

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Acetyl-5-(4-fluorophenyl)-2-sulfanylideneimidazolidin-4-one

Soh-ichi Kitoh, Yijing Feng, Shuhei Fujinami, Masaki Ichitani, Mitsunori Honda and Ko-Ki Kunimoto*

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan Correspondence e-mail: kunimoto@se.kanazawa-u.ac.jp

Received 15 October 2013; accepted 17 October 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.082; data-to-parameter ratio = 16.4.

In the title compound, $C_{11}H_9FN_2O_2S$, the 2-sulfanylideneimidazolidin-4-one moiety is essentially planar, with a maximum deviation of 0.0183 (14) Å. The mean plane of this moiety is approximately coplanar with the attached acetyl group and perpendicular to the benzene ring, making dihedral angles of 9.70 (14) and 86.70 (6) $^{\circ}$, respectively. In the crystal, molecules are linked by $N-H \cdots O$ hydrogen bonds between the amide NH and acetyl C=O groups, forming a C(6) chain along the *a*axis direction.

Related literature

For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993). For the crystal structures of related compounds, see: Casas et al. (1998); Sulbaran et al. (2007); Taniguchi et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Etter (1990). For the synthetic procedure, see: Schlack & Kumpf (1926).

Experimental

Crystal data C11H9FN2O2S

 $M_r = 252.27$

Monoclinic, $P2_1/n$ a = 7.1327 (9) Å b = 23.852 (3) Å c = 7.3437 (10) Å $\beta = 113.541$ (3)° V = 1145.4 (3) Å ³	Z = 4 Mo K α radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 123 K $0.30 \times 0.10 \times 0.08 \text{ mm}$
Data collection	

Rigaku/MSC Mercury CCD	12234 measured reflections
diffractometer	2612 independent reflections
Absorption correction: multi-scan	2418 reflections with $F^2 > 2\sigma(F^2)$
(REQAB; Rigaku, 1998)	$R_{\rm int} = 0.024$
$T_{\min} = 0.829, \ T_{\max} = 0.977$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.082$	independent and constrained
S = 1.06	refinement
2612 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
159 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N2 - H2 \cdot \cdot \cdot O2^{i}$ 0.84(2)1.96 (2) 2.7836 (16) 167 (2)

Symmetry code: (i) x + 1, y, z.

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: Crystal-Structure (Rigaku, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5315).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Casas, J. S., Castiñeiras, A., Couce, D., Playá, N., Sordo, J. & Varela, J. M. (1998). Acta Cryst. C54, 427-428.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148 - 152
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Schlack, P. & Kumpf, W. (1926). Z. Physiol. Chem. 154, 125-170.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, 0543-0545.
- Taniguchi, K., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K., Maeda, S. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 93-94.

supplementary materials

Acta Cryst. (2013). E69, o1699 [doi:10.1107/S1600536813028560]

1-Acetyl-5-(4-fluorophenyl)-2-sulfanylideneimidazolidin-4-one

Soh-ichi Kitoh, Yijing Feng, Shuhei Fujinami, Masaki Ichitani, Mitsunori Honda and Ko-Ki Kunimoto

1. Comment

2-Sulfanylideneimidazolidin-4-one (2-thiohydantoin) derivatives are useful synthetic intermediates in a wide range of applications, such as therapeutics, fungicides and herbicides (Marton *et al.*, 1993). We have been studying crystal structures and hydrogen-bonding patterns of the polymorphic forms of 2-thiohydantoin derivatives. The Cambridge Structural Database survey (Ver. 5.34; Allen, 2002) indicates that 1-acetyl-2-thiohydantoins with an unsubstituted N atom show three types of N—H···O hydrogen-bonding patterns: (i) the amide NH and the acetyl C=O groups form a chain with a *C*(6) graph-set motif (Etter *et al.*, 1990) [triclinic polymorph of 1-acetyl-2-thiohydantoin (NIFHIT01) (Taniguchi *et al.*, 2009) and two other derivatives (KABRIQ and KOMGUO)]; (ii) the amide NH and the amide C=O groups form a chain with *C*(4) [monoclinic polymorph of 1-acetyl-2-thiohydantoin (NIFHIT1) (Casas *et al.*, 1998) and one other derivative (DOKXUX)]; (iii) the amide C=O groups form a ring with $R^2_2(8)$ [1-acetyl-5-methyl-2-thiohydantoin (DIKWAW) (Sulbaran *et al.*, 2007)]. As an extension of our research, we report on the crystal structure of the title compound, C₁₁H₉FN₂O₂S.

In the title molecule (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported 1-acetyl-2-thiohydantoins with an unsubstituted N atom. The 2-thiohydantoin moiety (N1/C1/S1/N2/C2/O1/C3) is essentially planar, with maximum deviations of 0.0183 (14) Å for C3 atom and -0.0138 (13) Å for N1 atom. The acetyl group (C4/O2/C5) is almost coplanar with the 2-thiohydantoin moiety, and the dihedral angle between the acetyl group and the 2-thiohydantoin moiety is $9.70 (14)^{\circ}$.

In the crystal structure (Fig. 2), the molecules are linked by an N—H···O hydrogen bond between the amide NH and acetyl C=O groups, forming a infinite one-dimensional chain along the *a* axis, with a C(6) graph-set motif (Table 1).

2. Experimental

The title compound was synthesized using a slight modification of a reported method (Schlack & Kumpf, 1926). 4-Fluorophenylglycine (0.507 g, 3.00 mmol) was allowed to react with a mixture of ammonium thiocyanate (0.234 g, 3.07 mmol), acetic anhydride (10 ml), and acetic acid (2 ml) at 100 °C for 1 h. A white precipitate was obtained by adding 25 ml distilled water and subsequent cooling the solution in a refrigerator. The crude product was purified by recrystallization from an ethanol solution (yield: 47%). Single crystals suitable for X-ray diffraction were obtained from the ethanol solution.

3. Refinement

The N-bound H atom was located in a difference map and refined freely [N2—H2 = 0.84 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95, 0.98 or 1.00 Å) and refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. A rotating group model was applied to the methyl group.

Computing details

Data collection: *CrystalClear* (Rigaku, 2006); cell refinement: *CrystalClear* (Rigaku, 2006); data reduction: *CrystalClear* (Rigaku, 2006); program(s) used to solve structure: *SIR2008* in *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

Figure 1

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial packing diagram of the title compound, viewed down the c axis. Hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).

1-Acetyl-5-(4-fluorophenyl)-2-sulfanylideneimidazolidin-4-one

Crystal data	
$C_{11}H_9FN_2O_2S$	F(000) = 520
$M_r = 252.27$	$D_{\rm x} = 1.463 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71070$ Å
Hall symbol: -P 2yn	Cell parameters from 4829 reflections
a = 7.1327 (9) Å	$\theta = 3.0-27.5^{\circ}$
b = 23.852 (3) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 7.3437 (10) Å	T = 123 K
$\beta = 113.541 \ (3)^{\circ}$	Prism, colorless
V = 1145.4 (3) Å ³	$0.30 \times 0.10 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Rigaku/MSC Mercury CCD diffractometer Detector resolution: 7.314 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>REQAB</i> ; Rigaku, 1998) $T_{min} = 0.829, T_{max} = 0.977$ 12234 measured reflections <i>Refinement</i>	2612 independent reflections 2418 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.024$ $\theta_{max} = 27.5^\circ, \theta_{min} = 3.4^\circ$ $h = -9 \rightarrow 9$ $k = -30 \rightarrow 30$ $l = -9 \rightarrow 8$
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.06 2612 reflections 159 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.4044P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å ⁻³ $\Delta\rho_{min} = -0.23$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.92257 (4)	0.464054 (12)	0.18414 (4)	0.02040 (10)	
F1	0.66717 (16)	0.18005 (4)	0.78913 (15)	0.0472 (3)	
01	1.28538 (13)	0.37499 (4)	0.83947 (13)	0.0254 (2)	
O2	0.53419 (13)	0.42791 (4)	0.53528 (13)	0.0240 (2)	
N1	0.81733 (14)	0.42098 (4)	0.47872 (14)	0.0166 (2)	
N2	1.14408 (15)	0.41667 (4)	0.53118 (15)	0.0180 (2)	
C1	0.95711 (17)	0.43386 (4)	0.39663 (17)	0.0164 (3)	
C2	1.14023 (17)	0.39352 (5)	0.70131 (17)	0.0186 (3)	
C3	0.91869 (16)	0.39534 (5)	0.67800 (16)	0.0166 (3)	
C4	0.61024 (17)	0.43576 (5)	0.41600 (18)	0.0187 (3)	
C5	0.49412 (19)	0.45857 (6)	0.21277 (19)	0.0265 (3)	
C6	0.84028 (17)	0.33792 (5)	0.69937 (17)	0.0184 (3)	
C7	0.7772 (2)	0.32809 (5)	0.8518 (2)	0.0264 (3)	
C8	0.7187 (3)	0.27457 (6)	0.8832 (2)	0.0338 (4)	
C9	0.7236 (3)	0.23252 (6)	0.7578 (3)	0.0314 (3)	
C10	0.7823 (3)	0.24057 (6)	0.6034 (2)	0.0304 (3)	
C11	0.8411 (2)	0.29430 (5)	0.57419 (19)	0.0249 (3)	
H2	1.252 (3)	0.4205 (7)	0.513 (3)	0.027 (4)*	

supplementary materials

H3	0.9063	0.4211	0.7800	0.0199*	
H5A	0.3491	0.4617	0.1885	0.0318*	
H5B	0.5095	0.4333	0.1143	0.0318*	
H5C	0.5474	0.4957	0.2019	0.0318*	
H7	0.7738	0.3581	0.9356	0.0317*	
H8	0.6765	0.2673	0.9884	0.0406*	
H10	0.7828	0.2104	0.5189	0.0364*	
H11	0.8822	0.3012	0.4681	0.0299*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.02194 (17)	0.02105 (16)	0.02123 (17)	0.00019 (10)	0.01181 (13)	0.00233 (10)
F1	0.0632 (7)	0.0242 (5)	0.0522 (6)	-0.0180 (4)	0.0208 (5)	0.0062 (4)
01	0.0181 (5)	0.0278 (5)	0.0267 (5)	0.0001 (4)	0.0052 (4)	0.0056 (4)
O2	0.0175 (4)	0.0300 (5)	0.0283 (5)	0.0008 (4)	0.0131 (4)	0.0028 (4)
N1	0.0148 (5)	0.0173 (5)	0.0188 (5)	-0.0003 (4)	0.0078 (4)	0.0014 (4)
N2	0.0141 (5)	0.0196 (5)	0.0223 (5)	-0.0004 (4)	0.0095 (4)	-0.0004 (4)
C1	0.0170 (5)	0.0122 (5)	0.0220 (6)	-0.0019 (4)	0.0099 (5)	-0.0034 (4)
C2	0.0183 (6)	0.0156 (5)	0.0231 (6)	-0.0024 (4)	0.0094 (5)	-0.0016 (4)
C3	0.0162 (6)	0.0163 (6)	0.0179 (6)	-0.0008 (4)	0.0075 (5)	0.0006 (4)
C4	0.0153 (6)	0.0183 (6)	0.0235 (6)	-0.0011 (5)	0.0087 (5)	-0.0018 (5)
C5	0.0174 (6)	0.0386 (8)	0.0229 (6)	0.0029 (5)	0.0072 (5)	0.0036 (5)
C6	0.0151 (5)	0.0180 (6)	0.0218 (6)	-0.0016 (4)	0.0072 (5)	0.0006 (5)
C7	0.0316 (7)	0.0243 (7)	0.0279 (7)	-0.0064 (5)	0.0168 (6)	-0.0020 (5)
C8	0.0424 (8)	0.0321 (8)	0.0323 (7)	-0.0116 (6)	0.0205 (7)	0.0034 (6)
C9	0.0326 (7)	0.0207 (6)	0.0370 (8)	-0.0097 (6)	0.0098 (6)	0.0061 (6)
C10	0.0363 (8)	0.0187 (6)	0.0353 (8)	-0.0058 (6)	0.0135 (6)	-0.0051 (5)
C11	0.0284 (7)	0.0219 (6)	0.0278 (7)	-0.0035 (5)	0.0146 (6)	-0.0022 (5)

Geometric parameters (Å, °)

S1—C1	1.6454 (13)	C7—C8	1.391 (2)
F1—C9	1.3621 (19)	C8—C9	1.372 (3)
O1—C2	1.2073 (13)	C9—C10	1.370 (3)
O2—C4	1.2150 (19)	C10—C11	1.392 (2)
N1C1	1.3899 (19)	N2—H2	0.84 (2)
N1—C3	1.4810 (14)	С3—Н3	1.000
N1—C4	1.4053 (16)	С5—Н5А	0.980
N2—C1	1.3676 (14)	С5—Н5В	0.980
N2—C2	1.3762 (18)	С5—Н5С	0.980
C2—C3	1.5206 (18)	С7—Н7	0.950
C3—C6	1.5111 (18)	C8—H8	0.950
C4—C5	1.4906 (17)	C10—H10	0.950
C6—C7	1.383 (3)	C11—H11	0.950
C6—C11	1.3900 (19)		
C1—N1—C3	111.61 (9)	C8—C9—C10	123.48 (15)
C1—N1—C4	130.13 (10)	C9—C10—C11	117.85 (14)
C3—N1—C4	117.51 (11)	C6—C11—C10	120.41 (15)

C1—N2—C2	114.14 (12)	C1—N2—H2	123.1 (10)
S1—C1—N1	130.27 (8)	C2—N2—H2	122.7 (10)
S1—C1—N2	123.36 (11)	N1—C3—H3	109.392
N1—C1—N2	106.37 (11)	С2—С3—Н3	109.399
O1—C2—N2	126.05 (13)	С6—С3—Н3	109.408
O1—C2—C3	127.51 (13)	C4—C5—H5A	109.473
N2—C2—C3	106.44 (9)	C4—C5—H5B	109.477
N1—C3—C2	101.43 (11)	C4—C5—H5C	109.470
N1—C3—C6	114.97 (9)	H5A—C5—H5B	109.474
C2—C3—C6	111.93 (10)	H5A—C5—H5C	109.461
O2—C4—N1	116.01 (10)	H5B—C5—H5C	109.473
O2—C4—C5	123.27 (12)	С6—С7—Н7	119.804
N1—C4—C5	120.71 (13)	С8—С7—Н7	119.807
C3—C6—C7	119.42 (11)	С7—С8—Н8	120.984
C3—C6—C11	120.67 (13)	С9—С8—Н8	120.972
C7—C6—C11	119.82 (12)	С9—С10—Н10	121.071
C6—C7—C8	120.39 (14)	C11—C10—H10	121.082
C7—C8—C9	118.04 (17)	C6-C11-H11	119.797
F1—C9—C8	118.03 (16)	C10-C11-H11	119.789
F1—C9—C10	118.50 (14)		
	1.05 (11)		
CI—NI—C3—C2	-1.25 (11)	01	-55.41 (16)
C1—N1—C3—C6	-122.21 (10)	N2—C2—C3—N1	0.71 (11)
C3-N1-C1-S1			
	-178.11 (9)	N2-C2-C3-C6	123.78 (9)
C3—N1—C1—N2	-178.11 (9) 1.32 (11)	N2—C2—C3—C6 N1—C3—C6—C7	123.78 (9) -126.90 (11)
C3—N1—C1—N2 C1—N1—C4—O2	-178.11 (9) 1.32 (11) -166.54 (10)	N2C2C3C6 N1C3C6C7 N1C3C6C11	123.78 (9) -126.90 (11) 56.50 (14)
C3—N1—C1—N2 C1—N1—C4—O2 C1—N1—C4—C5	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17)	N2-C2-C3-C6 N1-C3-C6-C7 N1-C3-C6-C11 C2-C3-C6-C7	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11)
C3—N1—C1—N2 C1—N1—C4—O2 C1—N1—C4—C5 C4—N1—C1—S1	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17) -8.49 (18)	N2-C2-C3-C6 N1-C3-C6-C7 N1-C3-C6-C11 C2-C3-C6-C7 C2-C3-C6-C11	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11) -58.54 (12)
C3—N1—C1—N2 C1—N1—C4—O2 C1—N1—C4—C5 C4—N1—C1—S1 C4—N1—C1—N2	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17) -8.49 (18) 170.93 (10)	N2C2C3C6 N1C3C6C7 N1C3C6C11 C2C3C6C7 C2C3C6C11 C3C6C7C8	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11) -58.54 (12) -175.27 (9)
C3—N1—C1—N2 C1—N1—C4—O2 C1—N1—C4—C5 C4—N1—C1—S1 C4—N1—C1—N2 C3—N1—C4—O2	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17) -8.49 (18) 170.93 (10) 2.57 (15)	N2-C2-C3-C6 N1-C3-C6-C7 N1-C3-C6-C11 C2-C3-C6-C7 C2-C3-C6-C11 C3-C6-C7-C8 C3-C6-C11-C10	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11) -58.54 (12) -175.27 (9) 175.46 (9)
C3—N1—C1—N2 C1—N1—C4—O2 C1—N1—C4—C5 C4—N1—C1—S1 C4—N1—C1—N2 C3—N1—C4—O2 C3—N1—C4—C5	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17) -8.49 (18) 170.93 (10) 2.57 (15) -176.29 (9)	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C7$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$	$\begin{array}{c} 123.78 (9) \\ -126.90 (11) \\ 56.50 (14) \\ 118.06 (11) \\ -58.54 (12) \\ -175.27 (9) \\ 175.46 (9) \\ -1.12 (16) \end{array}$
C3—N1—C1—N2 C1—N1—C4—O2 C1—N1—C4—C5 C4—N1—C1—S1 C4—N1—C1—N2 C3—N1—C4—O2 C3—N1—C4—C5 C4—N1—C4—C5 C4—N1—C3—C2	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17) -8.49 (18) 170.93 (10) 2.57 (15) -176.29 (9) -172.31 (9)	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C7$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$ $C11-C6-C7-C8$	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11) -58.54 (12) -175.27 (9) 175.46 (9) -1.12 (16) 1.35 (17)
C3-N1-C1-N2 C1-N1-C4-O2 C1-N1-C4-C5 C4-N1-C1-S1 C4-N1-C1-N2 C3-N1-C4-O2 C3-N1-C4-O2 C3-N1-C4-C5 C4-N1-C3-C2 C4-N1-C3-C6	-178.11 (9) 1.32 (11) -166.54 (10) 14.60 (17) -8.49 (18) 170.93 (10) 2.57 (15) -176.29 (9) -172.31 (9) 66.73 (13)	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C7$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$ $C11-C6-C7-C8$ $C6-C7-C8$ $C6-C7-C8$	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11) -58.54 (12) -175.27 (9) 175.46 (9) -1.12 (16) 1.35 (17) -0.67 (18)
C3-N1-C1-N2 C1-N1-C4-O2 C1-N1-C4-C5 C4-N1-C1-S1 C4-N1-C1-N2 C3-N1-C4-O2 C3-N1-C4-O2 C3-N1-C4-C5 C4-N1-C3-C2 C4-N1-C3-C6 C1-N2-C2-O1	$\begin{array}{c} -178.11 \ (9) \\ 1.32 \ (11) \\ -166.54 \ (10) \\ 14.60 \ (17) \\ -8.49 \ (18) \\ 170.93 \ (10) \\ 2.57 \ (15) \\ -176.29 \ (9) \\ -172.31 \ (9) \\ 66.73 \ (13) \\ 179.24 \ (10) \end{array}$	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$ $C11-C6-C7-C8$ $C6-C7-C8$ $C6-C7-C8-C9$ $C7-C8-C9-F1$	123.78 (9) -126.90 (11) 56.50 (14) 118.06 (11) -58.54 (12) -175.27 (9) 175.46 (9) -1.12 (16) 1.35 (17) -0.67 (18) 179.71 (11)
C3-N1-C1-N2 C1-N1-C4-O2 C1-N1-C4-O2 C1-N1-C4-C5 C4-N1-C1-S1 C4-N1-C1-N2 C3-N1-C4-O2 C3-N1-C4-C5 C4-N1-C3-C2 C4-N1-C3-C6 C1-N2-C2-O1 C1-N2-C2-C3	$\begin{array}{c} -178.11 (9) \\ 1.32 (11) \\ -166.54 (10) \\ 14.60 (17) \\ -8.49 (18) \\ 170.93 (10) \\ 2.57 (15) \\ -176.29 (9) \\ -172.31 (9) \\ 66.73 (13) \\ 179.24 (10) \\ 0.04 (12) \end{array}$	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C7$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$ $C11-C6-C7-C8$ $C6-C7-C8-C9$ $C7-C8-C9-F1$ $C7-C8-C9-C10$	123.78 (9) $-126.90 (11)$ $56.50 (14)$ $118.06 (11)$ $-58.54 (12)$ $-175.27 (9)$ $175.46 (9)$ $-1.12 (16)$ $1.35 (17)$ $-0.67 (18)$ $179.71 (11)$ $-0.3 (2)$
C3-N1-C1-N2 C1-N1-C4-O2 C1-N1-C4-C5 C4-N1-C1-S1 C4-N1-C1-N2 C3-N1-C4-O2 C3-N1-C4-O2 C3-N1-C4-C5 C4-N1-C3-C2 C4-N1-C3-C6 C1-N2-C2-O1 C1-N2-C2-C3 C2-N2-C1-S1	$\begin{array}{c} -178.11 (9) \\ 1.32 (11) \\ -166.54 (10) \\ 14.60 (17) \\ -8.49 (18) \\ 170.93 (10) \\ 2.57 (15) \\ -176.29 (9) \\ -172.31 (9) \\ 66.73 (13) \\ 179.24 (10) \\ 0.04 (12) \\ 178.64 (9) \end{array}$	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$ $C11-C6-C7-C8$ $C6-C7-C8-C9$ $C7-C8-C9-F1$ $C7-C8-C9-F1$ $C7-C8-C9-C10$ $F1-C9-C10-C11$	123.78 (9) $-126.90 (11)$ $56.50 (14)$ $118.06 (11)$ $-58.54 (12)$ $-175.27 (9)$ $175.46 (9)$ $-1.12 (16)$ $1.35 (17)$ $-0.67 (18)$ $179.71 (11)$ $-0.3 (2)$ $-179.49 (10)$
C3-N1-C1-N2 C1-N1-C4-O2 C1-N1-C4-O2 C1-N1-C4-C5 C4-N1-C1-S1 C4-N1-C1-N2 C3-N1-C4-O2 C3-N1-C4-C5 C4-N1-C3-C2 C4-N1-C3-C6 C1-N2-C2-O1 C1-N2-C2-O1 C1-N2-C2-C3 C2-N2-C1-S1 C2-N2-C1-N1	$\begin{array}{c} -178.11 (9) \\ 1.32 (11) \\ -166.54 (10) \\ 14.60 (17) \\ -8.49 (18) \\ 170.93 (10) \\ 2.57 (15) \\ -176.29 (9) \\ -172.31 (9) \\ 66.73 (13) \\ 179.24 (10) \\ 0.04 (12) \\ 178.64 (9) \\ -0.83 (12) \end{array}$	N2-C2-C3-C6 $N1-C3-C6-C7$ $N1-C3-C6-C11$ $C2-C3-C6-C7$ $C2-C3-C6-C11$ $C3-C6-C7-C8$ $C3-C6-C11-C10$ $C7-C6-C11-C10$ $C11-C6-C7-C8$ $C6-C7-C8-C9$ $C7-C8-C9-F1$ $C7-C8-C9-F1$ $C7-C8-C9-C10$ $F1-C9-C10-C11$ $C8-C9-C10-C11$	123.78 (9) $-126.90 (11)$ $56.50 (14)$ $118.06 (11)$ $-58.54 (12)$ $-175.27 (9)$ $175.46 (9)$ $-1.12 (16)$ $1.35 (17)$ $-0.67 (18)$ $179.71 (11)$ $-0.3 (2)$ $-179.49 (10)$ $0.5 (2)$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2···O2 ⁱ	0.84 (2)	1.96 (2)	2.7836 (16)	167 (2)

Symmetry code: (i) x+1, y, z.