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Abstract: Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of
food constituents, which can transfer information from the external environment and influence gene
expression in the cell and thus the function of the whole organism. It is crucial to regard food not
only as the source of energy and basic nutriments, crucial for living and organism development, but
also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical
pathways. Bioactive components of the diet regulate gene expression through changes in the
chromatin structure (including DNA methylation and histone modification), non-coding RNA,
activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear
receptors. Analysis of interactions between diet components and human genome structure and
gene activity is a modern approach that will help to better understand these relations and will allow
designing dietary guidances, which can help maintain good health.

Keywords: bioactive diet components; gene expression; DNA methylation; histone modification;
non-coding RNA; signalling cascades; nuclear receptor

1. Introduction

Application of new technologies and development of new fields of knowledge, such
as nutrigenetics and nutrigenomics, allow for individual dietary recommendation. Nutrige-
nomics comprises investigations on interactions between nutrients and gene expression
and identification of mechanisms that decide how food elements influence human health.
Nutrigenetics focuses on genetic differences in genome of individual patients and on using
analysis of these alterations for formulation of dietary guidance for personalized nutri-
tion [1]. Transcriptome analysis constitutes a key tool for observation of the gene expression
alteration in response to different factors. Diet, physical activity and drugs can alter gene
expression and thus influence the risk of pathological changes in an organism [2,3]. Com-
parison of differential diet-dependent transcriptomes with the transcriptomes of healthy
and sick populations enables the generation of biomarkers helpful for healthy and well-
chosen diet preparation [4]. Human genetic variations within different populations results
from evolutionary adaptation to different environment conditions, including food ac-
cessibility [5,6]. SNPs (single-nucleotide polymorphism) are the most common genetic
variability, occurring every 500–2000 bp in the human genome [7]. The consequence of such
mutations is generation of different RNA molecules and alterations in protein structure
and function encoded by mutated genes, which can alter homeostasis of an organism and
lead to diseases or health disorders [8,9]. SNP analysis is an important molecular tool for
examining the nutrients’ impact on human health [10].
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Nutrigenomics and nutrigenetics focus on three main areas, namely the interactions of
diet components and genome, organism homeostasis, and personalized nutrition. Studies
focused on these areas allow for better understanding of molecular interactions between
the consumed food and genome, and recognizing the effects of such interactions will
help in preparation of personalized diets in order to prevent or support treatments of
diseases [11,12].

2. Mechanisms of Diet Components and Gene Expression Interaction

Bioactive diet components influence gene expression through changes in the chromatin
structure (including DNA methylation, histone modification), non-coding RNA, activation
of transcription factors via signalling cascades, or direct ligand binding to the nuclear
receptors (Figure 1).

Nutrients 2021, 13, 3673 2 of 33 
 

 

Nutrigenomics and nutrigenetics focus on three main areas, namely the interactions 
of diet components and genome, organism homeostasis, and personalized nutrition. Stud-
ies focused on these areas allow for better understanding of molecular interactions be-
tween the consumed food and genome, and recognizing the effects of such interactions 
will help in preparation of personalized diets in order to prevent or support treatments of 
diseases [11,12]. 

2. Mechanisms of Diet Components and Gene Expression Interaction 
Bioactive diet components influence gene expression through changes in the chro-

matin structure (including DNA methylation, histone modification), non-coding RNA, ac-
tivation of transcription factors via signalling cascades, or direct ligand binding to the nu-
clear receptors (Figure 1). 

 
Figure 1. Methods of dietary compound influence on gene expression (for epigenetic modifications -(Me) stands for methyl 
group in methylated DNA; -(Ac) stands for acetyl group in acetylated histones). 

2.1. Chromatin Structure (Including DNA Methylation, Histone Modification, Telomere 
Length) 

A significant and interesting issue within nutrigenetics and nutrigenomics is the in-
fluence of diet components on epigenetic alteration of genome. Epigenetic changes are 
heritable alterations of gene expression and chromatin organization, which do not result 
from changes in DNA sequence. Main epigenetic modifications consist of DNA methyla-
tion changes and histone modification. Food components are among factors that can trig-
ger epigenetic changes [13], and abnormal profiles of epigenetic changes can lead to dis-
eases. Unlike genetic changes, which are stable, epigenetic changes can be reversible, 
which suggests that humans can modulate them by their lifestyle and diet and even pre-
vent the onset of diseases in their progeny [14,15]. 

DNA methylation is one of the best-known epigenetic modifications. It consists of 
attaching methyl groups to the nitrogen bases of nucleotides, mainly to cytosine and less 
often to adenine. DNA methylation is related to the regulation of gene expression and 
modulation of the chromatin structure but also participates in processes such as 

Figure 1. Methods of dietary compound influence on gene expression (for epigenetic modifications -(Me) stands for methyl
group in methylated DNA; -(Ac) stands for acetyl group in acetylated histones).

2.1. Chromatin Structure (Including DNA Methylation, Histone Modification, Telomere Length)

A significant and interesting issue within nutrigenetics and nutrigenomics is the
influence of diet components on epigenetic alteration of genome. Epigenetic changes
are heritable alterations of gene expression and chromatin organization, which do not
result from changes in DNA sequence. Main epigenetic modifications consist of DNA
methylation changes and histone modification. Food components are among factors that
can trigger epigenetic changes [13], and abnormal profiles of epigenetic changes can lead
to diseases. Unlike genetic changes, which are stable, epigenetic changes can be reversible,
which suggests that humans can modulate them by their lifestyle and diet and even prevent
the onset of diseases in their progeny [14,15].

DNA methylation is one of the best-known epigenetic modifications. It consists of
attaching methyl groups to the nitrogen bases of nucleotides, mainly to cytosine and less
often to adenine. DNA methylation is related to the regulation of gene expression and mod-
ulation of the chromatin structure but also participates in processes such as inactivation
of the X chromosome or parent imprinting. Disturbances in the methylation profile have
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been found in many diseases. The methyl group is transferred from S-adenosyl-methionine
(SAM) to the carbon-5 of cytosine, resulting in 5-methyl cytosine (5mC). This process
takes place mainly in CG context or the so-called CpG sites. DNA methyltransferases are
responsible for attaching methyl groups to DNA during de-novo replication and methyla-
tion as well as conservative methylation, related to the passing of epigenetic information
to daughter cells. In humans, these are DNMT1, DNMT3A, and DNMT3B methyltrans-
ferases [16,17]. DNA methylation regulates gene expression (mainly gene silencing) by
recruiting proteins involved in gene repression (the MBD proteins (methyl-CpG binding
proteins)), the UHRF proteins (ubiquitin-like, containing PHD and RING finger domain
protein), and the zinc-finger proteins or by hindering the binding of transcription factors to
DNA [18].

The DNA methylation pattern in the genome changes as a result of both DNA methy-
lation and demethylation. DNA demethylation can be active or passive. As DNMT1
actively maintains DNA methylation during cell replication, its inhibition or dysfunction
allows newly incorporated cytosine to remain unmethylated and consequently reduces
the overall methylation level. Active DNA demethylation can occur in both dividing
and non-dividing cells and is driven enzymatically, based on the DNA-BER (Base Exci-
sion Repair) system with the participation of DNA glycosylases. Several mechanisms
of active DNA demethylation have been proposed. One of them is 5mC deamination to
thymine with the participation of AID/APOBEC proteins (activation-induced cytidine
deaminase/apolipoprotein B mRNA-editing enzyme complex). Deamination of the amine
to a carbonyl group by AID/APOBEC effectively converts 5mC into thymine, thus creating
a G/T mismatch and inducing the BER pathway to correct the base. Another mechanism is
the process mediated by the ten-eleven translocation (Tet) enzymes Tet1, Tet2, and Tet3. Tet
enzymes add a hydroxyl group to the 5mC methyl group to form 5-hydroxymethylcytosine
(5hmC). Two separate mechanisms (iterative oxidation by Tet enzymes and deamination
by AID/APOBEC) can convert 5hmC back into cytosine. The demethylation process plays
an important role in the human body, as it is necessary during the reactivation of silenced
genes or incorrectly methylated bases [18]. DNA methylation profile may alter as a result
of SNP, environmental factors, as well as diet components. There are three ways in which
nutrients influence the methylation patterns of DNA. The first is to provide the substrates
necessary for proper DNA methylation; the second, changing the activity of the enzymes
regulating the one-carbon cycle, the third, providing cofactors that modulate enzymatic
activity of DNMT. All the three paths are interconnected, and often, a particular dietary
component works in more than one way [19].

S-Adenosylmethionine (SAM) is a methyl-donor and is synthesized in the methionine
cycle from several precursors present in the diet: methionine, folate, choline, betaine, and
vitamins B2, B6, and B12 (Table 1). Reduced availability of methyl donors should result
in low SAM synthesis and global DNA hypomethylation. There is no simple correla-
tion between the concentration of methyl donors and the level of DNA methylation, as
other mechanisms may contribute to this. One carbon (C1) metabolism utilizes a variety
of nutrients, such as glucose, vitamins, and amino acids, to fuel a variety of metabolic
pathways that utilize these one-carbon units and is essential for many cellular processes,
including the DNA methylation. One carbon cycle requires serine, folic acid, and methio-
nine, which make the folic acid and methionic acid cycles highly related and essential
for cellular processes. In addition, many components of the diet regulate the activity
of enzymes involved in single-carbon metabolism [19]. Folic acid has attracted a great
deal of attention from researchers studying the effects of dietary components on DNA
methylation. This is because folate plays a key role in C1 metabolism through its conver-
sion to N-5-methyltetrahydrofolate, which in turn is converted to S-adenosyl methionine,
the CH3 donor in DNA methylation. Ethanol is an antagonist of folate and monocarbon
metabolism. Other nutrients involved in monocarbon metabolism are vitamins B2, B6,
and B12; methionine; choline; and betaine, but they show a weaker modulating effect
on DNA methylation [20]. Evidence from animal, human, and in-vitro studies suggest
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that the epigenetic effects of folate on DNA methylation are highly complex. The effects
are gene and site specific and appear to depend on the cell type, target organ, degree
and duration of folate manipulations, interactions with other methyl group donors and
dietary factors, and genetic variants in the folate metabolic pathways. However, now,
most of the evidence suggests that high folate deficiency in the body causes global DNA
hypomethylation and disturbance of the normal methylation pattern of genes involved in
many important physiological processes [21]. Vegetable products that are particularly rich
in folic acid include leafy vegetables, broad beans, green peas, beets and tomatoes, citrus
fruits, nuts, sunflower seeds, and cereals. It is also found in animal products, mainly eggs,
cheese, liver, and yeast. Folic acid supplied to the body with food may not always be fully
used, either due to the conditions of storage and preparation of products or individual
properties related to their absorption and metabolism; therefore, in some cases, folic acid
supplementation is recommended [22]. Zinc acts as a cofactor for several enzymes in the
pathway producing methyl group donor. Zinc deficiency may cause a deficit of methyl
groups, and as a consequence, the expression level of certain genes may be disturbed,
and the risk of disturbances in cell development may increase [23]. The increase in DNA
demethylation can also be caused by vitamin C, which is connected with the increased
expression of DNMT1, DNMT3a, and the mRNA expression of Tet2 and Tet3 [24].

Table 1. Bioactive components of the diet and their role in epigenetic changes in the genome.

Mechanisms Bioactive Component Disorders References

upregulation of DNMT

omega-3 fatty acids: DHA, EPA colorectal cancer [25,26]

folic acid colorectal cancer, breast cancer [27,28]

methionine lung cancer [29]

vitamin A congenital heart defects [30]

DNA
methyltransferase

inhibition

kaempferol bladder cancer [31]

gallic acid lung cancer and oral cancer [32]

epigallocatechin-3-gallate breast cancer, diabetic kidney disease [33,34]

β-caroten colorectal cancer [35]

sulforaphane breast cancer, cardiomyopathy [36,37]

omega-3 fatty acids: EPA hepatocarcinoma [38]

vitamin A congenital heart defects [30]

histone deacetylase
inhibition

resveratrol breast cancer, renal cell carcinoma,
colorectal cancer [39–42]

apigenin prostate cancer, lung cancer [43,44]

luteolin lung cancer, leukemia [45,46]

chrysin melanoma [47]

cinnamic acid derivatives colon and cervical cancer [48]

gallic acid prostate cancer, cardiovascular diseases [49]

epigallocatechin-3-gallate cardiac diastolic dysfunction, prostate cancer,
acute promyelocytic leukemia [50–52]

sulforaphane Alzheimer’s disease, melanoma, colon cancer,
cardiomyopathy [37,53–55]

omega-3 fatty acids: EPA hepatocarcinoma [38]

vitamin D breast cancer [56]

telomerase inhibition,
telomere shortening epigallocatechin-3-gallate glioblastoma [57]
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Epigallocatechin-3-gallate (EGCG), a polyphenol member, can reduce global DNA
methylation levels, DNA methyltransferase (DNMT) activity, messenger RNA (mRNA),
and protein levels of DNMT1, DNMT3a, and DNMT3b. EGCG can directly inhibit the
DNMT catalytic site. Catechins, which are also polyphenols, appear to inhibit DNMT activ-
ity through increasing the intracellular S-adenosylhomocysteine (SAH) levels. Quercetin,
an important dietary flavonoid present in different vegetables, fruits, nuts, tea, red wine,
and propolis, can also inhibit DNA methylases. Another flavonoid found in plant products,
myricetin, has even stronger inhibitory potential against DNMT than quercetin. Other di-
etary phenolic compounds, including hesperetin, naringin, apigenin, and luteolin, can also
modulate DNA methylation by indirectly regulating DNMT activity through regulating
the SAM and SAH ratio [58–60]. Sulforaphane, an isothiocyanate found in vegetables from
the Brassicaceae family, can also influence the abnormally methylated genes by modulating
DNMT expression [61,62] (Table 1).

The polyphenolic extract of Annurca apples, a variety native to southern Italy, shows
strong inhibition of DNMT methyltransferases, thus restoring the correct expression of
silenced genes [63]. Lycopene, a carotenoid found, among other things, in tomatoes, also
exhibits demethylating activity [64]. Cocoa is another nutritional product rich in polyphe-
nols that affect DNA methylation. In-vitro experiments suggest that cocoa may exert this
effect partially via the down-regulation of DNMTs, MTHFR (methylenetetrahydrofolate re-
ductase), and MTRR (methionine synthase reductase) genes, which are key genes involved
in this epigenetic process [65]. Data from animal model studies indicate that ingestion of
genistein, the major phytoestrogen in soy, may induce persistent DNA hypermethylation
in offspring [66].

Methyltransferases can be responsible for heritable DNA methylation changes. One
of the methyltransferases, DNMT3, is responsible for DNA methylation during embryo-
genesis. Mother’s diet and environmental factors can influence the methylation profile
during embryogenesis [67,68]. Protein restriction is a frequently used model of maternal
malnutrition. Feeding pregnant rats a low-protein diet resulted in global or locus-specific
changes in DNA methylation [69]. Human data also show that the offspring of mothers
who have experienced a history of famine are more likely to develop metabolic diseases
that are associated with epigenetic changes that have occurred in foetal life. A low-protein
and low-calorie diet leads to both hypomethylation and hypermethylation at specific loci
in offspring [70–73]. A high-fat, high-calorie maternal diet can also alter DNA methylation
and gene expression in offspring [74–76]. In adulthood, dietary habits can influence the
methylation pattern but to a lesser extent than in developing individuals. Both high- and
low-calorie diets, especially if used for a long time, can lead to epigenetic changes in the
body and then affect its health [77,78]. Research on obese patients who applied a low-
calorie diet in order to reduce weight revealed significant differences in DNA methylation
patterns in both those who exhibited high or low loss of weight [79]. The differences in the
transcriptome of people well and poorly responsive to caloric restriction are mainly related
to the genes associated with body weight control and insulin secretion [80].

Short fasting periods can influence health through DNA methylation [81]. In studies
in which participants were subjected to a high-calorie diets, changes were observed in both
gene expression and methylation patterns in human adipose tissue and muscle. These
changes were not fully reversed by a low-calorie diet, suggesting that changes in methyla-
tion at certain loci may accumulate over time. DNA methylation of individual genes and
CpG sites can be regulated differently by the supply of saturated and polyunsaturated fatty
acids (Table 1). Excessive supply of saturated fatty acids leads to increased methylation of
genes in adipose tissue, especially genes that are involved in the carbohydrate metabolism,
lipid metabolism, and oxidative phosphorylation. It must be noticed that alteration in DNA
methylation in relation to diet (e.g., rich in compounds serving as methyl donors (folate,
choline, vit. B2, B6, B12)) is gene and tissue specific at different life stages. Additionally,
differences in methylation are dependent on sex and genotype.
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Another epigenetic process related to the chromatin structure is the histone mod-
ification. Histones are proteins that are part of the basic chromatin unit, which is the
nucleosome, which consists of 147 base pairs of DNA wrapped around the octamer of
histone proteins: H2A, H2B, 2xH3, and 2xH4. The chromatin also includes the H1 linker
histone. Histones undergo various modifications with the participation of enzymes to be
able to dynamically modulate the structure of chromatin in order to activate or silence
gene expression. Histone modifications include acetylation, methylation, phosphoryla-
tion, biotinylation, and ubiquitination and mostly concern the N-terminus of histones.
Most of these modifications occur at lysine, arginine, and serine residues and regulate
key processes, such as transcription, replication, and repair. Histone modifications are
natural processes, but alteration in their modifications can influence changes in functions
of individual genes [82].

Certain patterns of histone modification determine the binding of proteins regulating
the structure of chromatin and determine its state as well as the activity of genes in its
area, which is called the histone code. The histone code may be changed because various
modifications of histones are potentially reversible and is dynamically regulated by a group
of enzymes that add or remove covalent modifications to histone proteins. Histone acetyl-
transferases (HATs) and histone methyltransferases (HMTs) add acetyl and methyl groups,
respectively, whereas histone deacetylases (HDACs) and histone demethylases (HDMs) re-
move acetyl and methyl groups, respectively, from histone proteins. Histone modifications
are context dependent and can have opposing effects. Research focuses mainly on histone
methylation and acetylation. Methylation may involve both the activation and silencing of
gene expression, whereas acetylation mainly relates to gene activation [83,84].

Nutrients can influence alteration in histone modification through interacting with
histone deacetylases. Butyrate (dietary fibre fermentation), diallyl sulfide (garlic), sul-
foraphane (brassica sp.), curcumin, polyphenols from garlic, green tea or cinnamon, and
soybean genistein belong to compounds that inhibit those enzymes. Green tea polyphenols
and copper can inhibit HATs [85–89] (Table 1).

Resveratrol, the active compounds of red grapes, is the activator of sirtuin 1 (SIRT1),
the function of which is deacetylation of histones and other proteins [90]. Sirtuin 1 plays a
key role in the rearrangement of chromatin and is involved in the regulation of some of
transcription factors [91].

SAM is an essential co-factor not only for DNA methyltransferases but also for histone
methyltransferases. Maternal choline deficiency, which is also associated with neural tube
defects and perturbed neurogenesis in the foetus, results in diminished H3K9 methylation
as well as CpG methylation [92].

In addition, research on diets, such as a high-fat, a low-protein, or a caloric restriction
diet, showed that extreme dietary conditions affect multiple nutrient sensing pathways
and can cause global histone modification changes [83].

Nutrigenomics and nutrigenetics allowed to indicate the relationships between partic-
ular consumed products and telomere length (TL) (Table 1). The telomere consists of DNA
tandem repetitions TTAGG, which together with bound proteins protect chromosome
endings and get shortened with every DNA replication round and thus determines cell
lifespan [93]. Telomeres enable cells to distinguish chromosome ends from double-strand
breaks and thus protect chromosomes from end-to-end fusion, recombination, and degra-
dation. Telomeres prevent the loss of genomic DNA at the ends of linear chromosomes and
in turn protect their physical integrity. Literature data indicate that the catalytic subunit
of telomerase, the enzyme responsible for maintaining telomeric ends, is regulated by
various epigenetic modifications in its gene promoter, including histone acetylation and
methylation [94].

Diet with high consumption of fruits, vegetables, healthy fatty acid, and fibre results in
longer telomere fragments [95,96]. Taking into account that there is a link between oxidative
stress and the abrasion of telomere, it is likely that eating foods rich in antioxidants may
have important health benefits. Bioactive ingredients contributing to the maintenance
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of TL length are carotenoids; vitamins A, C, D, E; polyphenols; fibre; and omega-3 fatty
acids. On the other hand, pro-inflammatory diets with high consumption of sugary drinks,
processed meat, as well as increased amounts of saturated fatty acids were correlated with
telomere shortening [97]. Current literature suggests that following a Mediterranean diet,
with high consumption of antioxidants, fibre, and vegetables as well as seeds and walnuts,
is associated with longer TL [98,99].

2.2. Non-Coding RNA (microRNA and lnc-RNA)

Diet compounds may influence the activity of non-coding RNAs (microRNA and
lnc-RNA), which possess epigenetic regulatory functions. It was shown that they modulate
gene expression at various levels including transcription by associating with DNA and
chromatin-modifying complexes, thereby mediating alteration of the local epigenetic
landscape [100].

MicroRNA (miRNA) are short 19-14 nucleotide in length fraction of non-coding RNA
that constitute an essential post-transcriptional regulatory step in gene expression [101]. They
work by blocking the translation or degrading the transcript (inducing exonuclease action,
decapping, or deadenylating the poly (A) tail). A single miRNA can regulate several different
mRNAs. In animals, miRNAs are involved in the regulation of many cellular processes,
such as proliferation, differentiation, apoptosis, and also in metabolism, immune response,
hormone signalling, and cell development [102]. Disorders of miRNAs can contribute to
the development of various diseases, including cancer [101]. In recent years, a great deal of
controversy has been raised over the possibility of penetration of plant miRNAs through the
gastrointestinal (GI) barrier, where, with the participation of extracellular vesicles, such as
exosomes, they enter the circulatory system in mammals [103–105]. In 2012, Zang et al. [106]
demonstrated for the first time that dietary miR168 can cross the GI barrier and inhibit
the expression of human and mouse low-density lipoprotein receptor adapter protein 1
(LDLRAP1) in liver, which resulted in lowering of LDL removal from the plasma. In 2016,
the presence of plant miR159 was demonstrated in human sera, the level of which was
negatively correlated with the occurrence and development of breast cancer. This was
caused by influencing the transcription factor TCF7 encoding Wnt signaling transcription
factor, leading to the decrease in MYC protein levels [107]. In 2020, the presence of the
SIDT1 receptor responsible for the absorption of miRNA from the diet was demonstrated
in gastric pit cells in the stomach of mice, and the presence of this protein in human cells
was previously indicated [108,109]. Despite the increasing amount of data indicating the
possibility of penetration of miRNA from the diet, this topic is still unclear and requires
more extensive research [102].

Dietary food components and especially bioactive dietary components, like vitamins
(vitamin D, vitamin A, vitamin E), polyphenols (resveratrol, quercetin, catechins, curcumin),
fatty acids (omega-3 and omega-6), and minerals (selenium, zinc), can affect the expression
of miRNA, thus regulating gene expression and the phenotype impact [110] (Table 2).

Table 2. Bioactive components of the diet and their role in miRNA level changes.

Mechanisms Bioactive Component Disorders References

↓ miR-143 and miR-124
curcumin

osteoarthritis [111]

↑ miR-99a retinoblastoma [112]

↑ miR-34a, miR-503, miR-424

resveratrol

breast cancer [113]

↑ miRNA-200 pancreatic ductal adenocarcinoma [114]

↑ miR-122-5p breast cancer [115]

↑ miR-200c colorectal cancer [116]

↓ miR-155, miR-34a
↑ miR-21, miR-181, miR-186

type 2 diabetes, hypertensive patients with
coronary artery disease [117]

↓ miR-221 melanoma [118]
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Table 2. Cont.

Mechanisms Bioactive Component Disorders References

↑ miR-29b

quercetin

diabetic retinopathy [119]

↑ miR-146a breast cancer [120]

↓ miR-206 osteoporosis [121]

↓ miR-21 breast cancer [122]

↓ miR-22 oral lichen planus [123]

↓ miR-216a peripheral arterial disease [124]

↓ miR-21 hepatic steatosis and fibrosis [125]

↓ miR-15a and miR-16 hepatocellular carcinoma [126]

↓ miR-16 oral cancer [127]

↑ hsa-miR-24, hsa-miR-6769b-3p, hsa-miR-6836-3p, hsa-miR-199a-3p,
hsa-miR-663a, hsa-miR-4739, hsa-miR-6892-3p, hsa-miR-7107-5p,

hsa-miR-1273g-3p, hsa-miR-1343, and hsa-miR-6089; ↓ hsa-miR-181a-5p
and hsa-miR-148a-3p

apigenin

hepatocellular carcinoma [128]

↑ miR-34a-5p lung cancer [129]

↑ miR-152-5p cervical carcinoma [130]

↑ miRNA-215-5p colorectal cancer [131]

↑ miR-34a-5p

luteolin

lung cancer [132]

↑ miR-203 breast cancer [133]

↑ miR-6809-5p hepatocellular carcinoma [134]

↑ miRNA-34a gastric cancer [135]

↓ miR-21 and ↑ miR-16 and -34a breast cancer [136]

↓ microRNA-132 Bronchopneumonia [137]

↓ miRNA-301-3p pancreatic cancer [138]

↑ microRNA-340

kaempferol

lung cancer [139]

↑ miR-339-5p colon cancer [140]

↓ microRNA-21 liver cancer [141]

↓ miR-146a osteoarthritis [142]

↑ miR-203 hypertension [143]

↑miR-132 and miR-502c

chrysin

breast cancer [144]

↑miR-9 and Let-7 gastric cancer [145]

↓miR-18a, miR-21, and miR-221 genes gastric cancer [146]

↓microRNA (miR)-92a atherosclerosis [147]

↓ miR-636 caffeic acid diabetic nephropathy [148]

↑ miR-221

epigallocatechin-3-
gallate

hepatic fibrosis [149]

↑ miR-548m hepatitis C [150]

↑ microRNA-let-7b melanoma [151]

↑ miR-520a-3p prostate cancer [152]

↑ miR-384 ischemic heart disease [153]

↓ miR-25 breast cancer [154]

↑ miR-9-3

sulforaphane

lung cancer [155]

↑ miR135b-5p pancreatic cancer [156]

↓ miRNA-423-5p liver fibrosis [157]

↓ miR30a-3p pancreatic cancer [158]

↓ miR-155 acute myeloid leukemia [159]

↓ miR-21 colon cancer

↑ miRNA-124-3p nasopharyngeal cancer [160]

↓ miR-23b, miR-92b, miR-381, and miR-382 breast cancer [36]

↑ miR-29a-3p and miR-200a
Carotenoids: lycopene,
β-carotene, lutein,

astaxanthin

colorectal cancer [161]

↑ miR-320d, miR-1246 and miRNA-1290 neuroblastoma [162]

↑ miR-let-7f -1 prostate cancer [163]
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Table 2. Cont.

Mechanisms Bioactive Component Disorders References

↑ miR-99a

omega-3 fatty acids:
DHA, EPA

breast cancer [164]

↑ miR-138-5p lung cancer [165]

↑ miR-34a multiple myeloma [166]

↑ miR-194 and ↓ miR-106b breast cancer [167]

↓ miR-21 breast cancer [168]

↓ microRNA-155 carotid restenosis [169]

↓ microRNA-20a gastric cancer [170]

↓ miR-21 Parkinson’s disease [171]

↓ miRNA-146a and -155
vitamin D

obesity [172]

↑ miR-100 and -125b prostate cancer [173]

↑ miR-10a vitamin E breast cancer [174]

↑ miR-374, miR-16, miR-199a-5p, miR-195, and miR-30e; ↓ miR-3571,
miR-675, and miR-450a selenium cardiac dysfunction [175]

↓ miR-21, miR-31, and miR-223; ↓ miR-375 zinc esophageal cancer [176]

In recent years, a great deal of information has emerged about the presence of miRNA
in both human and cow’s milk. Importantly, miRNA in milk is transported in extracellular
vesicles, which protects the molecules against the effects of RNase and unfavourable
conditions in the gastrointestinal tract. The qualitative and quantitative composition
of miRNA molecules in milk is related to many factors, such as the fraction of milk,
the processing method, or, in the case of human milk, the mother’s age, health, and her
lifestyle [177]. For this reason, it is difficult to establish the exact profile of miRNA in human
milk [178–180] and thus the exact effect of miRNA from milk on a child’s development. It is
known, however, that milk-derived exosomal miRNAs that target DNA methyltransferase
1 (DNMT1) (miRNA-148a, miRNA-21) and DNMT3B (miRNA-148a, miRNA-29b) have
been suggested to play a fundamental epigenetic role for milk-induced FOXP3 expression
and Treg stabilization. These miRNAs act to inhibit DNMT and increase the stability of
FOXP3 gene expression to promote immune tolerance.

lncRNAs are longer that 200 nt non-coding RNA particles. Alteration in their function
can contribute to the development of many diseases, including cancers. Sulforaphane,
obtained from cruciferous vegetables like broccoli, can prevent and suppress cancer for-
mation. Research revealed that sulforaphane influences expression of cancer-associated
lncRNAs. Sulforaphane-mediated alterations in lncRNA expression are correlated with
genes that regulate cell cycle, signal transduction, and metabolism [181] (Table 3).

Table 3. Bioactive components of the diet and their role in lncRNA level changes.

Mechanisms Bioactive Component Disorders References

↓ BRAF-activated long noncoding RNA
(BANCR) luteolin thyroid carcinoma [182]

long non-coding RNA
epigallocatechin-3-gallate

lung cancer [183]

↓ lnc RNA LINC00511 gastric cancer [184]

↓ lncRNAs H19 sulforaphane pancreatic ductal
adenocarcinoma [185]

↓ lncRNA LUCAT1

vitamin D

oral squamous cell carcinoma [186]

↓ lncRNA CCAT2 ovarian cancer [187]

↑ lncRNA MEG3 colorectal cancer [188]
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3. Activation of Transcription Factors by Nutrients

Organisms deploy a number of ways to maintain metabolic and energy homeostasis,
including hormones and/or the nervous system. The increasing number of research
papers has shown that both primary and secondary nutrients or their derivatives regulate
gene expression in a hormone-independent manner by direct interaction with cellular
components (membrane or nuclear receptors). The main route of activation of transcription
factors (TFs) governing the expression of their target genes after extracellular impulse
perception is through cascaded signal transmission, in which the preceding elements (e.g.,
protein kinases) change the state/structure of the succeeding ones, leading to the activation
of specific TFs.

The regulation of the metabolic pathways involved in glucose homeostasis is carried
out in part by the transcriptional control of the genes coding for the regulatory enzymes of
those pathways. The mechanism by which carbohydrates regulate transcription of these
genes, besides the transcriptional control exercised by insulin and glucagon and their
signalling cascade, was finally unravelled by the purification and characterization of the
carbohydrate-responsive element binding protein (ChREBP). In response to glucose and
fructose, this protein forms a heterodimer with its partner Mlx and then binds and activates
the transcription of target genes that contain carbohydrate response element (ChoRE)
motifs (e.g., glucokinase, pyruvate kinase, ATP citrate lyase, acetyl CoA carboxylase, fatty
acid synthase) [189]. This regulation plays a critical role in sugar-induced lipogenesis and
glucose global homeostasis through the coordination of hepatic intermediary metabolism,
carbohydrate digestion, and transport [190,191]. ChREBP transcriptional activity can be
modulated by other cofactors and transcriptional factors, such as the members of nuclear
receptors family hepatic nuclear factor 4 (HNF-4), LXR, FXR, or the thyroid hormone
receptor (TR) [192,193]. Glucose homeostasis and body weight is regulated also by Signal
Transducer and Activator of Transcription 3 (STAT3), a transcription factor activated by
different cell stimuli, like leptin, grow factors, or cytokines, such as IL-5 and IL-6 [194]. In
in-vivo studies, it was shown that STAT3 activation was triggered by oleic acid, leading to
intensified transcription of genes regulated by this transcription factor [195]. STAT3 protein
is thought to be an important factor associated with increased risk of abdominal obesity.
A high dietary saturated fatty acid intake amplifies the genetic predisposition to abdominal
obesity which connected with certain STAT3 genotypes [196]. In addition, high continuous
activation of STAT3 gene is connected with neoplastic transformation. STAT3 is broadly
hyperactivated both in cancer and non-cancerous cells within the tumour ecosystem and
plays crucial roles in reducing the expression of important immune activation regulators
and promoting the production of immunosuppressive factors [197]. It was shown that
high-fat diet increased the risk of prostate cancer and that palmitic acid levels were strictly
connected with STAT3 activation [198].

Metabolism of glucose and lipids is regulated by a family of nuclear receptors known
as the peroxisome proliferator-activated receptors (PPARs). The PPARs function as lipid
sensors in a way that can be activated by both dietary fatty acids (FAs) and their deriva-
tives in the body, consequently redirecting metabolism. Three types of these receptors are
known. The PPARα isoform plays a significant role in the oxidation of fatty acids and is
important in body’s response to fasting. PPARγ is abundant in the brown adipose tissue
and is an important regulator of fat cells [199] and is crucial in regulating adipogenesis
(through C/EBP cascade), thus playing a significant role in maintaining glucose and lipid
metabolism balance. Among the identified functions of PPARδ is that of its connection
with the catabolism of fatty acids and energy homeostasis [200]. It is suggested that PPARα
may be the most important isoform in regulating de-novo fatty acid synthesis from carbo-
hydrates and lipid deposition. It was shown that FASKOL (fatty acid synthase knockout
in liver) mice, when fed a diet deprived of fat, were characterized by hypoglycaemia and
hypercholesterolemia. This effect was reversed by PPARα agonists, which further led to
the conclusion that only dietary fat or fat synthesized de novo due to fatty acid synthase
activity is capable of PPARα activation, which in turn leads to gluconeogenesis [201]. In
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contrast, PPARδ may work as a widespread regulator in fat burning and probably could
be used as a potential target in the treatment of obesity and related disorders [202]. It was
proposed that the effect of fatty acids on gene expression mainly depends on the number
of double bonds and the length of carbon tail, and hence, abnormal lipid profile can lead
to severe aberration in cell function (Table 4). After PPAR binding, polyunsaturated fatty
acids lower the level of triglycerides and increase blood HDL cholesterol fraction [203].
Fatty acids can also regulate liver X receptor (LXR), retinoid X receptor (RXR), and sterol
receptor SREBP (sterol regulatory element-binding proteins) [204]. It is already known
that LXRs, after forming a heterodimer with RXRs, regulate the nutrient metabolism path-
ways through their interactions with specific, naturally occurring oxysterols. It was found
that LXRs could also form heterodimers with all the three PPAR subtypes with different
binding affinities, and such receptor/receptor interactions could be regulated by ligand
binding [205]. Formation of such heterodimers changes their target genes. By gel shift
and in-vitro protein/protein binding assays, it has been discovered that the interactions
between LXRs and PPARα are involved in fatty acid degradation, which is a reverse of the
fatty acid synthesis function of PPARα [206]. Sterol regulatory element binding proteins
(SREBPs) are membrane-bound transcription factors of the basic-helix–loop–helix–leucine
zipper (bHLH-Zip) family that have been shown to regulate enzymes responsible for the
synthesis of cholesterol, fatty acids, and the low-density lipoprotein (LDL) receptor. The
target genes involved in cholesterol metabolism include the LDL receptor, 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA) synthase, HMG-CoA reductase, farnesyl-diphosphate
(FPP) synthase, and squalene synthase, while genes involved in fatty acid and triglyceride
synthesis that are regulated by SREBPs include acetyl-CoA carboxylase (ACC), fatty acid
synthase (FAS), and glycerol-3-phosphate acyltransferase [207]. Diets rich in sterols prevent
proteolytic cleavage of SREBPs that facilitates its translocation to the cell nucleus, thus
weakening the transcription ratio of target genes. In studies with transgenic mice over-
expressing the nuclear form of SREBP-1c in the liver, 2- to 4-fold increases in mRNAs for
genes involved in fatty acid synthesis were observed [208]. SREBP-1c transcription can also
be induced by the activation of liver X receptor (LXR)α, a hormone nuclear receptor that
is activated by oxysterols (cholesterol derivatives). It leads to the induction of expression
of a number of genes connected with cholesterol removal, which share the same LXR
response element, 5′-AGGTCANNNNAGGTCA-3′ [209]. It is believed that LXRα acts as
a cholesterol sensor, and after SREBP-1c induction, fatty acids are produced in order to
esterify cholesterol, which in turn balances the cholesterol amount in the organism [210].

Table 4. Bioactive components of the diet and their role in transcription factor activity changes.

Mechanisms Bioactive Component Disorders References

PPAR
activation

resveratrol autism spectrum disorder, obesity and
insulin resistance [211,212]

kaempferol hyperlipidemia [213]

gallic acid and p-coumaric acid type 2 diabetes [214]

epigallocatechin-3-gallate Alzheimer’s disease [215]

lycopene liver and lung cancer [216]

omega-3 fatty acids: DHA pancreatic acinar, breast cancer, Parkinson’s disease [171,217,218]

folic acid non-alcoholic steatohepatitis [219]

vitamin D cerebral ischemia, metabolic syndrome [220,221]

downregulation
of PPARγ epigallocatechin-3-gallate obesity [222]
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Table 4. Cont.

Mechanisms Bioactive Component Disorders References

NF-κB
activation

quercetin melanoma [223]

apigenin multiple myeloma [224]

vitamin A lung cancer [225]

NF-κB
inhibition

curcumin gastric cancer, breast cancer, acute lung injury, oral
cancer, cerebral ischemia/reperfusion (I/R) injury [226–230]

resveratrol lung cancer, melanoma [118,231]

quercetin coronary artery disease, coronary heart disease,
alcohol-induced liver injury [232–234]

apigenin
colon cancer, bladder cancer, breast cancer,

inflammatory bowel disease (IBD) and
colitis-associated cancer (CAC)

[235–238]

keampferol spinal cord injury, hypertension [143,239]

chrysin melanoma [240]

caffeic acid phenethyl ester
nasopharyngeal carcinoma, calcific aortic valve

disease, periodontal diseases, glaucoma, neuropathic
pain, ovarian cancer

[241–246]

caffeic acid hyperglycemia [247]

epigallocatechin-3-gallate temporal lobe epilepsy, lung cancer [248,249]

sulforaphane prostate cancer [250]

lycopene pancreatic cancer, prostate and breast cancer [251,252]

omega-3 fatty acids: DHA liver cirrhosis, breast cancer, pancreatic cancer [218,253,254]

folic acid steatohepatitis [255]

selenium prostate cancer, breast cancer, type 2 diabetes [256–259]

vitamin D obesity [172]

vitamin E prostate cancer [260]

Nrf2 activation

curcumin cerebral ischemia/reperfusion (I/R) injury [230]

resveratrol diabetic cardiomyopathy [261]

apigenin vitiligo, diabetic nephropathy [262,263]

luteolin colon cancer, colorectal cancer, diabetic
cardiomyopathy [264–266]

epigallocatechin-3-gallate hyperglycemia, obesity, colorectal cancer, retinal
ischemia-reperfusion [267–269]

sulforaphane colon cancer, Alzheimer’s disease, cardiomyopathy [37,270,271]

omega-3 fatty acids: DHA traumatic brain injury [272]

vitamin A cholestasis [273]

vitamin E chronic liver injury [274]

Nrf2 inhibition

apigenin lung cancer [275]

luteolin colon cancer [276]

keampferol non-small cell lung cancer [277]

chrysin breast cancer, glioblastoma [278,279]

gallic acid psoriasis-like skin disease, respiratory diseases [280,281]

vitamin E asthma [282]

zinc diabetic nephropathy [283]
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Table 4. Cont.

Mechanisms Bioactive Component Disorders References

AP-1 inhibition

curcumin renal cell carcinoma, bladder cancer, oral cancer [229,284,285]

gallic acid nasopharyngeal cancer [286]

quercetin coronary heart disease [233]

apigenin bladder cancer [236]

vitamin E leukemia [287]

zinc prostate cancer [288]

STAT3
inhibition

curcumin osteosarcoma, myeloproliferative
neoplasms, retinoblastoma [112,289,290]

resveratrol osteosarcoma, colon cancer, ovarian cancer,
cervical cancer [291–294]

quercetin hepatocellular carcinoma, alcohol-induced liver injury [234,295]

apigenin
hepatocellular carcinoma, breast cancer, colon cancer,

visceral obesity, inflammatory bowel disease (IBD)
and colitis-associated cancer (CAC)

[237,238,296–299]

luteolin gastric cancer, pancreatic cancer, hepatic fibrosis,
lung adenocarcinoma [300–303]

keampferol diabetic nephropathy [304]

chrysin bladder cancer [305]

gallic acid non-small cell lung cancer [306]

omega-3 fatty acids: DHA renal cancer, multiple myeloma, pancreatic cancer [254,307,308]

sulforaphane nasopharyngeal cancer, glioblastoma multiforme [160,309]

activation of
p53

curcumin gastric cancer, neuroblastoma, renal cell carcinoma [310–312]

resveratrol
prostate cancer, colon cancer, hepatocellular

carcinoma, glioblastoma multiform, neuroblastoma,
thyroid cancer

[313–319]

epigallocatechin-3-gallate liver cancer [320]

vitamin D endometrial cancer [321]

inhibition of
p53

resveratrol osteoporosis, breast cancer [322,323]

vitamin E breast cancer [324]

Beside carbohydrates and fats, proteins are the third most important class of macro-
molecules that need to be received with diet. Although higher organisms are able to
synthetize some amino acids, there is a group of these compounds, called essential amino
acids, that must be obligatory acquired from food. Moreover, the synthesis of the remaining
amino acids usually does not meet the requirement of an organism; therefore, a healthy and
balanced diet must cover all the requirements in amino acids and should include proteins
from different sources and in different proportions. The pool of amino acids in the body
results from two counteracting processes, protein synthesis and protein breakdown. In
the situation when amino acid level decreases (especially of the essential amino acids), the
so-called amino acid response is triggered [325]. It leads to deacetylation of corresponding
tRNAs, which in turn activates the general control nonderepressible 2 (GCN2) kinase. Then
the kinase activates the eukaryotic initiation factor 2 alpha (eIF2α) [326], and the integrated
stress response begins [327], in which mRNA synthesis is reduced or halted because of
decreased eIF2B protein complex activity [328]. In contrast, activation of the activating tran-
scription factor 4 (ATF4) occurs that activates of specific genes involved in the adaptation to
starving situation by binding to CCAAT enhancer-binding protein (C/EBP)-ATF response
elements (CARE) [329]. Under continued stress of sufficient magnitude, ATF4-induced
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apoptosis can also occur [330]. Activation of the AAR regulates gene expression at many
steps, including chromatin structure, transcription start site, transcription rates, mRNA
splicing, RNA export, RNA turnover, and translation initiation. Although major, this sig-
naling pathway is not the only one activated during amino acid deficit. For instance, under
asparagine but also leucine, isoleucine, and glutamine starvation the level of asparagine
synthetase mRNA increases. A region of promoter sequence 5′-TGATGAAAC-3′ −68 nt to
−60 nt was identified as amino acid response element (AARE) [331]. Noteworthy, glucose
depletion does the same through activation of endoplasmic reticulum (ER) stress response
pathway. Both pathways act by binding to nutrient-sensing response elements 1 and 2
(NSRE-1 and NSRE-2), thereby increasing asparagine synthase transcription [332].

Many food components can modify the neoplastic progression. The modification of
metabolism of carcinogens is one of the main possible mechanisms by which food compo-
nents can minimize the risk of cancer. The responses to dietary compounds that have a role
in preventing cancer may be related to the diversity of the enzymes being processed and
modified. Key points in the cell cycle are regulated by different protein kinase complexes
that are composed of cyclin and cyclin-dependent kinase molecules. Additionally, these
cell cycle key points are affected by combined dietary components. It has been proven
that the dietary factors either essential or nonessential can adjust and modify the cell cycle
checkpoints and, consequently, have a role in reducing the progression and proliferation of
tumour [333]. Beside affecting the function of proteins essential in the process of carcino-
genesis, dietary components may accelerate cell death and enhance apoptosis. Bioactive
diet components, such as quercetin, curcumin, and sulphoraphane, can influence signaling
pathways by inhibiting NF-κB transcription factor [334] (Table 4). Bioactive diet compo-
nents can block one or more stages of NF-κB signaling pathway, such as signaling cascade,
NF-κB translocation, and its interaction with DNA [329]. In xenografted tumours, curcumin
upregulated the expression of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax, Bak, p21/WAF1, and
p27/KIP1 and inhibited the activation of NF-κB and its gene products [335]. Pretreatment
with a noncytotoxic concentration of luteolin significantly sensitized both TRAIL-sensitive
as well as TRAIL-resistant cancer cells to TRAIL-induced apoptosis [336]. Curcumin and
also other curcuminoids form ginger regulate NF-κB transcription factor and gene products,
such as COX-2 (cyclooxygenase-2) and cyclins. Curcumin inhibits mediators of NF-κB
activation. Guggulsterone, one of the plant sterols, inhibits activation of NF-κB via direct
interactions with kinases of this pathway [337,338]. Polyunsaturated fatty acids influence
expression of genes, encoding factors that take part in inflammation processes via activa-
tion of NF-κB factor [339]. Resveratrol suppresses phosphorylation and translocation of
one of the NF-κB subunits. It also blocks activation of NF-κB pathway by cancerogenic
compounds. Other compounds that inhibit phosphorylation on this pathway are isoantho-
cyanins derived from cruciferous vegetables [340]. Green tea polyphenols inhibit activation
of NF-κB via inhibition of kinase activity on this pathway [341]. Moreover, epicatechins are
known to also target AP-1 and Nrf2 redox-sensitive transcription factor associated with
cell proliferation, survival, differentiation, apoptosis, and stress responses [342] (Table 4).
Epicatechin transiently activated the NF-κB cascade and Nrf2 signaling by stimulating
PI3K/AKT and ERK pathways and induced a sustained enhancement of AP-1-binding-
activity by up-regulating the nuclear levels of c-Jun. The activation of the AP-1 signaling
pathway controls cell proliferation through cell-cycle regulation in hepatocytes and other
cell types [343]. Numerous reports seem to be contradictory, showing epicatechin to be
unable to influence AP-1 [344] and to activate AP-1 [345]. Such variation in the effects of
AP-1 activity modulation may result from the specific modulation of transcription factors
in different cell types and from the concentration of epicatechins. Isoanthocyanins derived
from cruciferous vegetables influence the activity of Nrf2 transcription factor, which binds
to the ARE responsive element and activate transcription of genes coding for enzymes, such
as quinone reductase or glutathione S-transferase 2 (enzymes of phase II of detoxication).
Active compounds of cruciferous vegetables affect protein complex dissociation with Nrf2
and also phosphorylation of constituents of this complex [346].
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Apoptosis can be induced due to the action of p53 tumour suppressor protein. Its ex-
pression is also activated by dietary components, like trans-resveratrol [347], silibinin [348],
or curcumin. These compounds lead to apoptosis of tumour cells by inhibiting anti-
apoptoting proteins, like survivin or Bcl-2 [349] (Table 4).

4. The Influence of Bioactive Diet Components on Diseases

Epidemiological studies revealed that populations whose diet is rich in fruits and
vegetables rarely get cancer diseases [350–353]. Fruits and vegetables are the great source of
fibre, vitamins, and minerals but also contain such compounds as terpenes, alkaloids, and
phenolics, which comprise health benefits. Over 500 compounds derived from food were
identified as putative modifiers of cancerogenesis. They not only consist of plant-derived
compounds but also of animal and fungal origin and metabolites derived from processes
driven by human microflora [354]. These compounds regulate gene expression through
changes in the chromatin structure, epigenetic changes, or activation of transcription factors.

One of the more serious problems resulting from inadequate diet selection are allergies.
Although the very mechanism of allergic reactions to nutrients is relatively well studied,
some aspects require detailed research, especially when they relate to epigenetic regulation.
For example, it is fact that a mother’s diet (during pregnancy and breastfeeding) has an
immense and lasting impact on the development of the immune system of the offspring
and consequently on the occurrence of allergies. It has been shown that allergic disease
intensification corresponds with the activity of PKCζ (Protein Kinase C) gene in T cells
during neonatal life. It was observed that dietary supplementation of pregnant women
with ω-3 poly-unsaturated fatty acids (PUFA)-rich fish oil leads to reduced incidence of
allergies in their progeny due to elevated expression of the PKCζ gene probably regulated
epigenetically through changes in DNA methylation or histone acetylation [355–358]. Fish
oil supplementation affects epigenetic changes also in other genes connected with the
immune system, like IL13 or T-box 21 [359]. In another study, pregnant women’s diet
supplementation with olive oil was shown to influence histone acetylation in genes of
immune system regulating proteins during foetal life. For example, increased acetylation
of H3 histone in the FOXP3 gene (encoding one of the regulators of immune homeostasis)
promoter was observed. FOXP3, as the major transcription factor in the regulatory T cells
(Tregs), plays a crucial role in the induction of tolerance towards self- and environmental
(including food) antigens [360]. However, it must be noted that PUFAs can be allergenic
because they promote pro-inflammatory processes and thus affect DNA methylation and
histone acetylation and modulate the expression of regulatory RNA forms (miRNAs,
lncRNAs), and only well balanced and adequately selected diet composition must be
considered.

Adequate, healthy nutrition (a diet rich in vegetables, fruits, vegetable fats, fish, eggs)
is important at every stage of life because it is a factor in reducing the occurrence of not
only cancer but also other non-infectious diseases, such as obesity, diabetes mellitus type
2, cardiovascular diseases, neurodegenerative diseases, or allergic diseases. Bioactive
components of the diet, such as vitamins, minerals, polyphenols, carotenoids, and isoth-
iocyanates, affect the expression of a number of genes, showing a positive effect on the
occurrence and development of diseases. This happens through mechanisms such as DNA
methylation, histone modifications, telomerase inhibition, and the regulating effect of RNA
or transcription factors. The mechanisms of bioactive diet components together with the
disorders they are active against are presented in detail in Tables 1–4, where also literature
references can be found to facilitate extended search on particular issue (it must be noted
that literature search was not systematic).

5. Application of Bioactive Diet Components in Dietician’s Work

It is estimated that the human genome consists of over 30,000 coding genes, which
generate around 100,000 functional proteins. Understanding the interactions between gene
products and bioactive diet component consumption has a fundamental meaning for iden-
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tification of these compounds, which will bring the highest benefits for health and will be
correlated with risk of disease onset. Application of new, innovative technologies, such as
microarrays, RNA interference, and nanotechnologies, provide information for identifying
molecular mechanisms of bioactive components activity. Such knowledge allows proper
diet application for individual phenotypes. Some general dietary recommendation adapted
to specific diseases or applied in prevention will not bring the expected effects due to the
individual genetic and epigenetic diversification. Analysis of association between food and
gene expression allows to formulate the proper diet, which will prevent disease or bring
back organism homeostasis [1,4,11,361].

Bioactive diet components, such as polyphenols, vitamins, flavonoids, carotenoids
glucosinolates, isothiocyanates, terpenes, and fatty acids, are substances that can influence
gene expression by transcription factors, epigenetic modification, and enzymes, which
modify chromatin structure [4]. However, consuming foods with high amounts of products
of selected group may sometimes be detrimental, especially if the diet is long term. For
example, carotenoids belong to the most efficient physical quenchers of singlet oxygen
(1O2), the deactivation of which is based on the conversion of an excess of energy to heat
via the carotenoid lowest excited triplet state (3Carotenoid*) [362].

Conceivable damaging effects of excited carotenoids can be ignored because of their
low energy and short lifetimes. However, carotenoids can also be chemical quenchers
of 1O2, undergoing modifications such as oxidation or oxygenation [363]. Free radical
scavenging can lead to the formation of carotenoid radical cations or anions as well as
neutral carotenoid radicals. The newly formed carotenoid radical products can undergo
further transformations, leading to a variety of secondary carotenoid derivatives of different
reactivity. This is especially important, as the newly generated carotenoid species may no
longer act as efficient antioxidants but turn into potentially harmful, pro-oxidant agents
and lead to alterations in amino acids or nucleotides that result in irreversible structural
modifications of proteins or nucleic acids. Results obtained from trials with high carotenoid
content diets involving heavy-cigarette-smoking men indicated a significantly higher
occurrence of lung cancer and total mortality in comparison to individuals obtaining the
placebo [364,365].

The use of foods that can modify the epigenome translates into a dietary regimen
known as the “epigenetic diet”. Such a diet may be used therapeutically for health or pro-
phylactic purposes. Epigenetic therapy is a new area in the development of nutraceuticals,
the lack of toxicity of which can be an important asset in disease prevention strategies.
Recent advances in understanding the mechanisms of nutrigenomics, nutrigenetics, and
nutraceuticals have led to the identification of foods capable of favourably conditioning
gene expression. The epigenetic diet must include fruit and vegetables, in particular crucif-
erous vegetables, bean vegetables, grapes, citrus fruits, Curcuma longa L, garlic, as well as
tea, nuts, and whole grain cereal products [366].

Limitations to the Studies on the Influence of the Bioactive Diet Components on the Gene
Expression Regulation

The data presented in this review are based mainly on human cell cultures and as
such are subject to certain limitations. First of all, it is an artificial system, and the cultured
cells have no chance to respond to a current factor in the way as they do in an organism,
where they are exposed to a whole gamut of factors interacting to bring about any response.
Moreover, treatments with particular compounds may not reflect the actual situation, where
they are processed by the organism to yield a number of possible products/derivatives,
which may have a quite different impact on the cell [367]. Moreover, often, there are
technical discrepancies and heterogeneity in the approach to the conducted research, like
different procedures of acquisition and processing as well as different conditions of storage
and transport of the samples. The investigation methods are not unified, which translates
to divergent extraction/isolation procedures (of RNA, DNA, proteins) and use of different
reference standards and different enzyme assay protocols.
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As a matter of fact, even studies on whole organisms are not free of limitations. It
results from the fact that although such studies are often carried out on a representative
group of subjects, they rarely take into account the inter-individual variability in the
metabolism and bioavailability of the bioactive compounds nor the individual response
to them [368]. The most reliable data comes from randomized controlled trials; however,
when it comes to nutrition, not all of it can be ethically evaluated in this way. Therefore,
even in human studies, the data mostly come from observational evidence, in particular
cohort studies, where even differences in absorption in the gut are usually not evaluated,
and the studies quite often lack appropriate control groups [369].

Considering the above information, in order to obtain reliable data that will undoubt-
edly prove the influence of a given bioactive component of the diet on the expression
of selected genes, there is a need to apply standardized procedures and follow well-
established methodological guidelines as well as to conduct bioavailability studies of such
a component taking into account the population variability of the test and reference groups
to achieve more reliable results in future research [370].

6. Conclusions

Bioactive diet components influence gene expression via different mechanisms, mainly
by chromatin structure alteration, non-coding RNA, activation of transcription factors by
signaling cascades, or direct ligand binding to the nuclear receptor. Identification of these
compounds and elucidating their mechanism of function will allow more effective diet
recommendation for whole population types or for individuals. Bioactive diet components
play an important role in prevention and therapy of many diet-depending diseases, such as
cancers, circulatory system diseases, diabetes, and obesity. It seems important to develop
further the knowledge on nutrigenetics and nutrigenomics and to encourage dieticians to
use this knowledge for more effective dietary recommendations.
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AAR amino acid response
AARE amino acid response element
AID/APOBEC activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme
proteins complex
ACC acetyl-CoA carboxylase
AP-1 activator protein 1
ATF4 activating transcription factor 4
BANCR BRAF-Activated Non-Protein Coding RNA
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bHLH Zip-basic-helix–loop–helix–leucine zipper
CAC colitis-associated cancer
C/EBP enhancer-binding protein
ChoRE carbohydrate response element motifs
ChREBP carbohydrate-responsive element binding protein
COX-2 cyclooxygenase-2
DHA docosahexaenoic acid
DNA-BER DNA-Base Excision Repair
DNMT DNA methyltransferase
EGCG Epigallocatechin-3-gallate
eIF2 eukaryotic initiation factor 2
EPA eicosapentaenoic acid
ER endoplasmic reticulum
FAs fatty acids
FAS fatty acid synthase
FASKOL fatty acid synthase knockout in liver
FOXP3 forkhead box P3
FPP farnesyl-diphosphate
FXR farnesoid X receptor
GCN2 general control nonderepressible 2
GI barrier gastrointestinal barrier
HAT histone acetylase
HDAC histone deacetylase
HDM histone demethylases
HMG-CoA 3-hydroxy-3-methylglutaryl-CoA
HMT methyltransferases
HNF 4-hepatic nuclear factor
IBD inflammatory bowel disease
LDL low-density lipoproteins
LDLRAP1 low-density lipoprotein receptor adapter protein 1
lncRNAs long non-coding RNAs
LXR liver X receptor
MBD proteins methyl-CpG binding proteins
mRNA messenger RNA
miRNA microRNA
MTHFR methylenetetrahydrofolate reductase
MTRR methionine synthase reductase
NF-κB nuclear factor kappa-light chain-enhancer of activated B cells
NSRE nutrient-sensing response elements
PKC protein Kinase C
PPAR peroxisome proliferator-activated receptor
PUFA polyunsaturated fatty acids
RXR retinoid X receptor
SAM S-adenosyl-methionine
SAH S-adenosylhomocysteine
SIDT1 defective-1 transmembrane family member 1
SIRT sirtuin
SNP single-nucleotide polymorphism
SREBP sterol regulatory element-binding proteins
STAT3 signal transducer and activator of transcription 3
Tet ten-eleven translocation enzymes
TL telomere length
TRAIL TNF-related apoptosis-inducing ligand
Tregs regulatory T cells
TFs transcription factors
TR thyroid hormone receptor
UHRF proteins ubiquitin-like, containing PHD and RING finger domain protein
5hmC 5-hydroxymethylcytosine
5mC 5-methyl cytosine
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