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Abstract

Motivation: Inferring the parameters of models describing biological systems is an important problem in the reverse
engineering of the mechanisms underlying these systems. Much work has focused on parameter inference of sto-
chastic and ordinary differential equation models using Approximate Bayesian Computation (ABC). While there is
some recent work on inference in spatial models, this remains an open problem. Simultaneously, advances in topo-
logical data analysis (TDA), a field of computational mathematics, have enabled spatial patterns in data to be
characterized.

Results: Here, we focus on recent work using TDA to study different regimes of parameter space for a well-studied
model of angiogenesis. We propose a method for combining TDA with ABC to infer parameters in the Anderson–
Chaplain model of angiogenesis. We demonstrate that this topological approach outperforms ABC approaches that
use simpler statistics based on spatial features of the data. This is a first step toward a general framework of spatial
parameter inference for biological systems, for which there may be a variety of filtrations, vectorizations and sum-
mary statistics to be considered.

Availability and implementation: All code used to produce our results is available as a Snakemake workflow from
github.com/tt104/tabc_angio.

Contact: tom.thorne@surrey.ac.uk or harrington@maths.ox.ac.uk

1 Introduction

When analyzing mathematical models of biological systems, we
often aim to reverse engineer the parameters of the model by fitting
to observed data. The Bayesian formalism provides a principled way
to perform parameter inference that quantifies our uncertainty in
the model parameters (see, e.g. Kirk et al., 2015), but traditionally
requires us to be able to write down an analytical function (the like-
lihood function) that returns the likelihood of a parameter vector
given the observed data.

However, for many models of interest, there is no straightforward
way to write down the likelihood function associated with the model.
This is often due to the intractability of deriving a closed form expres-
sion for the model likelihood. In such situations, it may nevertheless be
possible to apply a simulation-based inference approach termed
Approximate Bayesian Computation (ABC; see, for example, Sisson
et al., 2018), that substitutes a kernel on some statistics of the data for

the model likelihood, and evaluates the fit of the model at a given set of
parameter values through simulations. For given parameter realizations,
the model is simulated, and the statistics of the simulated data com-
pared with the same statistics of the observed data. Informally, regions
of parameter space that correspond to simulated datasets whose statis-
tics are ‘more similar’ to those of the observed data will be associated
with higher posterior probability than regions corresponding to simu-
lated datasets with statistics that are ‘less similar’ (where ‘similarity’ is
quantified using a pre-specified distance function).

Applying ABC, we can derive an approximate posterior distribution
over the model parameters using standard sampling techniques such as
rejection sampling. This approximate posterior distribution expresses
our uncertainty in the model parameters, given the model and the
observed dataset. Recently, ABC parameter inference and model selec-
tion has been successfully developed for reaction-diffusion models
(Warne et al., 2019). However, performing parameter inference for
more general spatial models has been largely unexplored.
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Topological data analysis (TDA) is a relatively new area of com-
putational mathematics that quantifies the shape of data by comput-
ing topological properties of the data. The appeal of TDA lies in its
systematic and principled tools to quantify the shape of data across
multiple scales of resolution (i.e. no threshold value). The mathem-
atical theory underlying persistence guarantees that the topological
summary is stable with respect to small perturbations to the data.
There are various approaches of topological inference, for example
level sets or mode clusters (Wasserman, 2018). The most prominent
algorithm in TDA is persistent homology (PH; Carlsson, 2009;
Edelsbrunner and Harer, 2010). PH takes in data and a metric, and
outputs topological features (e.g. connected components and loops)
and their persistence across different scales of the data. The compu-
tation crucially depends on the choice of filtration, which is a nested
sequence of spaces built on the data, that is indexed by a scale par-
ameter (Edelsbrunner and Harer, 2010; Ghrist, 2018). There are
many software implementations for persistent homology (Otter
et al., 2017); however, the software used is often selected based on
the types of filtrations available within it. The choice of filtration for
applications is an active area of research, and there is no one-size-
fits-all filtration for biological applications (Stolz-Pretzer, 2019).
The persistence of the topological features as well as where topo-
logical features appear and die in the filtration may provide insight
into biological processes and models.

In previous work with spatial models of biological processes
(Murray, 2003), TDA has been applied to test for spatial random-
ness (Robins and Turner, 2016), automatically detect zebra-fish pat-
terns (McGuirl et al., 2020), characterize immune cell infiltration by
changes in a chemotaxis parameter (Vipond et al., 2021) and cluster
parameter regimes for angiogenesis (Nardini et al., 2021). Now we
wish to address the inverse problem of recovering model parameters
given some observed data, in the Bayesian formalism. ABC enables
us to perform parameter inference in a statistical model on the basis
of data summaries, even when there is no clear way to define a likeli-
hood function for the model. One key challenge in ABC is the choice
of summary statistic, as the statistic must capture the relevant infor-
mation about the model parameters in the data to allow the parame-
ters to be learnt. Here, we show that TDA provides informative data
summaries that enable parameter inference to be performed success-
fully in a spatial model. In particular, we consider as a case study
the Anderson–Chaplain model of angiogenesis (Anderson and
Chaplain, 1998).

In previous work in the literature, Maroulas et al. (2020) model
persistence diagrams as Poisson point processes and use this to allow
a posterior to be inferred on a persistence diagram given some
observed data and a suitable prior. This allows a posterior on topo-
logical features to be defined, and a scheme for performing Bayesian
classification is developed, but it does not consider the case of per-
forming inference on a parametric model, given an observed set of
topological features. In Sgouralis et al. (2017), Bayesian inference is
applied in the processing of the data, but not in a topological con-
text or for parameter inference in the model of interest. Instead vari-
ous performance measures are evaluated for a small set of selected
parameter combinations, not considering a distribution over param-
eters or a Bayesian posterior.

In this article, we first describe the model and data generation
process applied, before describing TDA and ABC in general terms,
and their specific application to the Anderson–Chaplain model. We
demonstrate our suggested approach for parameter inference on
simulated data from the Anderson–Chaplain model and compare
the outputs to the results produced by other non-topological
statistics.

2 Model data

The Anderson–Chaplain model (Anderson and Chaplain, 1998) is a
well-studied spatio-temporal model of angiogenesis. Angiogenesis is
the growth of new blood vessels from pre-existing vasculature. The
model combines a system of partial differential reaction equations
with discrete dynamics to study the spatio-temporal evolution of
three physical variables: endothelial tip cells, tumour angiogenesis

factor (TAF) and fibronectin. To set up the angiogenesis model, the
right boundary of the square domain is initialized by a tumour that
secretes tumour angiogenic factors (TAFs) and the left boundary of
the domain is initialized with endothelial tip cells. The tip cells are
embedded in a tissue matrix, which is bound to another factor,
fibronectin. Tip cells can move either via chemotaxis up spatial gra-
dients of TAF (leaving behind them new blood vessel segments) or
via haptotaxis up spatial gradients of fibronectin. As the tip cells mi-
grate, they may branch to create two tip cells, or collide with an-
other vessel segment and join together to form a loop. The changes
in vessel structure and connectivity of tumour-blood vessel network
makes topology, the study of shapes or holes in different dimensions
(e.g. connected components and loops), useful here. TDA can quan-
tify the changes in the number of tip cells and the emergence of loops
in experimental data of tumour vasculature (Stolz et al., 2020).
Furthermore, topological approaches to analyze structure in data
generated from models may be useful in other data applications (see
previous section).

The model considers production and consumption of fibronec-
tin, the secretion of tumour angiogenic factors (TAF) from a tu-
mour, and new vasculature forms from endothelial tip cells in
response to gradients of fibronectin and TAF; therefore, we focus on
the two key parameters, q and v, coefficients for haptotaxis and
chemotaxis, respectively. These determine the relative contribution
of fibronectin-driven haptotaxis and TAF-driven chemotaxis to the
movement of tip cells in the model. Other parameters determine the
dynamics of the distribution of fibronectin and TAF, and we keep
these fixed as in Nardini et al. (2021). Previous analysis of angiogen-
esis models relied on visual inspection or spatially averaged statistics
such as number of vessel branches (Vilanova et al., 2017); these
have been compared with TDA descriptors (Stolz et al., 2020).
Previous work showed that TDA stratified the parameter space
dominated by either haptotaxis or chemotaxis or both (Nardini
et al., 2021). However, the inverse problem requires additional ma-
chinery, which we address here.

Data were generated by simulating the Anderson–Chaplain
model on a 2D square lattice of resolution 201 by 201 (as in
Anderson and Chaplain, 1998) using the implementation provided
in Nardini et al. (2021), with a linear chemoattractant distribution
that increases with the coordinate along the x axis. This produces
sets of binary images (see Fig. 2) which are then further processed
using the methods described below.

3 Materials and methods

3.1 Topological data analysis
We illustrate the TDA pipeline starting from input data, homology,
interpretation and visualization through to topological statistics in
Figure 1.

To characterize the k-dimensional features of a topological space
X we can consider the homology group in dimension k, HkðXÞ,
composed of elements that intuitively correspond to equivalence
classes of cycles that can be continuously deformed into one another
on X. In dimension one, the generators of the homology group cor-
respond to 1D holes in X, or loops, while in dimension zero the gen-
erators of the homology group correspond to the connected
components of X.

The topological spaces we are interested in can be represented
using finite sets of simplices known as simplicial complexes K that
are constructed by joining together individual simplices, potentially
of different dimensions, and are closed under the operation of taking
faces. A 0D simplex corresponds to a single vertex, a 1D simplex an
edge, and a 2D simplex a triangle. Given a real valued function on
K, we can define a filtration as a sequence of homology groups in a
given dimension k, with homomorphisms induced by inclusion

0 ¼ HkðKa0
Þ ! HkðKa1

Þ ! . . .! HkðKan
Þ ¼ HkðKÞ (1)

where Ka ¼ f�1ð�1; a� and a0 < a1 < . . . < an, and Kai
� Kaj

for
i< j. Persistent homology then tracks the birth and death of elements
of the homology groups as a varies. By choosing an appropriate
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definition of the simplicial complex and filtration built from the
data, persistent homology can provide information about the topo-
logical features in data.

We build the simplicial complex and filtration from the final
timepoint of model simulation data following Nardini et al. (2021).
All cells in the 2D square lattice that have vasculature present are
assigned a value of one, and zero elsewhere. The centroid of each
non-zero cell is a 0-simplex. The simplicial complex is built on these
0-simplices based on so-called Moore neighbourhoods: if any of the
eight cells surrounding a vertex are also non-zero, then we connect
them via 1-simplices (edges) for two points pairwise connected, or
2-simplices for three points pairwise connected by an edge. The
union of these simplices form a simplicial complex. There are differ-
ent ways to study vascular data at multiple scales using filtrations
(Bendich et al., 2016; Stolz et al., 2020). Here, we construct sequen-
ces of filtered simplicial complexes using a sweeping plane filtration
(Bendich et al., 2016; Nardini et al., 2021). In the sweeping plane
filtration, we move a vertical line from left to right across the 2D lat-
tice domain and include simplices in the filtration only to the left of
this line. This filtration can be considered a sublevel set filtration
corresponding to a height function h : X! R on this simplicial
complex.

3.2 Approximate Bayesian computation
In Bayesian inference, we aim to derive the posterior distribution of
the parameters of a model given some observed data. To do so we
first define a prior distribution on the model parameters, treating
them as random variables. This describes our belief in the

distribution of the parameters before having observed any data. We
then perform a so-called Bayesian update of the model having
observed some data. This is done using the likelihood of the
observed data given the model and parameters. From this, we arrive
at a posterior distribution that describes the conditional distribution
of the parameters given the observed data. If we denote the model
parameters by h, and the data by x, we can first write the prior as
pðhÞ, and the likelihood of the data as pðxjhÞ. In the Bayesian frame-
work, we apply Bayes rule to update the prior distribution having
observed the data, giving us the posterior distribution as

pðhjxÞ ¼ pðxjhÞpðhÞ
pðxÞ ; (2)

where p(x) is known as the evidence or marginal likelihood, and
plays a key role in Bayesian model selection. Evaluation of the mar-
ginal likelihood is often computationally expensive or intractable.
However, in many settings (e.g. when sampling from the posterior
using Markov chain Monte Carlo techniques), it is sufficient to be
able to write down the posterior up to proportionality

pðhjxÞ / pðxjhÞpðhÞ: (3)

This approach relies on the ability to calculate both the prior of
the parameters pðhÞ, which is generally tractable, and the likelihood
pðxjhÞ. However in many models of interest it is not tractable or not
possible to directly evaluate pðxjhÞ, for example in population genet-
ics (Beaumont et al., 2002), random graph models (Thorne and
Stumpf, 2012) and some models of dynamical systems (Liepe et al.,

A

B

C

Fig. 1. Topological data analysis pipeline. (A) Illustration of topological features captured by persistence. Take data X as the image on the left. Homology is an invariant from

algebraic topology that captures shape, but ignores geometry. Dimension 0 homology describes connected components whereas dimension 1 homology (H1ðXÞ) describes 1D

loops. Persistent homology (PH) quantifies the shape of data through a multiscale lens called a filtration. Here, we use a sublevel set filtration of the data Xa ¼ f0; 1; . . . ; 4g,
which only includes data to the left of the index, forming a nested sequence of data spaces. PH provides additional information than homology; for this filtration of the data,

PH gives the number and location of loops. Extended persistent homology (EPH) requires three computations (ordinary persistence, relative persistence and extended persist-

ence). For this dataset, EPH provides information on the number of loops, size and location. (B, C) The output of persistence computations is summarized by a multi-set of

intervals given by birth, death pairs (b, d), where b is when a loop forms and d is when a loop ends and can be visualized as a persistence diagram. This persistence diagram is

then converted into birth, persistence pairs, where persistence is given by ðd � bÞ, and then vectorized using kernels into persistence images (Adams et al., 2017). Persistence

images generate topological statistics of the data that can then be applied in statistical inference. The persistent homology (in B) captures only the birth of the loop with the

death at1, whereas the extended component of the extended persistence (in C) also captures the death of the loop
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2014; Toni et al., 2009). To allow us to perform Bayesian inference
in these situations, an approach named ABC was developed, based
on initial work in Fu and Li (1997) and Tavar�e et al. (1997), devel-
oped further in Beaumont et al. (2002) and Marjoram et al. (2003),
and expanded in many works, see for example Sisson et al. (2007);
Toni et al. (2009); Beaumont et al. (2009); Del Moral et al. (2012);
Prangle et al. (2018).

In an ABC framework, we rely on the observation that given the
ability to sample realizations y from pðxjhÞ, we can rewrite the pos-
terior as

pðhjxÞ ¼
ð

pðh; yjxÞdy; (4)

where

pðh; yjxÞ ¼ 1ðx ¼ yÞpðyjhÞpðhÞ
pðxÞ ; (5)

and by relaxing this to

pðh; yjxÞ � 1ðDðx; yÞ < �ÞpðyjhÞpðhÞ
pðxÞ ; (6)

we can generate samples from an approximate posterior (which we
shall refer to as the ABC posterior) by using a suitably small � in
Algorithm 1. Often when applying the rejection algorithm, we fix
the number of samples S and select � such that the set of samples ĥs

with ds < � is some fraction aS.The ABC rejection sampler algo-
rithm requires us to define a distance on the data, D(x, y), and in
some cases this may itself be intractable. It is then possible to substi-
tute a summary statistic of the data, g(x) in place of the data itself,
leading to a distance on these summary statistics DðgðxÞ; gðyÞÞ being
considered. In the case where g is a sufficient statistic for the model,
as �! 0 this will be equivalent to applying a distance on the x and y
themselves. Often this is not the case, and this is another avenue

through which ABC produces an approximation to the posterior ra-
ther than a true evaluation of the posterior itself.

3.3 Topological statistics for approximate Bayesian

computation
In previous work, Nardini et al. (2021) applied topological statistics
of simulated data (2D binary images) to quantify different regimes
in the parameter space of the Anderson–Chaplain model of angio-
genesis. By constructing simplicial complexes from the output data
of a spatial model, and using the same filtration as Nardini et al.
(2021), PH can be applied to describe the presence of topological
features in the simulated data.

In some cases when calculating the persistence of the topological
features of a filtration, it is possible for some features to persist in-
definitely, so that their death in the filtration is represented as þ1.
In our application, this causes information about certain topological
features to be lost, for example loops and some connected compo-
nents, as although we know when they are born in the filtration, we
have no measure of their extent. For this reason, Nardini et al.
(2021) computed persistence of a left to right sweeping plane filtra-
tion and right to left sweeping plane filtration of the simplicial

Fig. 2. Visualizations of simulation output from the Anderson–Chaplain model for five parameter sets sampled from a uniform prior on the model parameters. The first column

shows the observed data, while the second shows a contour plot of the posterior density inferred by applying the TABC methodology, with the red cross indicating the known

parameter values used to generate the observed data. The remaining three columns show simulations of parameter values drawn from the ABC posterior predictive

distribution

Algorithm 1 ABC rejection sampler algorithm

1: for s 2 1; . . . ; S do

2: Sample ĥs � pðhÞ
3: Simulate y � pðyjĥs Þ
4: Calculate ds  DðgðyÞ; gðxÞÞ
5: end for

6: Return samples ĥs where ds < �
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complex built from the simulated model data [see Nardini et al.
(2021) for details]. By viewing the left to right filtration as a sublevel
set filtration and the right to left filtration as a superlevel set filtra-
tion, more information (e.g. only finite bars that capture the extent
of topological features) can be extracted as a consequence of duality
and symmetry theorems (Cohen-Steiner et al., 2009).

3.4 Extended persistence
Here, we propose a more elegant solution that applies the extended
persistence of Cohen-Steiner et al. (2009), which forces all topo-
logical features to be of finite length. Extended persistence was
developed to study cavities and protrusions in protein docking
(Agarwal et al., 2006; Cohen-Steiner et al., 2009). Since then, Yim
and Leygonie (2021) optimized spectral wavelets for graph classifi-
cation using extended persistence, and extended a differentiability
result for ordinary persistence to extended persistence.

In standard persistence, the sublevel sets Xa ¼ f�1ð�1; a� of the
manifold X are nested and PH is defined through the corresponding
linear sequence of homology groups. In extended persistence, we
compute the homology of the sublevel sets, as well as the relative
homology with respect to the superlevel sets Xa ¼ f�1½a;1Þ. For a
set of values a0; . . . ; an that bound and fit between the critical points
of f, the extended persistence in dimension k is defined as the persist-
ence of the homology groups and relative homology groups as

0 ¼ HkðXa0
Þ ! HkðXa1

Þ ! . . .! HkðXan
Þ ¼ HkðXÞ

HkðXÞ ¼ HkðX;Xan Þ ! . . .! HkðX;Xa0 Þ ¼ 0
(7)

where HkðX;XaÞ denotes the relative homology group of X and Xa

in dimension k (Edelsbrunner and Harer, 2010).
This extended persistence can be broken down into multiple

components (Cohen-Steiner et al., 2009), the ordinary part, formed
of topological features that are both born and die within the hom-
ology groups of the sublevel sets of X, the relative part of features
that are born and die in the relative homology groups, and the
extended part of features that are born in the ordinary homology
groups and die in the relative homology groups in the filtration. The
birth time b of a feature may be larger than its death time d due to
the possibility that the feature dies in the relative homology group
HðX;XdÞ with d<b. The extended part can be further divided into
topological features that have b<d, termed extendedþ, and those
with d<b, termed extended–.

3.5 Persistence images
The output of applying PH to a dataset is often represented as a per-
sistence diagram, that for a given dimension k consists of a plot of
points (b, d), where b is the time of birth and d is the time of death d
of each dimension k topological feature in the filtration. To allow
for the straightforward application of methods from machine learn-
ing to these diagrams, Adams et al. (2017) developed the concept of
a persistence image. This allows a persistence diagram to be repre-
sented as a vector in Rn, so that for example it can be used in meth-
ods such as K-means clustering, as in Nardini et al. (2021).

To generate the persistence image corresponding to a persistence
diagram represented as a multiset of points (b, d), the points are first
transformed to give a multiset B of birth and persistence coordinates
ðb;d � bÞ (for extended persistence, we require a slightly different
formulation—see below). We note that the persistent image formu-
lation of Adams et al. (2017) ignores all infinite persistent features.
A persistence surface in R2 ! R is then defined as the weighted sum
of kernels applied to each birth/persistence coordinate

f ðx; yÞ ¼
X
ðb;pÞ2B

gðb;pÞhðx; y; b;pÞ; (8)

where g(b, p) is the weight of the feature and h is a suitable kernel.
From the persistence surface defined in Equation (8), an m�m array
of values is created by discretizing f(x, y) into an m by m grid in a
suitable range. This array can then by flattened to give a vector in
Rm2

. As in Adams et al. (2017), we apply a Gaussian kernel for h
with mean l ¼ ðb;pÞ and fixed standard deviation r.

We remark that extended persistence only has finite persistence;
therefore, no information (i.e. the infinite bars in ordinary persist-
ence) is lost in the persistence images for extended persistent
homology.

3.6 TABC
We use a set of topological statistics derived from the extended per-
sistence of a filtration over the simplicial complex representing the
data as the summary statistics in an ABC framework, in a method
we title TABC, to perform topological posterior inference on the
Anderson–Chaplain model of angiogenesis. In the TABC method-
ology, the summary statistics used in ABC are the persistence images
in each dimension produced by the by the four components of the
extended persistence of a filtration. To allow persistence images to
be generated for the extended persistence, in components of the
extended persistence with points in the persistence diagram (b, d)
with d<b, we flip the coordinates to consider instead (d, b), which
when transformed into a birth/persistence coordinate then repre-
sents the duration of persistence of the feature in the relative part, or
the gap between birth in the ordinary homology and death in the
relative homology of the feature in the extended–part. We generate
persistence images of dimension 50 by 50 with a constant weight
function for the persistence surface and the kernel of the persistence
images set as a multivariate Gaussian distribution with standard de-
viation r¼1, as we found this to work well. As the distance metric
in the ABC algorithm, we applied the Euclidean distance between
the statistics. In our implementation we use the GUDHI library
(http://gudhi.gforge.inria.fr/) to construct simplicial complexes, gen-
erate extended persistence diagrams and produce persistence images
(with standard weighting g¼1).

3.7 Image-based statistics
For comparison, we also consider four statistics based on the binary
image data produced by the simulations, that were chosen with the
aim of differentiating the different classes of behaviours observed in
Nardini et al. (2021), without overlapping with features that could
be considered as topological descriptors (e.g. numbers of connected
components). These statistics are:

• Mean X coordinate: The mean X value of occupied pixels.
• Mean Y coordinate: The mean Y value of occupied pixels.
• Maximum X coordinate: The maximum X value of an occupied

pixel.
• Mass: The fraction of occupied pixels.

As with the topological statistics, we applied the Euclidean dis-
tance between vectors of statistics as the distance in the ABC rejec-
tion algorithm.

4 Results

We apply the TABC approach described above to parameter infer-
ence in the Anderson–Chaplain model. Taking 10 000 samples from
the prior on the two model parameters, we simulated the Anderson–
Chaplain model of angiogenesis for each sampled parameter pair.

To validate our approach, we drew a further 100 parameter sets
from the model prior and simulated data from each to take on the
role of the observed data. A representative subset of these simulated
datasets can be seen in Figure 2, and cover a range of different
behaviours.

Given these data, we applied the TABC approach described
above to derive samples of 500 parameter values from the ABC pos-
terior. To investigate the ability of our topological approach to ac-
curately capture the relevant behaviour of the model, we generated
ABC posterior predictive samples by simulating the model using par-
ameter values drawn at random from the ABC posterior. These are
shown in Figure 2, and demonstrate that TABC enables the effective
recovery of parameters that replicate the qualitative behaviour of
the observed data.

Topological approximate Bayesian computation 2533
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It can be seen that the ABC posterior distributions for the two
parameters demonstrate a degree of unidentifiability, in that in most
cases the posterior follows a ridge shape with a strong correlation
between the two parameters. This aligns with the results found in
Nardini et al. (2021), where it was discovered that there were dis-
tinct classes of behaviour that occupied diagonal sections of the par-
ameter space, as do our posterior distributions. Being able to
identify such uncertainty in our parameter estimates is one of the
key benefits of a Bayesian analysis, and it also provides insights into
the behaviour of the model. For example we can see that ABC pos-
terior predictive samples in Figure 2 are representative of a given
class of model behaviour, and that draws from across the potentially
wide distribution of parameters indicated by the posterior will fol-
low this behaviour.

The known parameter values used to generate the data on which
the posterior distributions are based are marked in Figure 2, and can
be seen to be within the bulk of the ABC posterior mass.

To further quantify the efficacy of our approach, we compared
statistics of the posterior distributions obtained from TABC with
those generated by an ABC approach using only the image-based sta-
tistics described in Section 3.7. We quantified the accuracy of the
inferred parameters by taking the mean root sum of squared errors
(RSSE) between the posterior samples and the ‘true’ parameters used
to generate the data, as shown in Table 1. Here, the mean RSSE
achieved by the topological posterior over the 100 simulated datasets
is below that of the posterior generated using image-based statistics.
We also calculated the mean entropy of the posterior distributions
produced for each observed data point using both TABC, and ABC
with image-based statistics. As can be seen in Table 1, the entropy for
the posterior derived from the topological features is lower than that
derived from the image-based statistics. Taken together, the RSSE and
entropy results suggest that the topological statistics used in TABC re-
tain more of the information in the original dataset, and hence that
TABC is able to more accurately infer the parameters used to generate
the data, than ABC using image-based statistics alone.

5 Conclusions

We have developed an approach for performing ABC in a topologic-
al context that is able to derive posterior distributions over model
parameters that can accurately reproduce multiple different classes
of behaviour and structure observed within the data. We applied
extended persistence, which strictly quantifies more topological fea-
tures than ordinary persistence. Other topological shape statistics
have focussed on sweeping across data in multiple different direc-
tions (Crawford et al., 2020; Curry et al., 2018; Turner et al.,
2014). Their utility for parameter inference and model selection will
be explored in future studies.

Evaluating the ABC posterior distributions we obtain, we find that
by considering topological features in the data through the TABC ap-
proach we are able to reduce the posterior uncertainty in the param-
eter values, and to infer posterior distributions that are more closely
focused around the parameters used to generate the data.

While we use persistence images here, there are other potential
approaches to summarizing TDA for use in parameter inference. For
example it is possible to directly derive distances between persist-
ence diagrams in a number of ways (Atienza et al., 2020; Bubenik,
2015; Carrière et al., 2017, 2015; Chazal et al., 2014; Di Fabio and

Ferri, 2015; Kerber et al., 2017; Lacombe et al., 2018; Royer et al.,
2021), and these could be substituted for the Euclidean distance be-
tween the vectors of persistence images that we apply. In future

work, we will investigate the possibility of applying a distance func-
tion on persistence diagrams in the ABC likelihood and how this

influences the efficiency of the algorithm.
For simplicity, we have also only considered the simplest form of

the ABC algorithm—many other increasingly sophisticated
approaches exist, including Markov Chain Monte Carlo algorithms,
Sequential Monte Carlo methods (Sisson et al., 2007) and rare event

schemes (Prangle et al., 2018). It would be expected that for models
with larger numbers of parameters, significant improvements in effi-

ciency could be obtained by applying one of these approaches rather
than a rejection sampler-based ABC approach. Doing so would not
require any changes to the topological aspects of TABC, only the

encompassing sampling mechanism. More precisely, since TABC
can be considered as a conventional ABC approach in which the
ABC summary statistic is constructed using TDA, we would antici-

pate that extending to SMC would follow the standard approach of
propagating particles representing points in the parameter space

through a sequence of � thresholds, with adaptive methods based on
effective sample sizes being possible to define a suitable threshold se-
quence (e.g. Del Moral et al., 2012; Silk et al., 2013).

A further direction of study would be to consider applications of
TABC in the context of model choice (Kirk et al., 2013). While con-

cepts from TDA have been successfully used to perform model com-
parison (Vittadello and Stumpf, 2021), we note that TABC inherits

the same formal challenges regarding model selection as other ABC
algorithms, due to the loss of information arising from the use of an
insufficient summary statistic (Robert et al., 2011). As with other

ABC algorithms, model criticism (Ratmann et al., 2009) and
approaches that rephrase model selection as a classification problem

(Pudlo et al., 2016) are likely to provide fruitful avenues for future
research.

As with some other applications of ABC (e.g. Russell-Buckland

et al., 2019), a potential strength of our approach is that it enables a
form of qualitative inference to be performed; in our case by allow-

ing combinations of parameters that result in model behaviour that
is topologically similar to the observed data to be identified.
Although we consider a specific application, to parameter inference

in the Anderson–Chaplain model of angiogenesis, the TABC ap-
proach may be adapted to be widely applicable to parametric mod-

els having topological features in the data that are informative about
model parameters, including in situations where a mixture of topo-
logical statistics and other complementary statistics could be used.
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Table 1. Mean of the root sum of squared errors and entropy of the

posterior distribution inferred from simulated data for 100 param-

eter sets drawn from a uniform prior

Statistics Mean RSSE 2rx RSSE Mean entropy 2rx entropy

Image 4.30 0.25 �2.86 0.12

Topological 3.61 0.27 �3.31 0.12

Note: Values for both the TABC-based posterior and ABC on the image-

based statistics are shown.
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Data availability

All code used to produce our results is available as a Snakemake (Köster and

Rahmann, 2012) workflow from github.com/tt104/tabc_angio. It is also

stored as an archive on Zenodo with doi: 10.5281/zenodo.5562670.

References

Adams,H. et al. (2017) Persistence images: a stable vector representation of

persistent homology. J. Mach. Learn. Res., 18, 1–35.

Agarwal,P.K. et al. (2006) Extreme elevation on a 2-manifold. Discrete

Comput. Geometry, 36, 553–572.

Anderson,A.R. and Chaplain,M.A. (1998) Continuous and discrete mathem-

atical models of tumor-induced angiogenesis. Bull. Math. Biol., 60,

857–899.

Atienza,N. et al. (2020) On the stability of persistent entropy and new sum-

mary functions for topological data analysis. Pattern Recognit., 107,

107509.

Beaumont,M.A. et al. (2002) Approximate Bayesian computation in popula-

tion genetics. Genetics, 162, 2025–2035.

Beaumont,M.A. et al. (2009) Adaptive approximate Bayesian computation.

Biometrika, 96, 983–990.

Bendich,P. et al. (2016) Persistent homology analysis of brain artery trees.

Ann. Appl. Stat., 10, 198–218.

Bubenik,P. (2015) Statistical topological data analysis using persistence land-

scapes. J. Mach. Learn. Res., 16, 77–102.

Carlsson,G. (2009) Topology and data. Bull. Am. Math. Soc., 46, 255–308.

Carrière,M. et al. (2015) Stable Topological Signatures for Points on 3D

Shapes. Computer Graphics Forum, 34, 1–12. https:

//doi.org/10.1111/cgf.12692.

Carrière,M. et al. (2017) Sliced Wasserstein Kernel for persistence diagrams.

In: International Conference on Machine Learning, Sydney, Australia.

PMLR, pp. 664–673.

Chazal,F. et al. (2014) Stochastic convergence of persistence landscapes and

silhouettes. In Proceedings of the Thirtieth Annual Symposium on

Computational Geometry, SOCG’14. Association for Computing

Machinery, New York, NY, USA, pp. 474–483.

Cohen-Steiner,D. et al. (2009) Extending persistence using Poincar�e and

Lefschetz duality. Found. Comput. Math., 9, 79–103.

Crawford,L. et al. (2020) Predicting clinical outcomes in glioblastoma: an ap-

plication of topological and functional data analysis. J. Am. Stat. Assoc.,

115, 1139–1150.

Curry,J. et al. (2018) How many directions determine a shape and other suffi-

ciency results for two topological transforms. arXiv, preprint arXiv:

1805.09782.

Del Moral,P. et al. (2012) An adaptive sequential Monte Carlo method for ap-

proximate Bayesian computation. Stat. Comput., 22, 1009–1020.

Di Fabio,B. and Ferri,M. (2015). Comparing persistence diagrams through

complex vectors. In: Murino,V. and Puppo,E. (eds.) Image Analysis and

Processing – ICIAP 2015, Lecture Notes in Computer Science. Springer

International Publishing, Cham, pp. 294–305.

Edelsbrunner,H. and Harer,J. (2010) Computational Topology: An

Introduction. American Mathematical Society, Providence, RI.

Fu,Y.X. and Li,W.H. (1997) Estimating the age of the common ancestor of a

sample of DNA sequences. Mol. Biol. Evol., 14, 195–199.

Ghrist,R. (2018) Homological algebra and data. In: Mahoney,M.W.,

Duchi,J.C. and Anna C. Gilbert,A.C. (eds.) The Mathematics of Data,

Volume 25 of IAS/Park City Mathematics Series. American Mathematical

Society, Providence, RI, pp. 273–325.

Kerber,M. et al. (2017) Geometry helps to compare persistence diagrams.

ACM J. Exp. Algorithmics, 22, 1–1.4:20.

Kirk,P. et al. (2013) Model selection in systems and synthetic biology. Curr.

Opin. Biotechnol., 24, 767–774.

Kirk,P. et al. (2015) Systems biology (un)certainties. Science, 350, 386–388.
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