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Catalytic asymmetric C–N cross-coupling
towards boron-stereogenic 3-amino-
BODIPYs

Baoquan Zhan 1,2,3, Li-Qing Ren 2,3, Jiayi Zhao2, Hua Zhang 1 &
Chuan He 2

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of
fluorophores widely utilized in live cell imaging, photodynamic therapy, and
fluorescentmaterials science. Despite the growing demand for optically active
BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic
asymmetric version, remains a challenge. Herein, we report the synthesis of
boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric
C–N cross-coupling of prochiral 3,5-dihalogen-BODIPYs. This approach fea-
tures a broad substrate scope, excellent functional group tolerance, high
efficiency, and remarkable enantioselectivities, under mild reaction condi-
tions. Further stereospecific formation of chiral 3,5-diamino-BODIPYs, along
with an investigation into the photophysical properties of the resulting optical
BODIPYs are also explored. This asymmetric protocol not only enriches the
chemical space of chiroptical BODIPY dyes but also contributes to the realmof
chiral boron chemistry.

Boron dipyrromethenes (BODIPYs) are one of the most efficient clas-
ses of fluorophores, renowned for their exceptional spectroscopic and
photophysical properties1–5. Their versatility has led to widespread
applications across various fields, including biology6–11,
pharmaceuticals12–16, and materials science17–25. Of particular interest is
the incorporation of an amine substituent at the α position of BODIPY,
giving rise to 3-amino-BODIPYs, which have garnered significant
attention. These compounds have found extensive utility as fluor-
escent sensors and probes for biological imaging and labeling26–37, as
well as in the development of endoplasmic reticulum-targeting
reagents38 and high-performance narrowband red OLEDs39 (Fig. 1a).
However, despite the increasing demand for chiroptical luminophores
capable of chiral sensing and labeling40–51, exploration of chiral 3-
amino-BODIPYs has remained limited, with existing studies primarily
focusing on chirality at the periphery of the BODIPY core52–56. To date,
the synthesis of boron-stereogenic 3-amino-BODIPYs has remained

unexplored (Fig. 1a). Notably, the construction of boron-stereogenic
chirality in a catalytic asymmetric manner has seen limited success
until recently due to the lack of effective synthetic tools and the
potential instability of ligands attached to the boron atom57–60. Given
their significant importance and vast potential applications, the
development of efficient catalytic asymmetric methods for con-
structing enantioenriched boron-stereogenic 3-amino-BODIPYs
emerges as an enticing and highly desirable objective.

Froma retrosynthetic analysis, we devised a synthetic strategy for
boron-stereogenic 3-amino-BODIPYs by employing a desymmetric
C–N cross-coupling approach starting from prochiral 3,5-dihalogen-
BODIPYs (Fig. 1b). In recent years, catalytic asymmetric C–N cross-
coupling has emerged as a powerful tool for constructing various
amine compounds featuring centered, axial, and planar chirality61–66.
However, due to the unique reactivity of 3,5-dihalogen-BODIPYs, sev-
eral side-reactions may occur when attempting the desymmetric C–N
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cross-coupling: (1) SNAr reaction of 3,5-dihalogen-BODIPYswith strong
nucleophilic reagents such as alkoxy bases67; (2) direct background
reaction of 3,5-dihalogen-BODIPYs with amines, leading to racemic
products68,69; (3) overreaction resulting in the formation of achiral 3,5-
diamino-BODIPYs70. Therefore, the selection of an efficient asym-
metric catalytic system is crucial for the success of the desired enan-
tioselective transformation. In this study, we report a convenient
approach for the synthesis of boron-stereogenic 3-amino-BODIPYs via
a palladium-catalyzed asymmetric C–N cross-coupling (Fig. 1c). This
transformation features a broad substrate scope, high compatibility
with functional groups, and excellent enantioselectivity. In addition,
derivatizations and photophysical properties of the obtained chiral 3-
amino-BODIPYs are also investigated to illustrate the utility of this
asymmetric protocol.

Results and discussion
Reaction development
Our study commenced with the evaluation of the C–N cross-coupling
between prochiral 3,5-dichlorinated BODIPY (1a) and p-toluidine (2a).
After numerous trials and careful analysis, we found that the occurrence
of SNAr side reaction and overreaction could be circumvented by
employing a non-nucleophilic base such as Cs2CO3 under mild condi-
tions. In addition, the background reaction occurred in the absence of a
catalyst giving the racemic 3a in an 85% yield after 12 h (Table 1, entry 1).
Encouragingly, by shortening the reaction time to 2h, the background
reaction was significantly diminished (Table 1, entry 2), opening the
possibility of achieving enantiocontrol when an effective chiral catalyst
was employed. Initial attempts using Pd(dba)2 (4mol%) as the catalyst
precursor and R-BINAP (L1) (10mol%) as the ligand, in the presence of
Cs2CO3 (2.0 equiv) in toluene at 60 °C, the target boron-stereogenic 3-
amino-BODIPY 3a could be obtained in a 29% yield with 18% ee (enan-
tiomeric excess) (Table 1, entry 3). To assess the impact of different
ligands on this asymmetric C–N cross-coupling reaction, a variety of
chiral phosphine ligands were examined. The use of electron-rich
bidentate phosphine ligands such as Segphos (L2) and Josiphos (L3)
provided similar yields but lower enantioselectivities (Table 1, entries 4
and 5). Employing an electron-rich monodentate phosphine ligand,

MeO-MOP (L4), yielded a high yield of 3a but low enantioselectivity
(Table 1, entry 6). Then, various electron-deficient chiral ligands
including TADDOL-derived phosphoramidite (L5) and BINOL-derived
phosphoramidites (L6-L9) were further evaluated (Table 1, entries 7–11).
The results demonstrated a correlation between increased enantios-
electivity and enhanced steric hindrance of the chiral ligand. In this way,
we finally established the optimal conditions wherein 3awas obtained in
a 99% yield with 98% ee within 2 h using phosphoramidite L9 as the
ligand (Table 1, entry 11). Notably, the use of a phosphoramidite ligand
without axial chirality (L10) resulted in lower enantioselectivity (Table 1,
entry 12). When K2CO3 was used instead of Cs2CO3, both yield and ee
were reduced dramatically (Table 1, entry 13). The use of THF as the
solvent led to a similar yield of 3a with lower enantioselectivity, while
lowering the temperature to room temperature resulted in a trace
amount of 3a (Table 1, entries 14 and 15).

Substrate scope
Having established the optimal reaction conditions, we proceeded to
investigate the scope of amines in the catalytic asymmetric C–N cross-
coupling reaction and the results are summarized in Fig. 2. In general,
both electron-donating and electron-withdrawing substituents at the
ortho, meta, or para positions of anilines were well accommodated in
this transformation. Anilineswith electron-donating substituents, such
as methyl, methoxy, and diphenylamino groups (3a, 3c, 3d, 3j, 3l),
underwent smooth asymmetric C–N cross-coupling, affording the
desired products in excellent yields with high enantioselectivities.
Similarly, anilines with electron-withdrawing substituents, including
ester, trifluoromethyl, and cyano groups (3e, 3g, 3k), were compatible
with this asymmetric C–N cross-coupling and successfully delivered
the desired products in excellent yields with high enantioselectivities.
Remarkably, susceptible substituents such as alkynyl (3h) and hydro-
xymethyl groups(3i), as well as halogen substituents such as chloride
(3n, 3x) and bromide (3f, 3m, 3o, 3p), were all well-tolerated in this
transformation, making further downstream functionalization fea-
sible. Furthermore, anilines bearing multiple substituents exhibited
good compatibility in this asymmetric cross-coupling reaction (3n
−3p). The absolute configuration of the enantioenriched 3o was

Fig. 1 | Importance and synthesis of boron-stereogenic 3-amino-BODIPYs. a Selected 3-amino-BODIPYs with important applications. b Design plan and challenges
towards boron-stereogenic 3-amino-BODIPYs. c Catalytic asymmetric synthesis of boron-stereogenic 3-amino-BODIPYs (this work).
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determined through X-ray crystallographic analysis (CCDC 2323832).
Additionally, aromatic amines with fused aromatic cores (e.g., naph-
thalene and pyrene) and heteroaromatic cores (e.g., benzodioxole,
benzothiophene, indole, carbazole, quinoline, and pyrimidine) proved
to be successful substrates (3q−3x). Moreover, this catalytic asym-
metric C–N cross-coupling was also applicable to amides. Both alkyl-
amides and aryl-amides underwent smooth asymmetric C–N cross-
coupling, yielding the corresponding products in moderate to good
yields with good to excellent enantioselectivities (3y–3aa). Notably,
the reaction of N-Boc andN-Cbz amides produced the desired chiral 3-
amino-BODIPYs in 88 and 92% yield with 98% ee, respectively (3ab,
3ac). To our delight, sulfoximine 2ad was also a suitable substrate for
this reaction, delivering the corresponding product 3ad in excellent
result (91% yield, >99% ee). In addition, an interesting 1,4-bisphenyle-
nediamine-bridged BODIPY dimer 3aewas also assembled in a smooth
manner with 63% yield and 99% ee. Several unsuccessful amine
examples are shown in Fig. S1.

After evaluating the scope of amines, we then assessed the gen-
erality of this process concerning the BODIPY scaffold (Fig. 3). The
catalytic asymmetric C–N cross-coupling of BODIPYs bearing various
aryl substituents at the meso position proceeded smoothly, providing
the corresponding boron-stereogenic 3-amino-BODIPYs in good yields
with high enantioselectivities(4a–4d). It is worth mentioning that, this
C–N cross-coupling occurred chemoselectively, leaving the aromatic
C–Cl bond in the meso aryl substituent intact (4b). Notably, the

substituents on the boron atom of the BODIPY framework were not
limited to phenyl and fluorine. Substituents on boron with diverse
steric and electronic effects, including naphthyl, 4-fluorophenyl, thie-
nyl, and methyl groups, were well tolerated, leading to the desired
products in good to excellent yields with excellent enantioselectivities
(4e, 4f, 4h, 4i). BODIPYs featuring methoxy and 4-cyanophenyl sub-
stituents on the boron atom exhibited slightly lower enantioselec-
tivities (4g, 4j).

To showcase the synthetic potential of this approach, a gram-
scale experiment was carried out involving the reaction between 1a
and 2a, which resulted in the desired product 3a in a yield of 91% with
94% ee (Fig. 4). Furthermore, the remaining chlorine group in 3a could
be further converted into various amino groups, allowing access to
chiral 3,5-diamino-BODIPYs in a stereospecificmanner. In the presence
of a Pd/Xphos catalytic system, the C–N cross-coupling of 3a with
diverse aromatic and aliphatic amines proceeded smoothly, affording
the desired chiral 3,5-diamino-BODIPYs in moderate to good yields
without the lossof ee (5a–5f). In addition to theC–Ncoupling reaction,
the Suzuki cross-coupling reaction also proceeded smoothly, yielding
the corresponding C–C cross-coupling products 5g and 5h in good
yields without the loss of ee.

Photophysical properties investigations
With a diverse array of enantioenriched boron-stereogenic 3-amino
BODIPYs in hand, we proceeded to investigate the photophysical

Table 1 | Optimization of the reaction conditions.a

Entry [Pd]/L Time Base Solvent Yield of 3a (%) ee of 3a (%)

1 – 12 h Cs2CO3 toluene 85 –

2 – 2 h Cs2CO3 toluene 6 –

3 Pd(dba)2/L1 2 h Cs2CO3 toluene 29 18

4 Pd(dba)2/L2 2 h Cs2CO3 toluene 20 2

5 Pd(dba)2/L3 2 h Cs2CO3 toluene 25 6

6 Pd(dba)2/L4 2 h Cs2CO3 toluene 94 22

7 Pd(dba)2/L5 2 h Cs2CO3 toluene 74 44

8 Pd(dba)2/L6 2 h Cs2CO3 toluene 37 40

9 Pd(dba)2/L7 2 h Cs2CO3 toluene 91 72

10 Pd(dba)2/L8 2 h Cs2CO3 toluene 70 89

11 Pd(dba)2/L9 2 h Cs2CO3 toluene 99 98

12 Pd(dba)2/L10 2 h Cs2CO3 toluene 97 58

13 Pd(dba)2/L9 2 h K2CO3 toluene 12 16

14 Pd(dba)2/L9 2 h Cs2CO3 THF 99 74

15[b] Pd(dba)2/L9 2 h Cs2CO3 toluene 4 –

aStandard conditions: 1a (0.1mmol),2a (0.1mmol), Pd(dba)2 (4mol%),L (10mol%), base (2.0equiv), in 1.0mLof solventunder argonatmosphere at 60 °C. The yieldwasdeterminedby 1HNMRusing
1,1,2,2-tetrachloroethane as the internal standard. The ee values were determined by chiral HPLC; bReaction at room temperature for 2 h. Ph, phenyl; Tol, p-tolyl.
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properties of selected products (Fig. 5). In comparison to the 3-amino-
BODIPYs (3a, 3r, and 3y), the 3,5-diamino-BODIPYs (5c, 5e) exhibited a
remarkable red shift in both absorption and emission maxima (Fig. 5a,
b). Notably, compounds3r, 5c, and 5hdisplayed emissionmaxima in the
first near-infrared region (NIR-I), rendering it potentially suitable for
various applications such as labeling reagents, photodynamic therapy,
and chemosensors. Additionally, the chiroptical properties of 3r, 5g, 5h,

and their enantiomers were investigated using circular dichroism (CD)
spectroscopies. The CD spectra exhibited mirror images of each other,
demonstrating clear Cotton effects at approximately 512, 565 and
556nm, respectively (Fig. 5c). To our delight, 5g and 5h also exhibited
CPL activity from 500 to 750nm, with |glum| up to 2.6 × 10–4 (634nm)
and 4.5 × 10–4 (648nm), respectively (Fig. 5d). Moreover, we also inves-
tigated the fluorescence quantum yields and fluorescence lifetimes of

Fig. 2 | Substrate scope for amines. a Standard conditions: 1a (0.1mmol), 2
(0.1mmol), Pd(dba)2 (4mol%), L9 (10mol%), Cs2CO3 (2.0 equiv), in 1.0mL of
toluene under argon atmosphereat 60 °C for 2 h. Isolated yields. The eevalueswere
determined by chiral HPLC; (b) 2.0 equiv of 2 was used. X-ray crystallographic

analysis determined that the absolute configuration of 3o is (R). c 1.0 equiv of
sulfoximinewasused.d 1a (0.2mmol),2 (0.1mmol), a 25% yieldofmeso isomerwas
also detected (mixture). Ph phenyl, Boc tert-butoxycarbonyl, Cbz
benzyloxycarbonyl.
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Fig. 4 | Derivatizationofboron-stereogenic 3-amino-BODIPYs. a 1a (3mmol),2a
(3mmol), Pd(dba)2 (2mol%), L9 (5mol%), Cs2CO3 (2.0 equiv), in 10mL of toluene
under argon atmosphere at 60 °C for 12 h. b 3a (0.1mmol), amine (2.0 equiv),
Pd(OAc)2 (10mol%), Xphos (30mol%), Cs2CO3 (2.0 equiv), in 1.0mL of toluene

under argon atmosphere at 100 °C for 4 h. c 3a (0.1mmol), arylboronic acid (1.0
equiv), Pd(OAc)2 (10mol%), Sphos (10mol%), Et3N (2.0 equiv), in 1.0mLof TBME (t-
butyl methyl ether) under argon atmosphere at 80 °C for 24h. Isolated yields. The
ee values were determined by chiral HPLC. Ph phenyl, Tol p-tolyl.

Fig. 3 | Substrate scope for BODIPYs. a Standard conditions: 1 (0.1mmol), 2a (0.1mmol), Pd(dba)2 (4mol%), L9 (10mol%), Cs2CO3 (2.0 equiv), in 1.0mL of toluene under
argon atmosphere at 60 °C for 2 h. Isolated yields. The ee values were determined by chiral HPLC. Ar aryl, Ph phenyl, Tol p-tolyl.
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several representative examples (Fig. S3). The 3,5-diamino-BODIPYs (5c
and 5e) exhibit higher fluorescence quantum yields than those of 3-
amino-BODIPYs (3a, 3y, 4h, and 4i). Compounds 4h, 5c, and 5e showed
longer fluorescence lifetimes (≥3.60ns). These characteristics expand
the diversity of the chiroptical BODIPY dye platform, making it poten-
tially appealing in the fields of biological, medicinal, and material
chemistry as chiroptical luminophores.

In summary, we have developed a straightforward approach for
achieving boron-stereogenic chirality through catalytic asymmetric
C–Ncross-coupling. Thismethod enables the synthesis of awide range
of boron-stereogenic 3-amino-BODIPYs in decent yields with excellent
enantioselectivities, which could be further converted to chiral 3,5-
diamino-BODIPYs via a second stereospecific C–N cross-coupling.
Additionally, we have investigated the photophysical properties of the
obtained chiroptical BODIPYs. We believe this work not only enriches
the chemical diversity of chiroptical BODIPY dyes but also inspires
further advances in chiral boron chemistry.

Methods
General procedure for the enantioselective synthesis of boron-
stereogenic BODIPY 3
Inside an argon-filled glovebox, an oven-dried 5mL microwave reac-
tion tubewas chargedwith Pd(dba)2 (2.2mg, 0.004mmol),L9 (5.4mg,
0.01mmol), and anhydrous toluene (0.5mL). After stirring for 5min,
Cs2CO3 (65.2mg, 0.2mmol), 1a (39.5mg, 0.1mmol), and primary
amine (1.0 equiv to 2.0 equiv) were added, followed by the addition of
toluene (0.5mL). The tube was capped and taken outside of the glo-
vebox. The resulting mixture was placed into a pre-heated (60 °C)

aluminum block and stirred for 2 h. Then the reaction mixture was
concentrated and purified by column chromatography using pre-
parative TLC (petroleum ether/ethyl acetate, from 10:1 to 3:1) as the
eluent to afford the target product.

Data availability
The data that support the findings of this study are available within the
paper and its Supplementary Information. Data supporting the findings
of this manuscript are also available from the corresponding author
upon request. Details about materials and methods, experimental pro-
cedures, characterisation data, 1H, 13C, 19F, 11B NMR spectra and mass
spectrometry data are available in Supplementary Information. Crys-
tallographic data for the structure reported in this Article have been
deposited at the Cambridge Crystallographic Data Centre, under
deposition number CCDC 2323832 (3o). Copies of the data can be
obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.
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