inflammation [77]. Also member of
the B7-CD28 family, BTLA, is an inhibitory receptor able to
recruit phosphatases to dampen TCR signaling [81] through
the interaction with HVEM expressed on naı̈ve T and B cells.
HVEM-BTLA signaling was shown to limit T-cell activity
in vivo and to negatively regulate homeostatic expansion of
CD4 and CD8 T cells [82]. Finally, HVEM can also interact
with CD160, resulting in an inhibitory signaling dampening
T-cell activation [83].

4. Functional Exhaustion and Loss of
Effector Functions

During chronic viral infections such as HIV and HCV, several
inhibitory molecules are overexpressed on virus-specific
CD4 and CD8 T cells and this is associated with a state
of functional deficiency also called functional exhaustion.
Exhaustion is characterized by the progressive loss of T-cell
functionality, leading ultimately to the deletion of exhausted
T cells. The loss of the distinct T-cell functions occurs
sequentially [84]. IL-2 production and T-cell proliferation
potential are lost first. TNF-α production and cytotoxic
capacity disappear later followed, ultimately, by the loss
of IFN-γ production. Finally, deeply exhausted T cells are
deleted via apoptosis [84].

The current hypothesis is that functional exhaustion
occurs as a consequence of the attempt of the immune system
to limit the magnitude of effector T-cell responses in order to
safeguard against autoimmune responses and inflammatory
damages. Nonetheless, this mechanism of protection may
compromise effective immunity against persistent infectious
agents and tumors [85].

Functional exhaustion occurs in the context of persistent
high antigenic load and was first described in mice during
chronic lymphocytic choriomeningitis virus (LCMV) infec-
tion [86] where LCMV-specific CD8 T cells persisted during
the chronic phase of infection but lacked cytotoxic potential.
Nonfunctional (i.e., anergic) antigen-specific CD8 T cells
were also observed in the context of SIV [87], HIV [88],
hepatitis B virus (HBV) [89], HCV [90, 91], and human
T-lymphotropic virus 1 (HTLV1) [92] virus infection as
well as in patients with persistent tumors [93]. However,
mechanisms leading to exhaustion including the funda-
mental differences between exhausted cells and terminally
differentiated cells or senescent (replication incompetent)
cells remain unclear [94].

PD-1 was the first inhibitory receptor associated with
immune exhaustion [95] in the seminal study performed
in the LCMV model [96]. RNA microarray analyses of
exhausted LCMV-specific CD8 T cells showed a marked
upregulation of PD-1 expression [96]. Multiple studies have
confirmed that high expression levels of PD-1 are associ-
ated with functional anergy and increased susceptibility to
apoptosis [88, 97] in the context of human virus infections
such as HIV [88, 91, 97–99], HCV [90, 91], HBV [89, 100],

and also established tumors [101–105]. Of interest, it was
reported that blockade of PD-1 signaling in vivo and in
vitro resulted in the restoration of HIV-specific CD8 T-
cell proliferation capacity and IL-2 production [96, 106].
However, the functional restoration by PD1/PD-L blockade
was incomplete, and defects in CD8 T cells remained [96],
suggesting the involvement of additional negative regulatory
pathways in T-cell exhaustion [107, 108]. Analyses of global
gene expression profiles of exhausted CD8 T cells identified
the involvement of many coinhibitory receptors [109]. More
recently, the severity of LCMV infection was associated to the
number and the intensity of coinhibitory receptors expressed
by virus-specific CD8 T cells [107].

Among these molecules, TIM-3, Lag-3, 2B4, CTLA-4,
CD160, BTLA, KLRG1, CD305, and CD200R have been
further investigated in the context of several human chronic
virus infections and established tumors. In particular, the
coexpression of TIM-3 and PD-1 was observed on both
CD4 and CD8 T cells from patients with HIV [110] or
HCV [111–113] chronic infections and correlated with T-
cell exhaustion and diseases progression. In addition, TIM-
3- and PD-1-expressing CD8 T cells represented a major
population within tumor-infiltrating lymphocytes (TILs) in
several murine models of cancer and in the blood of patients
with advanced melanoma [114, 115]. In all cases, TIM-3/PD-
1-expressing cells represented the most impaired population
of CD8 T cells. Of note, the blockade of both molecules
could restore CD8 T-cell effector functions (proliferation
potential and cytotoxic capacity) of antigen-specific CD8 T
cells and was associated with the control of tumor growth
[110–113, 115].

CTLA-4 is another coinhibitory receptor upregulated in
the context of chronic infections [91] and tumors [116]. It
has been shown that CTLA-4 was overexpressed on CD4,
but not CD8, T cells of SIV-infected macaques [117] and
HIV-infected patients [118, 119]. Furthermore, the combi-
nation of CTLA-4 blockade and 4-1BB (CD137) activation
enhanced tumor rejection by increasing T-cell infiltration,
proliferation capacity, and cytokines production [120].

Of interest, BTLA was reported to be persistently
expressed by melanoma-specific CD8 T cells, thus inhibiting
their antitumor function [121]. On the other hand, BTLA
expression on CD4 and CD8 T cells decreased during
HIV infection and this was associated with CD4 T-cell
differentiation and activation [122, 123]. Enhancing BTLA
pathway may therefore represent an alternative therapeutic
strategy to overcome immune activation during chronic HIV
infection.

Lag-3 is an activation-induced cell-surface molecule,
whose overexpression during chronic virus infection is also
commonly associated with T-cell exhaustion and functional
impairment. Blocking of Lag-3 alone failed in rescuing
T-cell function or in decreasing plasma viremia during
chronic LCMV infection [108], while blockade of both PD-
1 and Lag-3 synergistically improved T-cell responses and
decreased viral loads in vivo [107]. Elevated levels of Lag-3
and CTLA-4 were found in PD1+ CD4 T cells from HIV-
infected patients [124] and in tumor-derived NY-ESO-1-
specific CD8 T cells [125]. Functionality of these T-cell
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subsets was more impaired than in Lag-3−PD-1− or single
Lag-3+ subsets [125].

SLAM family members are immunomodulatory recep-
tors with a role in the regulation of costimulation, T-cell
cytokines production, and cytotoxic activity. 2B4, which is
a key molecule from this family, is involved in CD8 T-cell
and NK-cell cytotoxicity. However, the proportion of 2B4+

CD8 T cells in HIV-infected patients correlated with immune
activation of memory T cells and was increased in patients
with progressive disease [126]. In addition, IFN-γ secretion
and cytotoxic activity of 2B4+ CD8 T cells were significantly
lower following stimulation with HIV as compared to
influenza-derived antigens, respectively [127]. Furthermore,
during infectious mononucleosis, the expression of SLAM
and 2B4 on CD8 T cells correlated with severity of symptoms
and viral loads [128].

The coexpression of molecules such as 2B4 and CD160,
which have been related to potent cytolytic functions [62,
65], was associated with exhaustion and regulation of virus-
specific CD8 and CD4 T cells in the context of chronic virus
infections [83, 129]. A recent study showed a high frequency
of CD8 T cells coexpressing PD-1, 2B4, CD160, KLRG1,
LAG-3, and CTLA-4 in HCV infection. The coexpression
of these molecules was associated with low levels of CD127
expression and correlated with impaired proliferation capac-
ity [129].

The expression of another set of inhibitory molecules
(i.e., PD-1, CTLA-4, CD305, and CD200R) has been investi-
gated on CD4 T cells from HCV-infected patients. PD-1 and
CTLA-4 were upregulated by HCV-specific CD4 T cells from
patients with chronic infection, while CD305 and CD200R
were upregulated in patients with cleared infection. Of note,
the blockade of PD-Ls increased the expansion of CD4 T cells
[130].

In the context of HIV infection, the presence of HIV-
specific CD8 T cells coexpressing CD160, 2B4, and PD-1
but not Lag-3 was reported. The simultaneous expression
of these molecules correlated with the level of virus replica-
tion and decreased cytokines production. The proliferative
capacity was restored by blocking both PD-1/PD-L1 and
2B4/CD48 interactions [131]. Along the same line, another
group showed that more than 30% of HIV-specific CD4
T cells expressed simultaneously PD-1, CTLA-4, and TIM-
3, whereas less than 2% of CMV- or varicella-zoster virus-
specific CD4 T cells coexpressed all three receptors. The
coexpression of these molecules on HIV-specific CD4 T cells
was more strongly correlated with the viral load compared
with the expression of each receptor individually [132].

5. Potential Therapeutic Applications

The well-established immunosuppressive properties of coin-
hibitory molecules and the potential to revert exhausted
or inactivated T-cell responses following selective blocking
of their function made these markers interesting targets
for therapeutic intervention in patients with persistent viral
infections or cancer. To date, clinical and preclinical data
are available for anti-CTLA-4 and anti-PD-1 blocking agents
[87, 96, 133–136].

Initial human clinical trials assessing the effects of a
blocking anti-CTLA-4 antibody demonstrated not only a
reduction in tumor mass and clinical benefit in a minority of
treated subjects but also an increase in systemic inflamma-
tion [137, 138]. Improvement in safety of these antibodies
resulted in the recent approval by the U.S. Food and Drug
Administration of a human monoclonal antibody against
CTLA-4 (Ipilimumab, MDX-010, Yervoy) for the treatment
of metastatic melanoma. In both early and late phase trials,
Ipilimumab has demonstrated consistent activity against
melanoma. However, serious (grade 3–5) immune-related
adverse events occurred in 10–15% of patients. Thus, while
providing a clear survival benefit, Ipilimumab adminis-
tration requires careful patient monitoring combined to,
sometimes, treatment with immune-suppressive therapy
[133, 134]. In contrast, anti-CTLA-4 blockade failed to show
benefit in terms of plasma viral load or survival in acutely or
chronically SIV-infected macaques [139, 140]. Since CTLA-4
is preferentially upregulated on CD4 T cells and not on CD8
T cells [118], it might be possible that the blockade of anti-
CTLA-4 induced an expansion and activation of CD4 T cells
thus providing additional targets to HIV without significant
improvement of CD8 T-cell functions.

Preclinical data showed how prevention of in vivo inter-
actions between PD-1 and PD-L1 enhanced T-cell responses
via the restoration of their ability to undergo proliferation,
secrete cytokines, and lyse-infected cells and ultimately
induce substantial reduction in viral loads. Of note, blockade
of the PD-1/PD-L1 inhibitory pathway in vivo demon-
strated a beneficial effect on CD8 T cells in mice that
were lacking CD4 T-cell help [96]. This study identified a
potentially effective immunotherapeutic strategy for chronic
viral infections. This has then been further explored in
nonhuman primates in a recent study evaluating the safety
and immunomodulatory potential of an anti-PD-1 blocking
antibody in SIV-infected macaques [87]. The treatment was
well tolerated and led to a rapid increase in virus-specific
CD8 T-cell responses with improved functional quality, both
in peripheral and in GALT. PD-1 blockade also resulted in
the expansion of virus-specific CD4 T cells, memory B cells,
and higher titers of virus-specific antibodies. In contrast, one
additional study showed an increase in CD4 T-cell activation
and viral replication in mucosal sites [140]. Furthermore, a
humanized anti-PD-1 monoclonal antibody (ONO-4538) is
currently tested in a Phase 1 study in patients with recurrent
or treatment-refractory cancer. Preliminary data support the
safety, tolerability, and pharmacokinetic profile of a single-
dose of the drug. In addition, preliminary evidences of
antitumor activity were observed [135, 136].

There is currently a strong interest in the potential for
clinical interventions targeting immunoregulatory networks
to enhance immunity against cancer cells and persistent
viruses or to boost the efficacy of preventive and therapeutic
vaccines. The studies discussed previously have yielded
promising results but have also highlighted important safety
issues. This strongly indicates the importance to better
understand mechanisms of immune regulation in order to
exploit them for potential therapeutic applications.
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6. Conclusion

Coinhibitory molecules are involved in maintaining the bal-
ance between the capacity to generate effector T cells able to
control pathogens and the preservation of tolerance. During
the development of immune responses, key coinhibitory
molecules are upregulated with different kinetics and play a
role in regulating the development and the fate of effector
and memory T-cell responses. In most cases, pathogens
replication is controlled by the immune system leading to the
contraction of effector T cells. Many different coinhibitory
molecules, that is, PD-1, CTLA-4, BTLA, SLAM, and 2B4,
play a role during this phase. The remaining memory T cells
express some coinhibitory molecules which depend on the
type and biology of the pathogens and also on the level of
differentiation. However, a hallmark of memory T cells is
the lack of simultaneous expression of multiple coinhibitory
molecules (Figure 2). Conversely, when pathogens replica-
tion is not controlled, continuous stimulation of T cells, due
to antigen persistence, prevents the full contraction and leads
to functional exhaustion of effector T cells. In contrast to
memory T cells (see the aforementioned part), a hallmark
of exhausted effector cells is the simultaneous expression of
several coinhibitory molecules (Figure 2). The simultaneous
expression of these coinhibitory molecules is associated with
their functional anergy, also called exhaustion.

However, several evidences both in vitro and in vivo
suggest that this anergic state can be reverted by blocking
the interactions between coinhibitory molecules and their
ligands. For this reason, coinhibitory molecules are now tar-
gets of preclinical and clinical studies aimed to identify new
therapeutic strategies in the context of chronic infections
and tumors. To date, only two coinhibitory molecules have
been investigated in clinical trials, that is, PD-1 and CTLA-
4, but recent evidences have underlined the importance of
targeting multiple pathways in order to improve functional
restoration. It is very likely that in the close future many
additional targets will be assessed in preclinical and clinical
studies.

In addition, while most studies focused their attention
on the reversion of functional exhaustion, additional parallel
strategies may be envisioned, such as the prevention of
exhaustion in the context of therapeutic immunization.

Moreover, preventing/reverting exhaustion as a therapy
for chronic conditions might be difficult to achieve notably
for safety issues. On one hand, the prevention/reversion of
exhaustion counteracts a physiological mechanism which
is probably settled in order to avoid tissue damages and
autoimmunity. On the other hand, restoration of functional-
ity might not be sufficient since it will restore the functions of
cells which failed to control the infection or to eliminate the
pathogens. Therefore, it seems wise to plan to combine the
functional restoration of T cells to other immunotherapeutic
interventions.
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