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Abstract

Mutations in the renal sodium-dependent phosphate co-transporters NPT2a and NPT2c

have been reported in patients with renal stone disease and nephrocalcinosis, but the rela-

tive contribution of genotype, dietary calcium and phosphate to the formation of renal min-

eral deposits is unclear. We previously reported that renal calcium phosphate deposits

persist and/or reappear in older Npt2a-/- mice supplemented with phosphate despite resolu-

tion of hypercalciuria while no deposits are seen in wild-type (WT) mice on the same diet.

Addition of calcium to their diets further increased calcium phosphate deposits in Npt2a-/-,

but not WT mice. The response of PTH to dietary phosphate of Npt2a-/- was blunted when

compared to WT mice and the response of the urinary calcium x phosphorus product to the

addition of calcium and phosphate to the diet of Npt2a-/- was increased. These finding sug-

gests that Npt2a-/- mice respond differently to dietary phosphate when compared to WT

mice. Further evaluation in the Npt2a-/- cohort on different diets suggests that urinary cal-

cium excretion, plasma phosphate and FGF23 levels appear to be positively correlated to

renal mineral deposit formation while urine phosphate levels and the urine anion gap, an

indirect measure of ammonia excretion, appear to be inversely correlated. Our observations

in Npt2a-/- mice, if confirmed in humans, may be relevant for the optimization of existing and

the development of novel therapies to prevent nephrolithiasis and nephrocalcinosis in

human carriers of NPT2a and NPT2c mutations.

Introduction

Mutations in the sodium phosphate co-transporters, NPT2a [1–3] and NPT2c [4, 5] cause

hypophosphatemic rickets with hypercalciuria (HHRH) and idiopathic hypercalciuria (IH).

Affected individuals show renal phosphate-wasting, high circulating levels of 1,25(OH)2D and
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absorptive hypercalciuria. As a result they develop intraluminal stones (nephrolithiasis) and

mineral deposits in the renal parenchyma (nephrocalcinosis) [4–7]. Furthermore, NPT2a has

also been associated with nephrolithiasis [8] and altered renal function [9–11] in genome-wide

association studies. Although little is known about the prevalence in stone patients, one com-

pound heterozygous NPT2a mutations and one compound heterozygous carrier of NPT2c
mutations was identified in a small cohort comprised of 272 genetically unresolved individuals

(106 children and 166 adults) from 268 families with nephrolithiasis (n = 256) or isolated

nephrocalcinosis (n = 16) [12]. Oral phosphate supplements are currently thought to reduce

the risk for renal mineralization in carriers of NPT2a and NPT2c mutations by lowering circu-

lating levels of 1,25(OH)2D and absorptive hypercalciuria. However, there is concern that,

despite a reduction in urine calcium excretion, this therapy could contribute to the formation

of renal calcium phosphate deposits under certain conditions.

This concern is based on several observations: i) renal calcium-phosphate deposits are

found in the nephrocalcinosis that can develop in patients with X-linked hypophosphatemia

(XLH) treated with oral phosphate supplements given multiple times throughout the day [13,

14] and in otherwise healthy individuals following treatment with phosphate enema [15]

despite the absence of hypercalciuria; ii) in a recent survey of 27 kindreds with hereditary

hypophosphatemic rickets with hypercalciuria (HHRH) we reported that a 10% decrease in

tubular reabsorption of phosphate (TRP) predicts a two-fold increase in renal mineralization,

independent of NPT2c mutation carrier status [16]; iii) dietary phosphate may increase the sat-

uration product of calcium and phosphate by increasing urinary phosphate, which appears to

be an important predictor of renal mineralization [17, 18]; iv) alterations in the levels of extra-

cellular matrix factors affecting binding of phosphate to hydroxyapatite crystals such as osteo-
pontin (Opn) or genes involved in the synthesis of pyrophosphate (PPi) and phosphate in the

interstitial matrix such as Extracellular nucleotide pyrophosphatase phosphodiesterase 1 (Enpp1)
are associated with renal mineralization [19, 20]. v) We recently reported that Npt2a-/- mice

show reduced urine osteopontin excretion when compared to WT mice and Npt2a-/-;Opn-/-

mice show an increased size of mineral deposits in their kidneys [21].

In the present study we compared the degree of renal mineralization of WT and Npt2a-/-

mice on diets with varying calcium and phosphate contents with the serum and urine bio-

chemistries in response to these diets. Our findings suggest that Npt2a-/- mice respond differ-

ently to dietary phosphate when compared to WT mice and that within the Npt2a-/- cohort the

degree of renal mineralization positively correlates with plasma phosphate and FGF23, and

urinary calcium excretion, while it inversely correlates with urine phosphate and anion gap as

a measure of proximal tubular bicarbonate and distal tubular ammonia excretion. Our obser-

vations in Npt2a-/- mice, if confirmed in humans, may be relevant for the optimization of exist-

ing and the development of novel therapies to prevent nephrolithiasis and nephrocalcinosis in

carriers of NPT2a and NPT2c mutations.

Materials and methods

Animals

Mice were euthanized in deep anesthesia with isoflurane by removal of vital organs. The

research under IACUC protocol 2014–11635 was first approved Oct. 22 2014 by the Yale Insti-

tutional Animal Care and Use Committee (IACUC), renewed Sept. 7 2016, valid through Sept.

30 2017. Yale University has an approved Animal Welfare Assurance (#A3230-01) on file with

the NIH Office of Laboratory Animal Welfare. The Assurance was approved May 5, 2015.

Male and female C57BL/6 mice were obtained from Charles River Laboratory, MA. Male

and female Npt2a-/- mice (B6.129S2-Slc34a1tm1Hten/J, Stock No: 004802), were purchased from
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The Jackson Laboratory (Bangor, ME). Npt2c-/- mice were kindly provided by Dr. Hiroko

Segawa, Dept. of Molecular Nutrition Institution of Health Bioscience, The Univ. of Tokush-

ima Graduate School, Tokushima, Japan [22]. Mice were genotyped by PCR amplification of

genomic DNA extracted from tail clippings and amplified by polymerase chain reaction (PCR)

as described [22–25]. Mice were weaned at 3 weeks of age and allowed free access to water and

normal chow (1.0% calcium, 0.7% phosphate, of which 0.3% is readily available for absorption,

Harlan Teklad TD.2018S). At 8 weeks of age they were randomized to special diets using egg

whites as protein source for 10 to 30 weeks: Normal phosphate, high calcium high vitamin D

(TD.110762) contained 0.3% Pi, 2% Ca and 4.5 IU cholecalciferol (vitamin D3), phosphate

deficient, high calcium, high vitamin D3 (TD.110761) contained 0.02% Pi, 2% Ca, 4.5 IU vita-

min D3, HPC (high phosphate and high calcium) diet (TD.96348) contained 20% Lactose,

2.0% Ca, 1.25% Pi; HP (high phosphate) diet (TD.85349) contained 0.6% Ca, 1.2% Pi and CO

(control diet) diet (TD.09803) contained 0.6%Ca, 0.3% Pi (S1 Fig). In all diets caloric content

was 3.7 kcal/g, vitamin D3 content was 2 IU/g, the magnesium content was 0.2%. Npt2a-/- mice

can be maintained as homozygous line since they are viable and fertile. These mice were out-

bred against C57Bl6 wild-type mice and heterozygous mice were mated to obtain Npt2a-/- and

WT littermates to serve as controls with similar genetic background in our study. Since no dif-

ferences were observed between genders data from males and females were pooled for the cur-

rent study.

Blood and urine parameters

Biochemical analyses were done on blood samples collected after cardiac puncture or orbital

exsanguination following an overnight fast in deep anesthesia with isoflurane, immediately

before animals were euthanized by removal of vital organs. Concentrations of serum and uri-

nary total calcium (Ca), serum and urine inorganic phosphorus (S-P), urine sodium (U-Na),

potassium (U-K), chloride (U-Cl) and blood urea nitrogen (S-BUN) were determined using

Stanbio Laboratories (Boerne, Texas) kits #0155, #0830, #0140, #0160, #0210 and #0580,

respectively. The concentration of urine creatinine (U-crea) and of serum 1,25-dihydroxyvita-

min D (1,25(OH)2D) were determined using R&D systems (Minneapolis, MN) kit #KGE005

and #AC-62F1, respectively. Urine oxalate (U-oxalate) was determined using ABCAM kit

#196990. Urine citrate was measured with the Roche Citric Acid UV-Method # 10139076035.

Concentrations of plasma intact parathyroid hormone (PTH) and c-terminal fibroblast growth

factor 23 (FGF23) were determined using Immutopics (San Clemente, CA) kit #60–2305 and

#60–6300, respectively. c-terminal FGF23 ELISAs measure total FGF23 that includes intact

FGF23 and its fragments. Unless altered processing of FGF23 is suspected total FGF23 ELISAs

correlate well with the intact FGF23 ELISAs [26]. Internal standards were used to assure repro-

ducibility between batches. The urine anion gap was calculated using the formula urine Na

(mmol/l) + urine K (mmol/l)–urine Cl (mmol/l). SI correction factors are for Ca (mg/dl)�

0.25 = Ca (mmol/L), P (mg/dl)�0.32 = P (mmol/L), creatinine (mg/dl)�88.4 = creatinine

(umol/L). Fractional excretion indexes were calculated using the formula PEI = urine Pi/

(urine creatinine�plasma Pi) or CEI = urine Ca/(urine creatinine�serum Ca), respectively.

Inulin clearance

Inulin clearance was determined using serial tail bleedings following tail-vein injection of

FITC-inulin as previously described [27]. Briefly, FITC-inulin (Sigma, St. Louis, MO) was dia-

lyzed (molecular weight cutoff = 1,000) against 150 mM NaCl. 7.48μl/g body weight was

injected via the tail vein. Tail vein blood was then collected at 5, 10, 20, 30, 40, 50, 60, 75, 90

and 120 min post injection of FITC-inulin and the plasma was assessed for FITC fluorescence
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(λ excitation = 485 nm; λ emission = 535 nm) using a Victor3 plate reader (PerkinElmer, Wal-

tham, MA). Mice tolerated serial tail bleeds well permitting us to measure the same mice after

10, 20 and 30 weeks on HPC diet. GFR was calculated by fitting the data to a biexponential

decay function and using the equation GFR = I/(A/α)+B/β), where I is the amount of FITC-

inulin delivered by the bolus injection, A and B are the y-intercepts of the two decay compo-

nents, and α and β are the corresponding decay constants for the distribution and elimination

phases, respectively [28].

Kidney histology

Left kidneys were fixed in 4% formalin/PBS at 4˚C for 12 h and then dehydrated with increas-

ing concentration of ethanol and xylene, followed by paraffin embedding. Mineral deposits

were determined on 10 um von Kossa stained sections counterstained with 1% methyl green.

Hematoxyline/eosin was used as counterstain for morphological evaluation. Histomorpho-

metric evaluation was performed using an Osteomeasure System (Osteometrics, Atlanta, GA).

% calcified area was determined using the formula: calc. area = 100�calcified area/total area,

and mineralization size was determined using the formula: calc. size = calcified area/number

of mineralization.

For transmission electron microscopy a 1 mm3 block of the left kidney was fixed in 2.5%

Glutaraldehyde and 2% paraformaldehyde in phosphate buffered saline for 2 hrs., followed by

post-fixation in 1% osmium liquid for 2 hours. Dehydration was carried out using a series of

ethanol concentrations (50% to 100%). Renal tissue was embedded in epoxy resin, and poly-

merization was carried out at 60˚C for overnight. After preparing a thin section (50 nm), the

tissues were double stained with uranium and lead and observed using a Tecnai Biotwin

(LaB6, 80 kV) (FEI, Thermo Fisher, Hillsboro, OR) at the Yale Center for Cellular and Molecu-

lar Imaging (YCCMI).

Statistical analysis

Data are expressed as means±SEM and were analyzed in Prism 7.0 (GraphPad Software, Inc.,

La Jolla, CA) and JMP Pro 11 (SAS, Cary, NC). Differences between groups were considered

significant, if p-values obtained with linear regression analysis, or with two-way ANOVA were

smaller than 0.05. Tukey’s test for multiple comparisons was used where indicated.

Results

Npt2a-/- mice form renal mineral deposits on HP diet

Humans with loss-of-function of NPT2a [1–3] and NPT2c [4, 5] develop renal mineralization,

which may manifest during early childhood prior to specific therapy or when inappropriately

receiving active vitamin D analogs, but can also occur later in life [6]. To model these kidney

abnormalities, we initially tested Npt2a-/- and Npt2c-/- mice [22, 24]. Diets with standard cal-

cium and phosphate content (Ca 1.0%, Pi 0.6%) were not reported to induce renal mineraliza-

tion beyond weaning age in Npt2a-/- mice [29] and no mineralization was reported in Npt2c-/-

mice up to 12 weeks of age [22]. We therefore first tested the effect of a phosphate deficient (Pi

0.02%), high calcium (Ca 2.0%) and high vitamin D3 (4.5 IU/g) diet intended to maximize

hypercalciuria in both mouse models as reported for human individuals with HHRH [6] and

mice [30]. However, no renal mineralization was observed at birth, at weaning and up to 12

weeks of life in either mouse strain. Conversely, renal mineralization was seen in Npt2a-/- mice

when the phosphate content of these diets was raised to 0.3% in CO diet (Fig 1D), while still

no such changes were observed in Npt2c-/- mice (not shown). Renal mineralization was present
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in both intraluminal and interstitial compartments (Fig 1G and 1H), and in addition to stain-

ing with the phosphate dye, von Kossa deposits were also positive with the calcium dye alizarin

red (not shown). Furthermore, transmission electron images showed concentric calcium phos-

phate spheres similar to those described by others [29, 31] (Fig 1I and 1J).

Taken together, these findings suggest that dietary phosphate supports the formation of

renal mineral deposits, at least under certain conditions, which is contrary to the current belief

that oral phosphate supplementation reduces risk for renal calcification in phosphate wasting

disorders by normalizing urine calcium excretion.

To further evaluate the dietary conditions influencing the development of renal mineraliza-

tion, we placed 2-month-old Npt2a-/- and wild-type (WT) littermates on three diets containing

differing amounts of calcium and phosphate for 10 weeks, while the nutritional vitamin D and

magnesium content were kept unchanged: i) HPC diet (High phosphate and calcium diet; 20%

lactate, 2% calcium, 1.25% phosphate); ii) HP diet (High phosphate diet; 0.6% calcium, 1.20%

Fig 1. Cortical and medulary renal mineralization. Light micrographs of 10 um renal sections, prepared from paraffin-embedded kidneys, of mice were fed

different diets. WT (a-c), Npt2a-/- (d-f), von Kossa&methylene green, 4X; Npt2a-/- on CO diet, renal cortex (g) and medulla (h), von Kossa&hematoxin&eosin,

40X. Transmission electron micrographs showing microspheres in Npt2a-/- on CO diet (i), inset with larger magnification shown in (j).

https://doi.org/10.1371/journal.pone.0176232.g001
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phosphate); or iii) CO diet (Control diet; 0.6% calcium, 0.3% phosphate)(S1 Fig). Lactate in

the first diet was shown to increase intestinal absorption of calcium [32]. Size and body weight

(BW) of mice in each diet group were indistinguishable and the animals appeared to be thriv-

ing well, suggesting that intake of these diets was comparable.

Serum and urine biochemistry of Npt2a-/- mice on diets with different

calcium and phosphate contents compared to WT

Consistent with previous reports [24, 29] when compared to WT mice serum Pi, plasma PTH

and FGF23 were decreased in Npt2a-/- mice on the CO diet, while serum 1,25(OH)2D and

urine calcium were increased (Fig 2, Table 1 and S1 Table), albeit only plasma PTH remained

significantly decreased after Tukey’s correction for multiple comparisons. HP diet increased

phosphaturia in Npt2a-/- mice and HPC diet increased calciuria in WT and Npt2a-/- mice. The

urine calcium phosphorus product was increased in Npt2a-/- mice on all three diets but not in

WT mice, albeit significantly only on HPC diet. Lack of increase of the excretion of phosphate

on HPC diet when compared to HP diet may be due to decreased intestinal phosphate absorp-

tion as CaHPO4 salt and suppression of PTH by this diet’s calcium content.

Serum BUN levels were in the normal range for all groups, but lower in mutant mice on

CO diet and in WT mice on HPC diet. Inulin-clearances measured in the same Npt2a-/- mice

on HPC diet for 10, 20 and 30 weeks were unaffected (Fig 3A) despite progressive renal miner-

alization (Fig 3B).

Since urine pH affects renal mineralization, we also determined urine anion gap, which

indirectly measures urinary ammonia excretion [33–35]. However, no difference between

genotypes and diets was observed. Likewise, no differences were seen for urine excretion oxa-

late and citrate.

Two-way ANOVA analysis (Table 1) showed a significant effect of diet for S-P, S-BUN,

PTH, U-Ca/U-crea, CEI, U-P/U-crea, PEI, U-P�U-Ca/U-crea and U-AG, while there was a

significant effect of genotype on S-Ca, S-P, S-BUN, PTH, U-Ca/U-crea, CEI, PEI, U-P�U-Ca/

U-crea, and U-Citrate/U-crea. Collectively, these finding suggests that Npt2a-/- mice respond

differently to dietary phosphate when compared to WT mice.

Addition of calcium to their diet further increased calcium phosphate

deposits in Npt2a-/-, but not in WT mice

Following 10 weeks on the respective diets the animals were sacrificed, kidneys of Npt2a-/-

mice fed HPC diet (n = 12) showed 0.58±0.08% calcified area, while Npt2a-/- mice fed CO diet

(n = 21) showed 0.27±0.18% calcified area (p<0.0001 vs. HPC diet) (Fig 4). Mineralized area

was reduced in Npt2a-/- mice fed a HP diet (0.23±0.08% calcified area, n = 23) when compared

to HPC diet, but was similar when compared to Npt2a-/- mice fed CO diet. No mineralization

was observed in WT mice on HPC or HP diet, but mineralization was seen in two of ten WT

mice on CO diet, albeit less than in Npt2a-/- mice on the same diet. Mineralization size was

similar on all three diets (calculation see methods, data not shown).

Degree of renal mineralization of Npt2a-/- mice directly correlates with

blood phosphate and FGF23 levels and urine calcium excretion

A combined univariate linear regression analysis of all Npt2a-/- mice showed a significant

direct correlation of the urine calcium/urine creatinine ratio (U-Ca/U-cre, CI = 0.49, p =

8.14E-05, n = 59) (Table 2, S1G Fig) and of the calcium excretion index (CEI, CI = 0.39,

p = 0.00259, n = 57) (Table 2, S2H Fig) with % calcified area. This analysis also showed a
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Fig 2. Biochemical parameters. Serum phosphorus (S-P), serum calcium (S-Ca), serum 1,25(OH)2-vitamin D

(1,25-D), plasma intact PTH (PTH), plasma c-terminal FGF23 (cFGF23), serum blood urea nitrogen (S-BUN),

phosphate excretion index (U-Pi/(S-Pi*u-creatinine)(PEI), calcium excretion index (U-Ca/(S-Ca*U-creatinine)

(CEI), citrate (U-citrate), oxalate (U-oxalate) and anion gap (U-AG). 8 weeks old mice were placed for 10 weeks on

special egg-white based diets: HPC diet (High phosphate and calcium diet; 20% lactate, 2% calcium, 1.25%

phosphate); HP diet (High phosphate diet; 0.6% calcium, 1.20% phosphate); CO diet (Control diet; 0.6% calcium,

0.3% phosphate); WT: wild type; Npt2a: Npt2a-/- mice. The data represent mean±SEM; p-values were obtained by

ANOVA and Tukey’s test to correct for multiple comparison, selected comparisons shown here, see complete list of

p-values in S1 Table.

https://doi.org/10.1371/journal.pone.0176232.g002
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positive correlation of serum phosphate (S-P, CI = 0.39, p = 0.00402, n = 55) (Table 2, S2B Fig)

and plasma FGF23 with % calcified area (cFGF23, CI = 0.36, p = 0.01036, n = 49) (Table 2,

S2E Fig).

Degree of renal mineralization of Npt2a-/- mice inversely correlates with

urine phosphate excretion and urine anion gap

Univariate linear regression analysis furthermore indicated a significant inverse correlation of

the urine phosphate/urine creatinine ratio (U-P/U-cre, CI = -0.27, p = 0.03855, n = 59)

(Table 2, S3A Fig) and of the phosphate excretion index (PEI, CI = -0.37, p = 0.0084, n = 53)

(Table 2, S3B Fig) with % calcified area. Urine anion gap was inversely related to the degree of

renal mineral deposits (U-AG, CI = -0.42, p = 0.01271, n = 35) (Table 2, S3F Fig). No signifi-

cant association was seen for PTH in Table 2 and S2D Fig although comparison of the means

in Fig 2D and S1 Table suggests an inverse relationship between PTH levels and mineraliza-

tion. Likewise, no significant association was observed for urine citrate/urine creatinine, urine

oxalate/urine creatinine or serum 1,25(OH)2D. Similar trends were seen when evaluating diet

groups separately (not shown).

Multivariate linear regression analysis suggests that plasma phosphate,

serum FGF23, urine calcium, urine phosphate and anion gap are

independent predictors of renal mineral deposits

The observed associations continued to be significant after controlling for gender, or the

respective variables independently (Table 2). Urine anion gap remained significant even when

controlling for all significant variables simultaneously. A stepwise multivariate linear regres-

sion analysis furthermore showed that plasma phosphate was able to explain 58% of the vari-

ance in renal mineralization, and both plasma phosphate and CEI combined were able to

explain 69% of the variance.

Table 1. Two-way ANOVA analysis.

Diet genotype

S-Ca 0.51 0.04

S-P 0.03 0.01

S-BUN <0.0001 0.01

PTH 0.05 <0.0001

cFGF23 0.57 0.28

1,25-D 0.20 0.10

U-Ca/U-crea <0.0001 0.0003

CEI <0.0001 0.04

U-P/U-crea <0.0001 0.46

PEI <0.0001 0.01

U-P*U-Ca/U-crea 0.0002 <0.0001

U-Citrate/U-crea 0.82 0.04

U-oxalate/U-crea 0.12 0.76

U-AG 0.004 0.19

The two genotypes and three diet groups from Fig 2 were subjected to a two-way ANOVA, illustrating that

Npt2a-/- mice respond differently to their diets. The number of animals included for each diet is shown in S1

Table.

https://doi.org/10.1371/journal.pone.0176232.t001
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Discussion

Oral phosphate supplements are currently thought to reduce risk for renal mineralization in

human carriers of NPT2a and NPT2c mutations. However, as mentioned in the introduction,

there is concern that this therapy might contribute to the formation of renal mineralization

despite reduced 1,25(OH)2D levels and thus reduced urinary calcium excretion under certain

conditions. Our observation that no mineralization was observed in Npt2a-/- and Npt2c-/- mice

on phosphate deficient diet, while mineralization persisted and/or reappeared in older Npt2a-/-

mice supplemented with 0.3% phosphorus, further supports this concern.

Tenenhouse et al. [30] found that renal mineralization in Npt2a-/- mice resolves at weaning

age when the dietary phosphate content was increased from 0.6% to 1%. However, these

authors also noticed that mineralization re-appeared when phosphate was further raised to

1.65% despite improved hypercalciuria on this diet. Similarly, we found continued mineraliza-

tion in older Npt2a-/- mice on HP diet containing 1.2% Pi, despite low calciuria, when com-

pared to CO diet and HPC diet (Figs 2 and 4), suggesting that dietary phosphate can be

harmful under certain conditions, and that oral phosphate supplementation to treat the bone

disease in hypophosphatemic rickets may need to be carefully monitored to not cause renal

calcifications.

Renal calcifications were similar when phosphate content was raised from 0.3 to 1.2% in

HP diet and only addition of 2% calcium in HPC diet made them worse, suggesting that die-

tary calcium or the ratio of dietary calcium and phosphorus contributes to mineralization risk.

Renal mineralization was absent in WT mice on HPC and HP diets. These observations

suggest that Npt2a-/- mice respond differently to dietary phosphate and calcium supplementa-

tion when compared to WT.

Fig 3. Inulin-clearance is stable in Npt2a-/- mice on HPC diet for 10, 20 and 30 weeks despite increased

renal mineralization. (A) Inulin-clearance is stable in Npt2a-/- mice placed at 8 weeks of age on HPC

diet for 10, 20, and 30 weeks, and 175±8, 180±9, and 165±6 ml/min., respectively (mean±SEM) (B) Renal

mineralization continues to increase on HPC diet over time from 10 weeks (HPC10) to 30 weeks (HPC30).

The data represent individual animals (closed circles) with the means±SEM, p-values shown above the lines

of comparisons were calculated by Student’s t-test.

https://doi.org/10.1371/journal.pone.0176232.g003
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To better understand the impact of dietary phosphate we considered the possibility that die-

tary phosphate increases the risk for renal mineralization by raising urine phosphate or the

urine calcium x phosphorus product. Npt2a-/- mice are predicted to be more susceptible to

negative effects of dietary phosphate due to their reduced ability to reclaim phosphate from

the urine when compared to WT mice. This hypothesis is supported by the finding that phos-

phaturia and calcium x phosphorus product (U-Ca�U-P/U-crea) is higher in Npt2a-/- mice on

HP diet when compared to WT (Fig 2I–2K and S1 Table).

Linear regression analysis of the serum and urine biochemistries of Npt2a-/- mice revealed a

positive correlation between plasma phosphorus and % calcified area (S2B Fig) and plasma

FGF23 and % calcified area (S2E Fig), further supporting the idea that dietary phosphate, by

increasing plasma phosphorus and FGF23, can worsen renal calcifications.

It is possible, that FGF23 directly supports renal calcifications in addition to being a marker

for oral phosphate load and FGF23-neutralizing antibodies, which have successfully been used

in XLH [36] may offer advantages for the risk of renal calcifications when compared to stan-

dard therapy with oral phosphate supplements.

However, in light of the positive correlation of plasma phosphate and FGF23 with renal

mineralization, we were surprised to find phosphaturia (U-P/U-crea and PEI) inversely related

Fig 4. Renal mineralization is increased in Npt2a-/- mice on high phosphate/high calcium diet.

Histomorphometric analysis of renal mineralization (%calcified area = 100*mineralization area/tissue area) in

10 um sections of kidneys from mice feed different diets for 10 weeks (see S1 Fig for layout and legend of

Table 2 for composition of diets). The data represent individual animals (closed circles) and the mean±SEM;

p-values were obtained by ANOVA and Tukey’s test to correct for multiple comparison.

https://doi.org/10.1371/journal.pone.0176232.g004
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to renal mineralization (Table 2 and S3A and S3B Fig). Furthermore, renal mineralization was

present in both intraluminal and interstitial compartments (Fig 1G and 1H), while loss of

Npt2a by modifying reabsorption of phosphate from the urine would be predicted to cause

nephrocalcinosis rather than nephrolithiasis in these mice [17, 18]. Thus additional factors

may determine risk for renal mineralization in addition to increased intraluminal phosphate

in Npt2a-/- mice on HP diet, for example reduced osteopontin excretion as previously reported

by us [21], or interstitial levels of phosphate.

We also evaluated for changes in other stone risk factors [17, 18], but no differences were

observed in urine citrate and oxalic acid excretion when comparing WT and Npt2a-/- mice

(Fig 2L and 2M, S1 Table), or when using linear regression analysis of the Npt2a-/- cohort

(Table 2, S3F and S3G Fig). However, urine anion gap, which is an indirect measure of renal

ammonia excretion, was found to be inversely correlated with the degree of renal mineraliza-

tion (Table 2, S3H Fig). High urine anion gap is characteristically seen with impaired urine

ammonia excretion in renal tubular acidosis type 1, while low or negative urine anion gap can

occur in the context of proximal tubular bicarbonate loss in renal tubular acidosis type 2 [33–

35]. The latter would be consistent with reports of Fanconi-type syndrome due to loss-of-func-

tion mutations in NPT2a in human individuals [2], and suggests that urine pH could be an

additional risk factor for stone formation in Npt2a-/- mice.

The observed inverse relation of urine anion gap with the degree of renal mineralization

persisted when controlled for P-P, cFGF23, U-Ca/U-crea, CEI, U-P/U-crea, PEI, U-AG sepa-

rately or in combination (Table 2), and likewise when Npt2a-/- mice were analyzed for each

diet separately (not shown). Taken together our findings suggest that proximal tubular func-

tion beyond phosphate transport may be impaired which could contribute to the formation of

renal mineralization in Npt2a-/- mice.

A limitation of this study is that Npt2a-/- mice exhibit a milder biochemical phenotype than

that seen in most humans with loss-of-function mutations in NPT2a. Renal mineralization

also resolves after weaning [29, 31] in this mouse model and composition of mineral deposits

Table 2. Linear regression analysis.

Univariate analysis Multivariate analysis

Parameter CC p-values n Sex S-P cFGF23 U-Ca/U-crea CEI U-P/U-crea PEI U-AG Multiple

S-Ca 0.12 0.4 60 <0.0001 1.0 0.6 0.0001 0.0009 0.03 0.02 0.5 0.3

S-P 0.39 0.004 55 0.006 0.004 0.009 0.1 0.1 0.01 0.1 0.01 1.0

S-BUN 0.07 0.6 59 0.3 0.03 0.7 0.1 0.1 0.68 0.2 0.2 1.0

PTH 0.05 0.7 48 0.0003 0.3 0.3 0.03 0.1 1.0 0.8 0.4 0.4

cFGF23 0.36 0.01 49 0.01 0.004 0.01 0.009 0.003 0.03 0.03 0.2 0.2

1,25-D -0.01 1.0 46 0.7 0.9 0.7 0.7 0.8 0.5 0.5 0.2 0.7

U-Ca/U-crea 0.49 <0.0001 59 <0.0001 0.004 0.001 <0.0001 0.009 0.0008 0.002 0.002 0.8

CEI 0.39 0.003 57 0.0002 0.03 0.01 0.4 0.002 0.01 0.03 0.008 0.4

U-P/U-crea -0.27 0.04 59 0.04 0.04 0.1 0.4 0.23 0.04 0.81 0.6 0.4

PEI -0.37 0.008 53 0.01 0.2 0.003 0.1 0.08 0.2 0.008 0.3 0.4

U-P*U-Ca/U-crea 0.23 0.09 57 0.2 0.7 0.2 0.1 0.7 0.02 0.09 0.01 0.02

U-Citrate/U-crea 0.15 0.4 32 0.4 0.5 0.5 0.2 0.2 0.3 0.3 0.94 0.6

U-oxalate/U-crea 0.20 0.3 33 0.4 0.34 0.6 0.2 0.07 0.09 0.1 0.3 0.1

U-AG -0.42 0.01 35 0.02 0.008 0.1 0.06 0.04 0.03 0.008 0.01 0.001

Following univariate linear regression analysis of all experimental Npt2a-/- mice analysis of covariance (multivariate analysis) was used to control for

influence of gender, variables separately as indicated in the column header or to control for multiple variables (S-P, cFGF23, U-Ca/U-crea, CEI, U-P/U-crea,

PEI, U-AG). The number of animals included for each diet is shown in S1 Table.

https://doi.org/10.1371/journal.pone.0176232.t002
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may differ between mice and humans who carry NPT2a mutations. However, our findings

that renal stones and nephrocalcinosis persist and/or reappear in older Npt2a-/- mice under

certain conditions, and earlier reports and our own TEM studies show that these mineral

deposits have a composition similar to Randall’s plaques ([31] and Fig 1I and 1J) argue that

despite these species-related differences, important insights can be gained into the underlying

pathophysiology of nephrolithiasis and nephrocalcinosis in this mouse model. Metabolic cage

studies are needed to formally assure similar intake of the different diets, however similar

weight gain of all three cohorts on CO, HP and HPC diets is reassuring. Direct determination

of urine pH and bicarbonate excretion requires dissection of bladders from a new cohort of

mice and will be subject of future studies to confirm indirect evidence obtained from urine

anion gap measurements presented here. Lastly, a time course of renal mineralization is neces-

sary to determine whether neonatal and weaning-age mineralization, which presumably

formed during relatively high calcium and phosphate intake with the breast milk, did not

resolve when animals are maintained on HP diet after weaning. Or whether new mineraliza-

tion developed on HP diet, as suggested by our observation that renal mineralization continues

to increase in mice between 10 and 30 weeks on HPC diet (Fig 3B).

In summary, we show here that Npt2a-/- mice respond differently to dietary phosphate

when compared to WT mice and that the degree of renal mineralization positively correlates

with serum phosphate, plasma FGF23, and urinary calcium excretion, while it inversely corre-

lates with urine phosphate and urine anion gap. Our observations in Npt2a-/- mice suggest

presence of risk factors for renal mineralization in addition to hypercalciuria, and if confirmed

in humans our findings may be relevant for the optimization of existing and for the develop-

ment of novel therapies to prevent nephrolithiasis and nephrocalcinosis in human carriers of

NPT2a and NPT2c mutations.

Supporting information

S1 Fig. Experimental design. At 8 weeks of age they were randomized to special diets for 10 to

30 weeks: HPC (high phosphate and high calcium diet, 20% Lactose, 2.0% Ca, 1.25% Pi; HP

(high phosphate diet, 0.6% Ca, 1.2% Pi and CO (control diet, 0.6%Ca, 0.3% Pi). Mice were sac-

rificed at after 10 weeks or 30 weeks on these diets.

(TIF)

S2 Fig. Urinary calcium excretion and plasma FGF23 levels are positively correlated with

renal mineralization in a combined univariate linear regression analysis Npt2a-/- mice fed

different diets. All experimental Npt2a-/- mice from S1 Table (n = 56) were evaluated using

linear regression analysis to determine the association of renal mineralization with serum cal-

cium (S-Ca, A), serum phosphorus (S-P, B), serum BUN (S-BUN, C), plasma intact PTH

(PTH, D), plasma c-terminal FGF23 (cFGF23, E), serum 1,25(OH)2-vitamin D (1,25(OH)2-D,

F), the ratios of urine calcium/urine creatinine (U-Ca/U-crea, G), and urine calcium excretion

index (CEI, H). Data points represent values of individual animals. Results of the linear regres-

sion analysis are shown as solid line with 95% confidence interval (stippled lines), for correla-

tion coefficients and Pearson’s p-values see Table 2.

(TIFF)

S3 Fig. Urinary phosphate excretion and anion gap are negatively correlated with renal

mineralization in a combined univariate linear regression analysis Npt2a-/- mice fed differ-

ent diets. All experimental Npt2a-/- mice from S1 Table (n = 56) were evaluated using linear

regression analysis to determine the association of renal mineralization with the ratios of urine

phosphorus/urine creatinine (U-P/U-crea, A), urine phosphate excretion index (PEI, B), urine
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calcium�phosphorus/urine creatinine (U-Ca�U-P/U-crea, C), urine citrate/urine creatinine

(U-citrate/U-crea, D), urine oxalate/urine creatinine (U-oxalate/U-crea, E), urine anion gap

(U-AG, F). Data points represent values of individual animals. Results of the linear regression

analysis are shown as solid line with 95% confidence interval (stippled lines), for correlation

coefficients and Pearson’s p-values see Table 2.

(TIFF)

S1 Table. Biochemical parameters. Serum phosphorus (S-P), serum calcium (S-Ca), serum

1,25(OH)2-vitamin D (1,25-D), plasma intact PTH (iPTH), plasma c-terminal FGF23

(cFGF23), serum blood urea nitrogen (S-BUN), phosphate excretion index (U-Pi/(S-Pi�u-cre-

atinine)(PEI), calcium excretion index (U-Ca/(S-Ca�U-creatinine) (CEI), citrate (U-citrate),

oxalate (U-oxalate) and anion gap (U-AG). All diets are egg-white based: HPC diet (High

phosphate and calcium diet; 20% lactate, 2% calcium, 1.25% phosphate); HP diet (High phos-

phate diet; 0.6% calcium, 1.20% phosphate); CO diet (Control diet; 0.6% calcium, 0.3% phos-

phate); WT, wild type; The data represent mean±SEM; p-values were obtained by ANOVA

and Tukey’s test to correct for multiple comparison.

(XLSX)
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