Araucaria heterophylla oleogum resin essential oil is a novel aldose reductase and butyryl choline esterase enzymes inhibitor: in vitro and in silico evidence

Amal F. Soliman^a, Mohamed A. Sabry^b & Gehad Abdelwahab^{a*}

Abstract

The essential oil isolated by hydrodistillation of the oleogum resin of Araucaria heterophylla has been analyzed by GC-MS. Twenty-four components accounting to 99.89 % of the total detected constituents of this essential oil were identified. The major ones were: caryophyllene oxide (14.8%), (+)-sabinene (12.07%), D-limonene (11.22%), caryophyllene (10.36%), α -copaene (8.00%), β -pinene (6.44%), transverbenol (5.88%) and α -pinene oxide (5.18%). The *in vitro* inhibitory activities of this oil against aldose reductase, BuCHE, COX-2 and SARS-CoV-2 Mpro enzymes were evaluated. This revealed promising inhibitory activity of the essential oil against both aldose reductase and BuCHE enzymes. The molecular docking study of the major components of the Araucaria heterophylla essential oil was carried out to correlate their binding modes and affinities for aldose reductase and BuCHE enzymes with the in vitro results. In conclusion, the in vitro inhibitory activity of the essential oil attributed to the synergistic effect between its components and the in silico study suggested that compounds containing epoxide and hydroxyl groups may be responsible for this activity. This study is preliminary screening for the oil to be used antidiabetic cataract and Alzheimer's disease therapeutics and further investigations may be required.

Keywords: *Araucaria heterophylla*, essential oil, enzymes inhibitor, molecular docking study.

Contents

<u>Tables</u>	Page:
Table S1: The aldose reductase inhibition (IC ₅₀ μ g/mL), docking scores ^a and 2D pose of the major components of the essential oil and the reference con(Epalrestat).	4
Table S2: The aldose reductase inhibition (IC ₅₀ μ g/mL), docking scores ^a and binding interactions of the major components of the essential oil and the reference compound (Epalrestat).	6
Table S3. The BuChE inhibition (IC $_{50}$ µg/mL), docking scores ^a and 2D pose of the major components of the essential oil and the reference compound (Rivastigmine).	8
Table S4. The BuChE inhibition (IC ₅₀ μ g/mL), docking scores ^a and type of interactions of the major components of the essential oil and the reference compour (Rivastigmine).	10

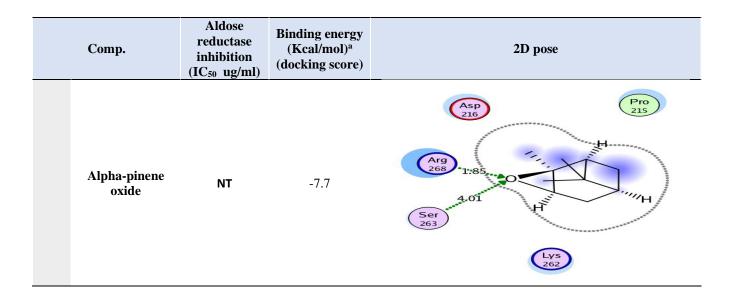
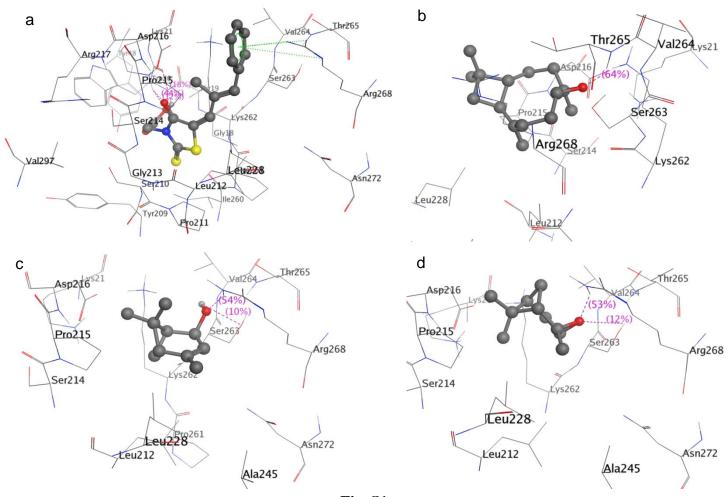

<u>Figures</u>			
Fig. S1. 3D binding mode and residues involved in the recognition of (a) epalrestat , the compounds showing the best binding interactions (b) caryophyllene oxide , (c) trans-verbenol and (d) alpha-pinene oxide docked and minimized in the aldose reductase binding pocket	<u>7</u>		
Fig. S2. 3D binding mode and residues involved in the recognition of (a) rivastigmine , the compounds showing the best binding interactions (b) caryophyllene oxide , (c) trans-verbenol and (d) alpha-pinene oxide docked and minimized in the BuChE binding pocket	<u>11</u>		

Table S1. The aldose reductase inhibition (IC₅₀ ug/ml), docking scores^a and 2D pose of the major

components of the essential oil and the reference compound (**Epalrestat**).

	Comp.	Aldose reductase inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	2D pose
Ah	(Isolated volatile oil)	0.133 ± 0.006		
	Epalrestat	0.165 ± 0.008	-11.0	Pro 261 Pro 261 Arg 268 258 250 211 257 215 215 257 215 257 215 257 215 257 215 257 215 257 215 257 215 257 215 257 215 257 215 257
ponents	Caryophyllene	NT	-8.0	Ser 263
Ah major components	Caryophyllene oxide	NT	-9.0	Arg 268 Arg 268 Pro 215 Asp 262 Asp 263

Comp.	Aldose reductase inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	2D pose
(+)- Sabinene	NT	-7.1	Arg 268 Arg 268 Lys 212 Pro 215 Lys 212 Lys 221 Lys
D-limonene	NT	-6.7	Leu 228 262 212 215 Pro 215 Asp 216
Alpha-Copaene	NT	-8.5	Lys 263 Lys 263 Lys 2263 Lys 2263 Lys 2263 Lys 2263 Lys 2216 Lys 2216
Beta-pinene	NT	-6.8	Arg 268 Pro 215 Leu 228 Asp 216 Ser 263
Trans-verbenol	NT	-7.9	Leu 228 Arg 262 262 Lys 262 262 Asp 263 Asp 216


Table S2. The aldose reductase inhibition (IC₅₀ ug/ml), docking scores^a and type of binding interactions of the major components of the essential oil and the reference compound (**Epalrestat**).

	Comp.	aldose reductase inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	Type of binding interactions
Ah (I oil)	solated volatile	0.133 ± 0.006		
Epalr	restat	0.165 ± 0.008	-11.0	 Two H-bonds with Lys21 H-bond with Trp20 Arene-cation interaction with Arg268 Strong hydrophobic interaction with Lys262, Pro215 and Asp216
	Caryophyllene	NT	-8.0	• Strong hydrophobic interaction with Arg268, Pro215 and Leu228
	Caryophyllene oxide	NT	-9.0	 H-bond with Lys262 Strong hydrophobic interaction with Arg268 and Pro215
nts	(+)- Sabinene	NT	-7.1	• Strong hydrophobic interaction with Arg268 and Lys262
compone	D-limonene	NT	-6.7	• Strong hydrophobic interaction with Arg268 and Lys262
Ah major components	Alpha-Copaene	NT	-8.5	• Strong hydrophobic interaction with Arg268 and Lys262
Ah	Beta-pinene	NT	-6.8	• Strong hydrophobic interaction with Arg268 and Lys262
	Trans-verbenol	NT	-7.9	 Two H-bonds with Arg268 and Ser263 Strong hydrophobic interaction with Pro215 and Lys262
	Alpha-pinene	NT	-7.7	 Two H-bonds with Arg268 and Ser263 Strong hydrophobic interaction with Pro215, Asp216

Comp.	aldose reductase inhibition (ICso ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	Type of binding interactions
oxide			and Lys262

- Epalrestat was used as reference aldose reductase inhibitor compound.
- All data are presented as mean value \pm SD for three independent experiments.
- Abbreviation: **NT**, not tested.
- Docking was carried out following the reported procedure [Zheng, et al., 2012] against the aldose reductase enzyme pocket (PDB code ID: 3RX2)
- a More negative score refers to better cabability of a molecule to dock with the target and make more desirable interactions.

Fig. S1. 3D binding mode and residues involved in the recognition of (a) **epalrestat**, the compounds showing the best binding interactions (b) **caryophyllene oxide**, (c) **trans-verbenol** and (d) **alpha-pinene oxide** docked and minimized in the aldose reductase binding pocket

Table S3. The BuChE inhibition (IC₅₀ ug/ml), docking scores^a and 2D pose of the major components of the essential oil and the reference compound (**Rivastigmine**).

	Comp.	BuChE inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	2D pose
Ah	(Isolated volatile oil)	0.154 ± 0.009		
	Rivastigmine	0.078 ± 0.005	-13.7	Ser 79 Glu 197 (197 (197 (197 (197 (197 (197 (197
	Caryophyllene	NT	-8.9	(Gly 116) (Trp 82) (H) (16) (H) (17) (18) (H) (1
Ah major components	Caryophyllene oxide	NT	-12.0	Gly 116 Asp 70 Trp 82 Tyr 332
	(+)- Sabinene	NT	-6.6	Gly 115 Gly 116 His 438

Comp.	BuChE inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	2D pose
D-limonene	NT	-6.7	(Ser 198) (Gly 116) (Trp 82)
Alpha-Copaene	NT	-8.6	Phe 329 Ala 328 His 438 Trp 82
Beta-pinene	NT	-7.0	Glu His 438 197 Tyr 128 Gly 115 Ser 198 H
Trans-verbenol	NT	-7.8	Tyr 328 328 332

Comp.	BuChE inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	2D pose
Alpha-pinene oxide	NT	-9.5	Asp 70 H ₂ O 2.09 O H ₂ O 70 H

Table S4. The BuChE inhibition (IC₅₀ ug/ml), docking scores^a and type of binding interactions of the major components of the essential oil and the reference compound (**Rivastigmine**).

inajor components of the essential of and the reference compound (Krvastighine).				
	Comp.	BuChE inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	Type of binding interactions
Ah (Is oil)	solated volatile	0.154 ± 0.009		
Rivas	tigmine	0.078 ± 0.005	-13.7	 Interaction with a water molecule of the binding site that form hydrogen bond with Asp70 and Ser79 Strong hydrophobic interaction with Trp82, His438, Gly116 and Phe329
	Caryophyllene	NT	-8.9	• Strong hydrophobic interaction with Trp82 and His438
	Caryophyllene oxide	NT	-12.0	 Interaction with a water molecule of the binding site that form hydrogen bond with Asp70 and Ser79 Strong hydrophobic interaction with Trp82, His438 and Phe329
onents	(+)- Sabinene	NT	-6.6	• Strong hydrophobic interaction with Trp82 and His438
Ah major components	D-limonene	NT	-6.7	• Strong hydrophobic interaction with Trp82 and His438
Ah majo	Alpha-Copaene	NT	-8.6	• Strong hydrophobic interaction with Trp82 and His438
	Beta-pinene	NT	-7.0	• Strong hydrophobic interaction with Trp82 and His438
	Trans-verbenol	NT	-7.8	 Interaction with a water molecule of the binding site that form hydrogen bond with Asp70 and Ser79 Strong hydrophobic interaction with Trp82 and His438

Comp.	BuChE inhibition (IC ₅₀ ug/ml)	Binding energy (Kcal/mol) ^a (docking score)	Type of binding interactions
Alpha-pinene oxide	NT	-9.5	 Interaction with a water molecule of the binding site that form hydrogen bond with Asp70 and Ser79 Strong hydrophobic interaction with Trp82, His438 and Phe329

- **Rivastigmine** was used as reference BuChE inhibitor compound.
- Docking was carried out following the reported procedure [Nachon, et al., 2013] against the BuChE enzyme pocket (PDB code ID: 4BDS)
- All data are presented as mean value \pm SD for three independent experiments.
- Abbreviation: **NT**, not tested.
- a More negative score refers to better cabability of a molecule to dock with the target and make more desirable interactions.

Fig. S2. 3D binding mode and residues involved in the recognition of (a) rivastigmine, the compounds showing the best binding interactions (b) caryophyllene oxide, (c) trans-verbenol and (d) alpha-pinene oxide docked and minimized in the BuChE binding pocket

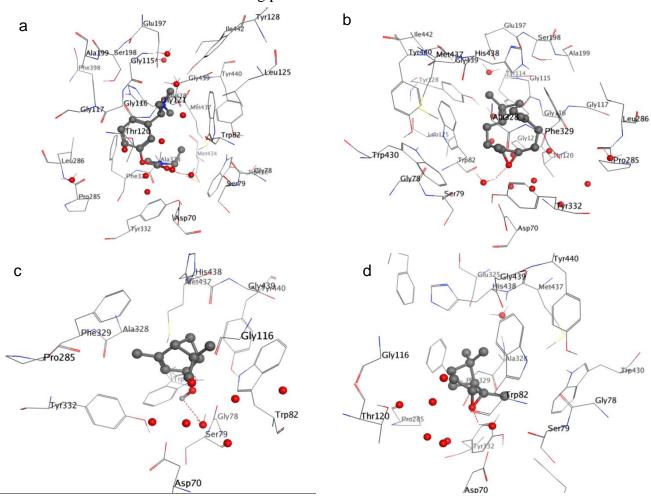


Fig. S2