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Abstract Deception is considered a psychological pro-

cess by which one individual deliberately attempts to

convince another person to accept as true what the liar

knows to be false. This paper presents the use of functional

near-infrared spectroscopy for deception detection. This

technique measures hemodynamic variations in the cortical

regions induced by neural activations. The experimental

setup involved a mock theft paradigm with ten subjects,

where the subjects responded to a set of questions, with

each of their answers belonging to one of three categories:

Induced Lies, Induced Truths, and Non-Induced responses.

The relative changes of the hemodynamic activity in the

subject’s prefrontal cortex were recorded during the

experiment. From this data, the changes in blood volume

were derived and represented as false color topograms.

Finally, a human evaluator used these topograms as a guide

to classify each answer into one of the three categories. His

performance was compared with that of a support vector

machine (SVM) classifier in terms of accuracy, specificity,

and sensitivity. The human evaluator achieved an accuracy

of 84.33 % in a tri-class problem and 92 % in a bi-class

problem (induced vs. non-induced responses). In compar-

ison, the SVM classifier correctly classified 95.63 % of the

answers in a tri-class problem using cross-validation for the

selection of the best features. These results suggest a

tradeoff between accuracy and computational burden. In

other words, it is possible for an interviewer to classify

each response by only looking at the topogram of the

hemodynamic activity, but at the cost of reduced prediction

accuracy.

Keywords Functional near-infrared spectroscopy

(fNIRS) � Deception detection � Hemodynamic activity �
Pattern recognition

1 Introduction

Deception is considered a psychological process by which

one individual deliberately attempts to convince another

person to accept as true what the liar knows to be false [1].

Deception detection mechanisms using scientific tech-

niques and technologies are important because of their

applications to business, security, and legal problems;

however, this is a challenging task, and the current tech-

nical and methodological methods for detecting intentional

deceptions are inadequate [2].

In general terms, there are two approaches to deception

detection, namely those based on psychophysiological and

neurological mechanisms, respectively. Psychophysiology

mechanisms are subtle physiological changes related to

lying, such as changes in respiration, skin surface tem-

perature, or heart rate. Among the technologies based on

these mechanisms are the polygraph, electrogastrogram,

vital signs measurements, facial expression recognition,

thermal imaging, and voice stress analysis.

Methods based on neurological mechanisms include

electroencephalography, magnetoencephalography, posi-

tron emission tomography, functional magnetic resonance

imaging, and functional near-infrared spectroscopy

(fNIRS). These technologies allow the observation of the
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neurophysiological activity of the brain, and thus can be

used to identify the brain processes related to deception. A

complete description of each technique, and its potential as

a lie detector, is given elsewhere [2]. The present study

proposes the use of fNIRS for detecting deception. fNIRS

is selected due to its low cost, portability, fair spatial res-

olution, and non-ionizing brain imaging ability [3].

1.1 Functional Near-infrared Spectroscopy

The biological basis behind fNIRS is a process known as

neurovascular coupling. The coupling between neuronal

activity and the local control of blood flow and oxygena-

tion (called hemodynamics) in the brain allows the mea-

surement and localization of neuronal activity. An increase

in brain activity causes an increase in oxygen consumption

due to an increased metabolic demand. This, in turn, causes

changes in the concentrations of oxyhemoglobin and

deoxyhemoglobin in the blood vessels, which translates

into an increase of local blood flow after a delay of

approximately 2 s [4].

fNIRS is a field-deployable non-invasive functional

optical brain monitoring technology that measures hemo-

dynamic variations in the cortical regions induced by

sensory, motor, or cognitive activation [3, 5]. It relies on

the fact that near-infrared light can penetrate through the

human scalp and skull, reaching the cortex [6]. However,

the raw signals obtained from an fNIRS device contain not

only information about the hemodynamic response of the

brain, but also information about physiological signals such

as heart rate and respiration [7].

Light in the near-infrared spectrum in the range of

730–950 nm can propagate several centimeters inside tis-

sues [6]. Light in this spectrum is diffused through the

intact scalp and skull and can be used for tracing hemo-

globin concentration changes within the brain [3]. Oxy-

genated and deoxygenated hemoglobin (HbO2 and Hb,

respectively) exhibit characteristic optical properties in this

wavelength range. The specific wavelength selection is an

optimization problem of maximizing the discrimination

between oxyhemoglobin and deoxyhemoglobin concen-

trations while satisfying the following two conditions [6]:

(1) One wavelength must be greater than 780 nm, and

the other must be lower than 780 nm.

(2) Crosstalk between oxyhemoglobin and deoxyhe-

moglobin must be as low as possible.

The measured changes in concentration of Hb and

HbO2 are relative to an initial measurement (baseline)

[7]. It is important to state that when recording the

baseline, non-evoked signals associated with neuro-

muscular coupling are also recorded; these signals

contribute to the variability of the fNIRS signal [6].

Averaging each signal in the time window in which the

baseline is recorded diminishes this effect. A full

description of the basis of the fNIRS technique as well

the equipment characteristics (temporal and spatial

resolution, data acquisition, etc.) can be found else-

where [3].

1.2 fNIRS as Deception Detection Technique

There is increasing interest in fNIRS as a deception

detection method [8–12]. Tian et al. [9] reported that

there are significant changes in hemoglobin concentration

associated with deceptive responses relative to a base-

line, compared with differences not statistically signifi-

cant when subjects are telling the truth. They averaged

the relative changes in oxyhemoglobin and deoxyhe-

moglobin among eleven subjects and showed the char-

acteristic deceptive and truthful behaviors. Their proposal

is to create a topographic representation based on the

average behavior during the interrogation, but the user

does not apply the current mapping during each question

to detect deception.

Kozel et al. [12] reported that the prefrontal cortex

has a greater activation during deception, especially in

the left dorsolateral and right anterior prefrontal cortices.

These results showed that fNIRS obtains similar results

to those found by functional magnetic resonance imaging

studies of deception. Ding et al. [10] explored the

involvement of the prefrontal brain regions in sponta-

neous deception. They found that when a subject is lying

(either in spontaneous or instructed deception), the left

superior frontal gyrus presents more activity. Finally, Hu

et al. [11] used support vector machines (SVMs) to

classify the responses of eight subjects in deception and

truth-telling scenarios.

Studies using fNIRS to detect lies have focused on the

mathematical and computational analysis of the signals,

making it difficult for the users to read numerical results.

The present work proposes a methodology that allows

the classification of a given answer as a lie or a truth,

and compares two approaches to achieve this task: a

visual one, in which an interviewer classifies each

answer using only a false color topogram that maps the

hemodynamic changes in the prefrontal cortex of an

interviewee, and an automatic one based on an SVM

classifier.
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2 Materials and Methods

2.1 Equipment

Hemodynamic changes were acquired using an fNIRS

Model 1100 Imager by fNIR Devices LLC, a non-invasive

oxygenation and blood volume trend imager, and its soft-

ware Cognitive Optical Brain Imaging Studio (COBI Stu-

dio). The system has a flexible fNIRS sensor pad with four

light sources at two wavelengths (730 and 850 nm),

designed to monitor dorsal and inferior cortical areas

underlying the forehead [3]. There are ten sensors that

measure the photons reflected back from the tissues at a

sampling rate of 2.004 Hz for each channel, with a tem-

poral resolution of 500 ms per scan and approximately

1.25 cm of penetration depth. This sensor allows the

monitoring of the dorsal and inferior frontal areas under-

lying the forehead [3]. Thus, there are 16 voxels, each one

deriving in two discrete time signals, which are propor-

tional voltages to the absorption at each wavelength.

2.2 Subjects and Experimental Setup

The objective of the experiment was to discriminate

between deceptive and truthful behavior by measuring

brain activity changes in the prefrontal cortex using fNIRS.

The brain activity of ten subjects was measured while they

answered an interview composed of 30 questions. The

procedures followed were in accordance with the Helsinki

Declaration of 1975, as revised in 2004. The responses of

the participants were classified into four categories repre-

sented by different values of variable m as follows:

(1) Induced lies (m = 1)

(2) Induced truths (m = 2)

(3) Non-induced lies (m = 3)

(4) Non-induced truths (m = 4)

For Induced Lies and Induced Truths, the subject was

explicitly asked to respond with lies or truths, and for Non-

Induced Lies and Non-Induced Truths, the subject

answered the questions without instruction to either lie or

tell the truth [8]. The experiment involved a Guilty

Knowledge Test (GKT), based on a previously reported

one [9]. The GKT is summarized as follows:

(1) The participant enters the room where the experi-

ment takes place and takes a seat in front of a closed

box.

(2) The participant is instructed to take one of two

objects, A or B, from the box when the investigator

leaves the room, and hide it.

(3) The fNIRS equipment is placed on the participant’s

forehead and calibrated according to the manufac-

turer’s specifications.

(4) The participant is asked to relax for 10 min, and then

the baseline is measured.

(5) The signal recording is started.

(6) The interview, which is divided into three stages,

begins. In the first stage, participants are asked to

respond as if they had not taken any object (Non-

Induced responses). In the second stage, participants

are asked to respond only with lies (Induced Lies),

while in the third stage, they are asked to respond

only with truths (Induced Truths). In each stage, the

participant answers 10 questions.

(7) The signal recording ends.

(8) The participant is asked to answer all the previous

questions truthfully at the end of the interview.

These answers are taken as the ground truth.

Unlike in the work by Tian [9], the subjects were not

trained and the answers were verbal instead of given via a

keyboard.

2.3 fNIRS Signal Preprocessing

The fNIRS device outputs light intensity data as a voltage

signal for two wavelengths. The total number of raw sig-

nals is 2i, where i is the number of voxels in the device. In

the fNIRS context, a voxel is a two-dimensional structure

that covers a certain area of the forehead. Each voxel

Fig. 1 Voxel distribution of device containing 16 voxels. The voxels

can be grouped into those corresponding to brain’s left hemisphere

(green) and right hemisphere (red)
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outputs two voltage signals, one for each wavelength.

Figure 1 shows the voxel distribution of a device con-

taining 16 voxels.

These signals are filtered using a low-pass finite impulse

response (FIR) filter with a cutoff frequency of 0.14 Hz.

[13]. A detailed procedure for the design of a FIR filter

using the Hamming window can be found elsewhere [14].

After the signal had been filtered, the relative changes in

concentration of oxyhemoglobin and deoxyhemoglobin

versus time were estimated by measuring the change in

optical density (OD) using the modified Beer-Lambert

equation [7]:

DOD kð Þ ¼ log
Ib

I kð Þ ¼ aHbDCHb kð Þ þ aHbO2
DCHbO2

kð Þ

ð1Þ

where DOD(k) is the change in optical density (lmol/L) at

the current sample k, Ib is the light intensity measurement

at the baseline, I(k) is the light intensity measure at a given

sample k, aHb and aHbO2
are the molar extinction coeffi-

cients, and DCHb(k) and DCHbO2
(k) are the relative changes

(lmol/L) in Hb and HbO2, respectively. It is also possible

to estimate the relative changes in blood volume (DB(k))

and blood oxygenation (DO(k)) as follows [7]:

DB kð Þ ¼ DCHbO2
kð Þ þ DCHb kð Þ

DO kð Þ ¼ DCHbO2
kð Þ � DCHb kð Þ

ð2Þ

2.4 Question-Level Processing

According to a previous study [15], the average hemody-

namic peak time, after telling either a lie or a truth, is

within 1.6 s. Therefore, the relative changes in oxygenation

and blood volume were computed (using Eq. (2)) for each

voxel in a time window of 5 s immediately following a

stimulus (the end of a question), as shown in Fig. 2. Then,

the average of the relative changes in blood volume at each

voxel (DB
q

v) along this time period was computed as:

DB
q

v ¼
1

n

Xn

k¼1

DBq
v kð Þ ð3Þ

where n is the number of samples in the 5-s window and

DBv
q(k) is the change in blood volume for question q = 1,

2, …, Q, in voxel v = 1, 2, …, V, at sample k. Q is the total

number of questions and V is the total number of voxels.

Analogously, the average of the relative changes in oxy-

genation at each voxel (DO
q

v) was computed.

2.5 Class-Level Processing

After DB
q

v and DO
q

v had been computed, all the questions

for a particular subject were grouped into the classes

described in Sect. 2.1. Then, the mean of each class by

voxel DB
m

v was computed as:

DB
m

v ¼ 1

Qm

XQm

q¼1

DB
q

v ð4Þ

where Qm is the number of questions that belong to class m

(Qm , Q). Analogously, the mean value of class m at

voxel v for the relative changes in oxygenation DO
m

v was

computed.

2.6 Feature Selection

The objective of this stage is to reduce the number of

information that a human observer has to analyze to per-

form visual classification. After DB
q

v , DO
q

v , DB
m

v , and DO
m

v

are computed for every subject independently, the most

relevant voxels vr are selected to discriminate among

classes according to the following criteria:

• Heuristic criterion: DB
m¼1

v � DB
m¼2

v

���
���� 1, for

v = 1,2,…,V. If no voxel meets this condition, take

the two voxels with the greatest difference. If only one

voxel meets this condition, take it along with the

feature that shows the second greatest difference.

Analogously, use the same criteria for

DB
m¼3

v � DB
m¼4

v

���
���� 1.

• Non-parametric criterion: Vm 2 M = {1, 2, 3, 4}

define Smv ¼ DB
q¼j

v ;DB
q¼jþ1

v ; . . .;DB
q¼L

v

n o
for

q = {j,j ? 1,…,L} that belong to class m, and v = 1, 2,

…,V. Compare the boxplots of Sv
m=1 versus Sv

m=2 and
Fig. 2 The time window of length Dt following a stimulus is

analyzed for each voxel
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Sv
m=3 versus Sv

m=4. Select the voxels with no overlap in

the interquartile range of their boxplots.

• Parametric criterion: Select the voxels with statistically

significant differences (a = 0.1, two-tailed t distribu-

tion) in DB
m¼1

v � DB
m¼2

v

� �
, DB

m¼3

v � DB
m¼4

v

� �
and

DB
m¼1;2

v � DB
m¼3;4

v

� �
.

The voxels that met at least one of these three conditions

were selected as candidate features. Matrices of all the

subjects, marked with a ‘‘1’’ for candidate features and a

‘‘0’’ for non-candidate features, were then created. A total

of 14 matrices were created for both relative change in

blood volume and relative change in oxygenation (7 for

each one). The group of voxels that appeared most fre-

quently was selected, as shown in Fig. 3. The objective was

to find the smallest set of voxels containing at least one vr

for each subject. The features selected were DB
q

v and DO
q

v

for the most frequent voxels.

2.7 Classification

The selected features were used to classify each question

into one of the possible classes. The performance of visual

classification was compared with that of automatic classi-

fiers using the features found by each criterion individually

first and then using all the features found independently of

the criterion used.

2.7.1 Visual Classification

DB
q

v (Eq. (3)) was mapped into the form of a topogram,

represented as a false color map using a linear interpolation

at the edges of each color. Only the relevant voxels

selected in the previous section are shown to the evaluator.

The rest are blocked out by coloring them in black, as

shown in Fig. 4. The minimum value of DB
q

v is represented

in blue, while the maximum value is represented in red.

Fig. 3 Selection of most

frequent voxels used to

discriminate between induced

truths and induced lies using the

difference between means. In

green are all voxels that met the

selection criteria. In blue are the

voxels that met the criteria and

were selected

Fig. 4 User interface used to classify every question as one of four classes. Non-relevant voxels are colored in black
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The same process was used for DB
m

v , DO
q

v , and DO
m

v

(Eq. (4)).

This results in Q ? M topograms for each subject. A

single topogram is shown in Fig. 5. The topogram map-

pings of DB
m

v are computed and taken as visual references.

The topogram of each question (DB
q

v) is compared against

the visual references and labeled as the category that it

resembles the most. It should be noted that the reference

topograms are mapped for each subject individually.

This process was performed for the 30 questions for

each of the 10 subjects, which were presented in random

order to the evaluator, who had normal vision acuity, was

not color-blind, and had no history of ophthalmic diseases

that would prevent him from evaluating the results

correctly.

2.7.2 Automatic Classifiers

An SVM classifier was used to perform automatic classi-

fication. This learning machine non-linearly maps input

vectors into a very-high-dimensional feature space. In this

new space, the different classes can be separated [16]. The

shape of the decision border depends on the parameters

used (especially the kernel type). These borders can be

linear or highly non-linear. The basic idea of the SVM is

the construction of an optimal hyperplane that separates

different classes with the maximal margin, which is defined

as the distance between the hyperplane and the closest

training input vector [17]. The LIBSVM library was used

to train the classifier as suggested in a previous study [18].

The performance of the visual and automatic classifiers

was evaluated in terms of specificity, sensitivity, and

accuracy. Specificity is defined as the ratio of true nega-

tives to the sum of false positives and true negatives;

sensitivity is the ratio of true positives to the sum of true

positives and false negatives; finally, accuracy is the ratio

of the sum of true positives and true negatives to the sum of

true positives, true negatives, false positives, and false

negatives.

3 Results and Discussion

3.1 Feature Selection for Visual Classification

Table 1 shows the voxels selected using the various crite-

ria. Only the relative change in blood volume presented

relevant differences among classes. Additionally, an anal-

ysis of the results of the three criteria indicates that, with

our dataset, it is not possible to discriminate between Non-

Induced Truths and Non-Induced Lies. Therefore, the

performance of classifiers in a three-class problem (In-

duced Lies, Induced Truths, Non-Induced responses) was

compared using exclusively the relative changes in blood

volume [19].

Fig. 5 Topogram of DB
q

v , created by mapping Eq. (3) into false color space. Analogous topogram is created for every question in questionnaire

Table 1 Relevant voxels used to discriminate among classes using relative change in blood volume

Method Description Relevant Voxels

Heuristic criterion Discrimination between non-induced truths and non-induced lies V8, V10

Heuristic criterion Discrimination between induced truths and induced lies V6, V8, V12

Non-parametric criterion Discrimination between non-induced truths and non-induced lies V10, V12

Non-parametric criterion Discrimination between induced truths and induced lies V1, V8

Parametric criterion Discrimination between non-induced truths and non-induced lies –

Parametric criterion Discrimination between induced truths and induced lies V1, V8

Parametric criterion Discrimination between induced and non-induced responses V3, V14
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3.2 Classification

Table 2 shows the performance of the human evaluator

when classifying the responses as Induced Lies, Induced

Truths, and Non-Induced responses. The non-parametric

and heuristic criteria showed similar performance in terms

of accuracy (85.33 and 84.00 %, respectively). The para-

metric criterion achieved only 81.67 %. The decrease in

performance was expected because this criterion assumes a

normal distribution in the data, while the non-parametric

criterion does not make that assumption. Although the non-

parametric and heuristic criteria used only 4 voxels, the

addition of more voxels using the combination of the three

feature selection methods did not improve performance,

since the use of the three criteria combined achieved an

accuracy of 84.00 %.

When the problem was simplified to discriminate

between induced and non-induced responses, the perfor-

mance of classification improved, as can be seen in

Table 3. In this case, all the feature selection methods

showed similar performance. The combination of the three

criteria showed the best results, with an accuracy of

92.00 %, followed by the parametric and non-parametric

criteria (91.00 % each one) and finally the heuristic crite-

rion (90.33 %).

Table 4 shows the performance of the SVM classifier

for the same classification task. For this case, a fifth feature

set consisting of all 16 voxels was added. The SVM clas-

sifier took advantage of the increase in the amount of data,

since the best results were obtained using the 16 available

voxels (95.63 %), followed by the use of the three criteria

together (which selected 7 voxels and achieved an accuracy

Table 2 Accuracy of evaluator in 3-class problem using visual classification

Subject Heuristic criterion (%) Non-parametric criterion (%) Parametric criterion (%) 3 criteria (%)

S. 1 86.67 83.33 83.33 86.67

S. 2 76.67 73.33 73.33 76.67

S. 3 93.33 93.33 100 100

S. 4 80.00 90.00 73.33 70.00

S. 5 80.00 76.67 86.67 80.00

S. 6 96.67 90.00 90.00 86.67

S. 7 53.33 60.00 56.67 63.33

S. 8 93.33 96.67 93.33 96.67

S. 9 83.33 86.67 70.00 80.00

S. 10 96.67 93.33 90.00 100

Av. 84.00 84.33 81.67 84.00

Performance was computed using voxels selected by each feature selection criterion individually and using voxels selected by 3 criteria together

Table 3 Accuracy of evaluator in bi-class problem using visual classification

Subject Heuristic criterion (%) Non-parametric criterion (%) Parametric criterion (%) 3 criteria (%)

S. 1 96.67 96.67 96.67 96.67

S. 2 90.00 90.00 90.00 90.00

S. 3 100 100 100 100

S. 4 86.67 93.33 93.33 86.67

S. 5 90.00 90.00 93.33 93.33

S. 6 100 96.67 100 100

S. 7 60.00 66.67 70.00 73.33

S. 8 93.33 96.67 100 96.67

S. 9 90.00 86.67 73.33 83.33

S. 10 96.67 93.33 93.33 100

Av. 90.33 91.00 91.00 92.00

Performance was computed using voxels selected by each feature selection criterion individually and using voxels selected by 3 criteria together
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of 93.22 %) and finally the heuristic, non-parametric, and

parametric criteria (each of which selected 4 voxels and

had accuracies of 91.62, 89.41, and 87.82 % respectively).

Finally, the ability of every set of features to predict the

elements of an individual class was compared. Each

method was compared in terms of specificity, sensitivity,

and accuracy. Table 5 shows the performance of each set.

The table compares the performance achieved when using

the set of features selected by the heuristic, non-parametric,

and parametric criteria, the three criteria together, and the

information of all the voxels for both SVM and visual

classification (Vis). For the visual approach, the heuristic

criterion should be used for identifying Induced Lies and

Induced Truths (it presented the highest sensitivity scores

of 82.4 and 87.0 %, respectively), while the three criteria

(sensitivity score of 87.2 %) should be used for identifying

Non-Induced responses. Otherwise, the use of all the

available voxels is suggested.

The SVM classifier outperformed the visual classifica-

tion independently of the feature set, and the best results

were obtained when using the relative changes in blood

volume in all the available voxels; however, this also

involves a higher computational cost. These results suggest

that it is possible to use a visual method to classify the

subject responses without the need for an automatic clas-

sifier, but with a performance decrease of about 11.3 %

(the difference between the best results achieved by the

SVM classifier compared with those of the human evalu-

ator in the tri-class problem). Whether the decrease in

computational cost is worth the decrease in performance is

a decision that must be made by the interviewer. These

results suggest that it is possible not only to identify a

general pattern in the hemodynamic behavior when the

subjects are lying or telling the truth, as presented in a

previous study [9], but also to classify each response

individually.

Regardless of the feature selection criteria and the

classification method, important variations are present in

the performance scores among different subjects. This is

explained by the difference among classes being very clear

for some subjects, but very subtle for others. Figure 6

shows a comparison of the characteristic image of each

class for two subjects.

The relative activity level for each category (Induced

Lies, Induced Truths, Non-Induced Lies, and Non-Induced

Truths) was computed as the average of all the voxels vr for

the questions within a given category. Figure 7 shows these

Table 4 Accuracy of SVM classifier using different feature sets in three-class problem

Subject Heuristic criterion (%) Non-parametric criterion (%) Parametric criterion (%) 3 criteria (%) All voxels (%)

S. 1 91.44 79.22 90.66 92.66 91.66

S. 2 90.33 67.77 69.33 88.66 93.44

S. 3 97.55 97.77 97.88 98.00 98.44

S. 4 79.77 89.88 91.44 89.55 91.88

S. 5 97.00 94.22 95.11 97.55 99.77

S. 6 93.11 89.55 90.22 96.33 99.22

S. 7 84.66 87.11 64.33 80.77 87.22

S. 8 92.11 96.11 93.11 96.11 98.55

S. 9 92.11 95.88 90.33 94.88 98.77

S. 10 98.11 96.55 95.77 97.66 97.33

Av. 91.62 89.41 87.82 93.22 95.63

Table 5 Specificity (Spc.), Sensitivity (Sen.), and Accuracy (Acc.)

averaged across all subjects when identifying elements of a single

class

Spc. Sen. Acc.

Vis. (%) SVM Vis. SVM Vis. SVM

Non-induced responses

Heuristic 94.7 94.8 82.5 89.6 90.3 93.1

Non-parametric 94.8 93.6 84.1 93.2 91.0 93.5

Parametric 93.9 93.5 85.4 91.9 91.0 93.0

3 criteria 94.4 95.7 87.2 93.9 92.0 95.1

All voxels – 97.7 – 95.9 – 97.1

Induced lies

Heuristic 88.0 93.2 82.4 88.7 86.3 91.7

Non-parametric 87.4 93.8 79.5 85.3 85.0 90.8

Parametric 88.1 92.8 78.3 84.1 85.0 89.8

3 criteria 88.7 95.3 80.2 91.5 86.0 94.0

All voxels – 96.6 – 93.8 – 95.6

Induced truths

Heuristic 93.5 99.0 87.0 95.3 91.3 97.7

Non-parametric 93.0 96.5 86.0 89.8 90.6 94.2

Parametric 90.5 95.3 81.0 87.8 87.3 92.7

3 criteria 92.9 98.9 84.3 94.6 90.0 97.4

All voxels – 98.7 – 96.5 – 98.0
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levels for all the subjects. In general, there is a difference

among subjects when telling Induced and Non-Induced

responses (the two highest values in the false color scale

are either the induced responses or the non-induced

responses in all the subjects but Subject 5). Figure 7 also

shows that the brain activity in most subjects is greater

when telling a Non-Induced Lie than when telling a Non-

Induced Truth. This result is consistent with a previously

study [10], where the authors found that telling a lie

induces greater brain activation, as indicated by an incre-

ment in the blood volume in the prefrontal cortex. The

behavior is different for the induced responses. For these,

half of the subjects presented greater activity when telling

an Induced Lie, and the other half presented greater activity

when telling an Induced Truth.

When a human performs the classification, it is impor-

tant that he/she is able to visually distinguish between

classes. For this reason, a general visual pattern that rep-

resents the average response of all the subjects is ideally

computed and showed as a topogram. This serves as ref-

erence to classify each response. However, we were not

able to find a general pattern that represented an average

response, but we were able to find individual visual pat-

terns representing the average response for each subject.

This allowed classifying each response with the previously

mentioned accuracy.

4 Conclusion

A comparison between a human evaluator and an auto-

matic classifier for deception detection based on brain

hemodynamics from fNIRS was presented. The human

evaluator used a visual approach for classification. For this,

topograms of the activity in the relevant voxels of the

prefrontal cortex were constructed. Relevant voxels were

selected based on parametric, non-parametric, and heuristic

criteria. With the proposed methodology, the human eval-

uator successfully identified 84.33 % of the answers in a

tri-class problem (Induced Lies, Induced Truths, and Non-

Induced responses) and 92 % of the answers in a bi-class

problem (Induced Lies and Induced Truths). In compar-

ison, an SVM classifier correctly classified 95.63 % of the

answers in the tri-class problem using the same relevant

features; however, the improvement in performance comes

at a cost of higher computational complexity. The selection

of the approach should be determined by the application: if

the goal is to classify the subject’s responses while the

interviewer is executing the questionnaire with fair per-

formance, the visual approach is suggested. On the other

Fig. 6 Characteristic images of four classes for a Subject 1 and b Subject 7. It is difficult to visually discriminate among classes 1, 2, and 3 for

Subject 7; however, the difference is clearer for Subject 1

Fig. 7 Relative level of brain activity required to tell Non-Induced

Lies (NL), Non-Induced Truths (NT), Induced Lies (IL), and Induced

Truths (IT) using information of relative changes in blood volume
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hand, if the goal is to classify the subject’s responses with

high accuracy, the automatic classifier is suggested.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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