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Several neural decoding algorithms have successfully converted brain signals into

commands to control a computer cursor and prosthetic devices. A majority of decoding

methods, such as population vector algorithms (PVA), optimal linear estimators (OLE),

and neural networks (NN), are effective in predicting movement kinematics, including

movement direction, speed and trajectory but usually require a large number of neurons

to achieve desirable performance. This study proposed a novel decoding algorithm even

with signals obtained from a smaller numbers of neurons. We adopted sliced inverse

regression (SIR) to predict forelimb movement from single-unit activities recorded in

the rat primary motor (M1) cortex in a water-reward lever-pressing task. SIR performed

weighted principal component analysis (PCA) to achieve effective dimension reduction

for nonlinear regression. To demonstrate the decoding performance, SIR was compared

to PVA, OLE, and NN. Furthermore, PCA and sequential feature selection (SFS) which

are popular feature selection techniques were implemented for comparison of feature

selection effectiveness. Among SIR, PVA, OLE, PCA, SFS, and NN decoding methods,

the trajectories predicted by SIR (with a root mean square error, RMSE, of 8.47 ± 1.32

mm) was closer to the actual trajectories compared with those predicted by PVA (30.41

± 11.73 mm), OLE (20.17 ± 6.43 mm), PCA (19.13 ± 0.75 mm), SFS (22.75 ± 2.01

mm), and NN (16.75 ± 2.02 mm). The superiority of SIR was most obvious when the

sample size of neurons was small. We concluded that SIR sorted the input data to obtain

the effective transform matrices for movement prediction, making it a robust decoding

method for conditions with sparse neuronal information.

Keywords: sliced inverse regression (SIR), neural decoding, forelimb movement prediction, neural networks (NN),
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INTRODUCTION

In order to improve daily life activities for paralyzed patients,
the establishment of a non-muscular communication interface
between brain neurons and machines has rapidly developed over
the last two decades (Schwartz, 1993, 1994; Donoghue, 2002;
Schwartz et al., 2006; Velliste et al., 2008). With assistance from
stable generated brain-derived control signals incorporated with
prosthetic devices and motor functions, paralyzed patients now
possibly regain their ability to move a computer cursor (Kennedy
et al., 2000; Hochberg et al., 2006; Gilja et al., 2015), control an
anthropomorphic prosthetic arm (Wodlinger et al., 2015), and
drive a prosthetic device (Hochberg et al., 2012; Collinger et al.,
2013) through a brain-machine interface (BMI). One important
challenge to BMI is how to design an appropriate neural decoder
(Pohlmeyer et al., 2014). To address the challenge, previous
studies have carefully utilized training paradigms that have been
designed for a BMI decoder and controller. For brain-derived
control signals, neural decoding is an indispensable technique
that translates neuronal activities to physical states, such as the
position of a foraging rat (Brown et al., 1998), arm movement
(Ashe and Georgopoulos, 1994), movement speed (Moran and
Schwartz, 1999), hand position (Paninski et al., 2004), and joint
angular velocity (Reina et al., 2001).

A population vector algorithm (PVA), one method for
decoding motor cortical activity, assumed that a neuron’s
firing rate is related to the velocity vector of movement. PVA
categorizes each neuron’s contribution into directional and
distance information of the movement by a directional tuning
function under uniform variance conditions (Georgopoulos
et al., 1988). A previous study showed that PVA decoding could
expose the visuomotor coordinate transformations between
visual and motor information by processing masses of neuronal
activities recorded from relative brain regions (Takeda and
Funahashi, 2004; Watanabe et al., 2009). PVA presented superior
performance in predicting hand path throughout reaching tasks
(Schwartz, 1994). However, a uniformity constraint is usually
not the case for real experiments, and the equality of the
tuning function is variable because of the small amount of unit
recordings in realistic applications (Schwartz et al., 2001). To
compensate for the non-uniform preferred directions in the
population of recorded neurons, an optimal linear estimator
(OLE) was proposed to define the preferred direction of each
neuron using the center of mass of the tuning function (Salinas
and Abbott, 1994). Requiring large numbers of neurons with
a temporal solution of 10–100 ms, PVA and OLE studies
successfully predicted the kinematic parameters of a primate arm
movement (Schwartz et al., 2001; Takeda and Funahashi, 2004;
Watanabe et al., 2009).

A Bayesian decoder, a probabilistic decoding technique, could
achieve accurate offline trajectory reconstructions by combing
simple trajectory models (Yu et al., 2007). However, off-line
reconstruction may not be suitable for online prosthesis control
because the essential features of a real prosthesis are not
acquired, and the system dynamics may vary because the user
is in a closed loop. Furthermore, offline and online approaches
resulted in different parameter choices for decoding algorithms

(Cunningham et al., 2011). Therefore, the neural decoders and
the motor prosthesis must be tested online even though online
control experiments are more expensive both in terms of physical
resources and time (Gilja et al., 2011). A recursive Bayesian
decoder, i.e., a Kalman filter, was developed to decode the
neural data recorded in the monkey motor and premotor cortex
in response to goal-directed reaching movements (Shenoy and
Carmena, 2014). It yielded high decoding performance and
accurate trajectory prediction when the probability modeling
assumptions were satisfied. For online purposes, a modified
Kalman filter that transforms the acquired neural signals into a
controller input was further designed for online cursor-control
tasks and resulted in high performance in rhesus monkeys (Gilja
et al., 2012). To adapt decoders to the dynamics of a prosthetic
device and its environment, a likelihood gradient ascent and
a self-recalibrating classifier were proposed to update decoder
parameters during closed-loop BMI operation and normal use
(Dangi et al., 2013; Bishop et al., 2014). Additionally, neural
networks developed from probabilistic aspects were designed in
an online setting (Sussillo et al., 2012) and in a real-time setting
(Dethier et al., 2013).

A selection of cortical neurons, instead of all available
neurons, used in the encoding process could improve the control
performance of the neuroprosthetic system, such as robotic arms
(Wahnoun et al., 2006). However, neural coding mechanisms
evolve with time, individual experience, and the learning process
(Nicolelis, 2001), i.e., the contribution from individual neurons
may vary considerably from day to day (Carmena et al., 2003).
It has been observed that neuronal activity for monkey was not
as stable from day to day (Sadtler et al., 2014). The decoding
algorithms which require previous day’s observation of neural
activity, such as PVA and OLE, may be affected by neuron’s
stability. For this reason, the selection of cortical neurons
becomes an essential issue for the decoding processes, especially
after continuous practice and learning. Furthermore, long-term
inflammatory responses lead to a gradual decrease of recording
quality and the eventual breakdown of the electrode’s recording
ability (Polikov et al., 2005; Schwartz et al., 2006). Losing neural
signals over time will result in chronic coding failure. Thus, a
decoder that has the capability to process recorded signals from a
small number of neurons will become more important.

Sliced inverse regression (SIR) is a data-analytic tool that can
effectively perform nonlinear regression based on a small number
of inputs (Li, 1991). It divides the range of output variable into
several intervals and partitions the input data into several slices
according to the corresponding output value. Each slice consists
of data with a similar contribution to output estimation. SIR
then applies a weighted principal component analysis (PCA) to
theses slice means of data to find effective dimension reduction
directions for general and flexible setups. Each slice gains weight
according to its contribution to output estimation. With a simple
inverse regression model, SIR requires a low computational
cost and retains reliably stable subspaces to extract primary
information from noisy data with effective dimension reduction
directions. Because of the good performance in dimension
reduction and data de-noising, SIR has been widely applied to
data-intensive marketing environments (Naik et al., 2000), data
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classification (Dai et al., 2006; Wu, 2008), and medical images
(Wu and Lu, 2007; Lu, 2008; Tu et al., 2015).

It has been known that the number of recorded neurons in
rodents is less than primates in BMI applications. Owing to
the abilities of processing small number of input variables and
slicing data for inverse regression model, SIR was considered
as a neural decoding algorithm to provide realistic behavior
interpretation for brain-derived control tasks in this study. A
surrogate driving task with lever-pressing was designed for
evaluating the efficacy of the proposed decoding algorithm in
predicting motor functions of rats. The signals of lever-pressing
and the spike trains related to the intended forelimb movement
trajectories were simultaneously acquired during the task. This
study adopts SIR to predict intended forelimb movement
trajectories according to the recorded neurons from primary
motor (M1) cortex. We presented experimental validation of
the proposed decoding system using the recorded neurons to
predict forelimb movement. We demonstrated that the proposed
SIR decoding algorithm can not only extract primary features
from the small number of neurons but perform more accurate
prediction of intended forelimb movement trajectories than PVA
and OLE which usually require hundreds of neurons in primates.

MATERIALS AND METHODS

Animal Preparation
Four male Wistar rats weighing 250–300 g (BioLASCO Taiwan
Co., Ltd., Taiwan) were used in this study. All rats were
individually housed in a 12 h light-dark cycle (light from 7.00
to 19.00 h) at room temperature (22 ± 1◦C) with access to
food and water ad libitum in the experimental animal center of
National Yang Ming University. All experiments were conducted
according to standards established in the Guide for the Care and
Use of Laboratory Animals, which has been approved by the
Institutional Animal Care and Use Committee at the National
Yang Ming University.

Animal Training and Behavioral Tasks
The rats were trained to use their right forelimb to press a lever to
obtain the water reward for a week before electrode implantation,
as shown in Figure 1. The rat was placed in the lab-designed
Plexiglas testing box with a 15-cm tall lever above the floor on
the left side (Figure 1A) and a water-feeder with a flow rate of 1
ml/time on the right side as shown in Figure 1B (Lin et al., 2016).
Figure 1C shows the experimental setup where a rat was pressing
a lever for the water reward. Before achieving the successful lever-
pressing training, all rats underwent water deprivation for 8 h per
day. In this study, we have defined the criterion for the successful
training was to consecutively repeat the lever-pressing and water-
drinking for five times during daily 5-h sessions (9:00–14:00), for
4 days at the most. Once the rats learned the association, they
always kept the skilled concept (Lin et al., 2016).

Surgery and Electrophysiological Mapping
Animals were anesthetized with pentobarbital (50mg/Kg, i.p.)
and were placed on a stereotaxic apparatus (Model 900,
Kopf Instruments, Tujunga, CA, USA). A 16-channel stainless

microwire electrode array (diameter of 0.002 ft., California Fine
Wire Co., Ltd, Grover Beach, CA, USA) was inserted vertically
and was implanted into layer V of the M1 cortex (2–4mm
anterior and 2–4mm left-lateral to bregma; 1.7 mm ventral to the
cortical surface) by referring to a previous work . Here, a standard
intracortical microstimulation (ICMS) technique was conducted
to deduce maps of rat forelimb movement representations in the
M1 cortex, which could help assess the functional integrity of
M1 cortex and activate pyramidal cell fibers. ICMS delivered a 40
ms stimulus train with 0.2 ms square-wave monophasic cathodal
pulses at 350Hz to the electrodes (impedance: 200–400 k� at
1 kHz) by an isolated pulse stimulator at a rate of 1/s (Model 2100,
A-M Systems Inc., Sequim, WA, USA). Because the intensity
of the stimulating current depends on the distance between
the neuron and the stimulating electrode, the threshold current
intensity can be estimated by a strength-distance relationship as
follows:

I = kr2 + Im (1)

where k = 1292µA/mm2 for direct activation, r is the distance,
and Im = 1µA. An implantation location of the electrode
site was defined as valid when the rat forelimb was activated
by ICMS with a current intensity less than 60µA. Then, a
stainless steel screw was secured to the skull over the cerebellum
as a reference electrode. Finally, the microwire electrode array
was secured in the skull using dental acrylic (Type 1 Class 1,
Hygenic Corp., Akron, OH, USA) and was covered with a small
amount of 2% agar. For a better recovery, all rats were given
an analgesia (Buprenorphine/Buprenex, 0.05 mg/kg s.c.; Reckitt
Benckiset Healthcare Ltd, Hull, UK) every 8–12 h for 3 days
and antibiotic treatment (Ampicillin, 100mg/kg s.c. twice daily;
Bristol Myers Squibb, New York, NY, USA) for 7 days after
surgery. Following a 1-week post-surgery recovery period, all
implanted rats received the behavioral task to use their forelimb
to press a lever for water reward. The forelimb movements
in the rat were captured by a charge coupled device (CCD)
camera (DFK 21F04, Imaging Source, Bremen, Germany) and the
neuronal signals were recorded by a Multi-channel Acquisition
Processor (MAP, Plexon Inc., Dallas, TX, USA) through a 16-
channel stainless microwire electrode array implanted in the rat
M1 cortex. The detailed data recordings for forelimb movement
and neuronal signals are described in the Supplementary Note 1.

Trajectory Prediction Model
This study assumed that lever-pressing forelimb movement,
which was considered to be a stereotyped movement, was
performed at a nearly constant distance from the CCD in each
trial, i.e., the distance did not vary dramatically. The recorded
trajectory might consist of major forelimb movement and minor
whole body movement which led to the coupling mechanism of
two-dimensional forelimb movement (see Supplementary Note
1). The coupling mechanism resulted in a nonlinear relationship
between neural activity and forelimb movement, and thus caused
general linear regression to fail at forelimbmovement prediction.
SIR performs as a nonlinear regression since it can recover
the most severe nonlinearity of the data by estimating effective
dimensional reduction (e.d.r.) space (Li, 1991). Therefore, SIR
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FIGURE 1 | Experimental setup and protocol. A perspective drawing (A) and vertical view (B) of the Plexiglas testing box. A lever is on the left side of the barrier

and a water supply is on the right side. (C) A rat is using his right forelimb to press the lever to obtain a water reward. Simultaneously, his forelimb movement trajectory

is videotaped by a camcorder approximately 25 cm away from the box, and the neuronal activities are recorded by the implanted electrode.

was adopted to predict the forelimb movement according to the
neural activity in this study.

The two-dimensional trajectory movement vectors vx and vy
in Cartesian coordinates are transformed into polar coordinates
as follows:

vr =
√

v2x + v2y (2)

vθ = tan−1 vy

vx
(3)

where vr and vθ are the magnitude and direction, respectively.
The movement response g is assumed to be given by a

deterministic function f with additive noise ε, so that

g = f (β1z, ...,βKz, ε) (4)

where g is vr or vθ , and z is firing rate data in Rp. Here, β ’s
are unknown linearly independent projection row vectors, and
K is the sufficient number of β ’s. The p-dimensional variable
z is projected onto the K-dimensional space by functional
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relationship f , where p ≥ K. The combinations of β ’s are
called the e.d.r. direction and the linear space produced by
the β ’s are called e.d.r. space. The present study assumes the
movement response g was predictable fromK projected variables.
To train the functional relationship f , a set of training data
consisting of N training samples was prepared. According to
the model assumptions, the centered inverse regression curve
E

(

z
∣

∣g
)

− E (z) is included in the linear subspace, which is
spanned by βk6zz

(

k = 1, . . . ,K
)

, where 6zz represents the
covariance matrix of z. SIR sorts and divides the whole data
z into H intervals (slices) according to the g value. Each slice
has almost equally number of observations. SIR then performs
an eigenvalue decomposition of the weighted covariance matrix
6E(z|g ) with respect to 6zz . The weighted covariance matrix

6E(z|g ) is constructed as:

6E(z|g) =

H
∑

h= 1

mh(z̄h − z̄) (z̄h − z̄)′

(N − 1)
(5)

where mh denotes the size of each slice, z̄ is the sample mean of
z, and z̄h is the sample mean of the hth slice. The e.d.r. directions
could be estimated by solving the generalized eigen-problem:

6E(z|g)βj = λj6zzβj (6)

where j = 1, . . . , p and λ1 ≥ λ2 ≥ · · · ≥ λp. Then, z was further
projected onto the e.d.r. space by the first K e.d.r. directions as
follows:

w = [β1z, ...,βKz] (7)

Then, a linear combination of w was performed to predict the
forelimb movement. Although a linear combination approach
was adopted, SIR was considered as a nonlinear regression since
there is no linearity constraint on the prediction rules. Note that
the user-specified parameters of SIR are only the number of slices
H and the number of components K. It has been known that SIR
can provide root n consistent estimates regardless of the choice
ofH. A previous study has demonstrated that the performance of
SIR is less sensitive to the selection of H when H was set 5, 10,
and 20 (Li, 1991). Furthermore, it has been found that the first
component (K = 1) is close to the e.d.r. space. Therefore, H and
K were set to 10 and one, respectively, in this study.

Time-Lags and Temporal Orders
In fact, the physical relationship between the neuronal signal
and the forelimb movement may imply time-lags in the neuronal
signal. Previous work indicates that a model that assumes that all
cells exhibit the same time-lags is computationally simple (Wu
et al., 2004). Then, the optimal time-lags could be found with an
empirical setting for further improvement of the decoding task. A
number of time-lags (0–5 time bins, at levels corresponding from
33 to 165 ms) were evaluated for trajectory prediction by SIR.

In addition to the time-lags, the temporal order of the
input is another interesting factor for the decoding issue. The
information at the nth time bin may have a relationship with

that at the (n− 1)th time bin. Hence, both current and previous
neuronal activities are important and are considered as the inputs
for prediction. Therefore, a tapped delay line model of neuronal
activities is adopted in this study where a third-order model
would consider the nth, (n− 1)th, and (n− 2)th time bins as the
input.

Performance Evaluation and Statistical
Analysis
This study computed the root mean square error (RMSE)
between true and predicted forelimbmovements frommovement
start to endpoint in order to examine the performance of
proposed decoding algorithm (Srinivasan and da Silva, 2011).
The experimental trails were randomly split 70/30% into training
and testing sets for each rat. Therefore, the performance of
the proposed decoding algorithm on the testing set could be
evaluated on each rat individually. A 10-fold cross validation was
applied to avoid capitalization on chance (Efron and Tibshirani,
1994).

For statistical analysis, the predicted performance (RMSE)
from 4 testing sets (145 trails; rat 74: 24 trials, rat 102: 18 trails,
rat 106: 78 trails and rat 129: 25 trails) were represented as the
mean ± standard error of mean (SEM). Two-way ANOVA was
calculated using effects of time-lag (bin number 0, 1, 2, 3, 4, and 5)
and temporal order (1-oder, 2-order, and 3-oder of time bins) as
the independent variables in order to determine if there were any
differences in the decoding ability based onwhich parameters was
employed. Post-hoc comparisons were conducted using a Tukey
HSD post-hoc test and the significance level was corrected to ∗P
< 0.002 using a Bonferroni correction for the comparison of
six time-lags and three temporal order. MATLAB (MathWorks,
Natick, MA, USA) was used for all statistical analyses.

RESULTS

To evaluate the decoding performance of the proposed algorithm
for trajectory prediction, the majority of decodingmethods, PVA,
OLE, and NN, were implemented for comparison. Furthermore,
two popular feature selection techniques, PCA (Wold et al.,
1987) and sequential feature selection (SFS) (Aha and Bankert,
1996), were implemented for comparison of feature selection
effectiveness. Although PCA was developed as dimension
reduction of feature space, it could be considered as a way
to select features from principle components. Then a linear
regression approach was adopted to perform regression whose
inputs were the features provided by PCA and outputs were
forelimb movements. The number of principal components was
selected according to the variance of the reconstruction error
(Valle et al., 1999). The same regression procedure was applied
to SFS. A set of time-lags (0–5 time-lags) was carried out to
observe the effect of different delays between the neuronal activity
and the forelimb movement in each method. Furthermore, a set
of experiments was conducted to evaluate the effect of various
temporal orders (1–3 temporal orders) used in each decoding
method. The experimental data were recorded from four rats
where the number of trials and number of neurons per trial for
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each rat are shown in Table 1. The average number of successful
trials was 45.9 ± 4.3, and the average number of recorded
neurons was 21.2 ± 2.6 units. The period of each trial was 0.4–
0.7 s before lever-pressing and 0.2–0.4 s after the lever-pressing.

Neuronal Signal Pattern during Behavior
Task
The task timeline in Figure 2 presents the sequential images
of the lever-pressing (Figure 2A) and the corresponding spike
trains (Figure 2B). The spike trains were acquired from
five neurons related to right forelimb movement and were
represented as the neuronal activity histogram with 33 ms time
bins. The neuronal activities distinctly increased approximately
0.4 s before lever-pressing (Figure 2B), corresponding to the
second image at 01:56.332 s (Figure 2A). The maximum value
in the histogram appears approximately 0.1 s before the lever-
pressing. The neuronal activity has a substantial reduction after
the rat completes the lever-pressing and then it re-strengthens
gradually because of the redundant movement off of the
lever.

Effects of Different Time-Lags and
Temporal Orders
Results of a particular test trial (Rat 106, 29 units, and 52th trial)
were shown in Figure 3where the trajectories were reconstructed
by six decoding methods with delay activity of four time-lags.
The actual trajectory (blue solid line) was compared with the
decoded trajectories by SIR (black dashed line), OLE (red dashed
line), PVA (green dashed line), PCA (magenta dashed line), SFS
(cyan dashed line), and NN (yellow dashed line) in Figure 3.
Furthermore, the results of one and three temporal orders were
conducted to demonstrate the advantage of SIR with the requisite
amount of input data as shown in Figures 3A,B, respectively. In
the one temporal order experiment, the trajectories reconstructed
by PVA and OLE obviously deviated from the actual trajectory
more than that reconstructed by SIR. PCA and SFS, which
perform feature selection, could achieve accurate prediction in
the previous time steps but did not predict the latter time steps
well. Similarly, a NN, which has learning ability for nonlinear
regression, could predict the trajectory well in the first few
time steps, but it did not have robust prediction performance
because of the random initialization of weights that leads to
prediction error. As the temporal order increased to three, all
methods had more accurate prediction compared to those of one
temporal order. Overall, SIR shows the best performance among
the other methods, especially when the decoding methods used
less neuronal activity information.

TABLE 1 | Experimental data characteristics.

Subject Number of trials Number of neurons per trial

Rat 74 80 18 ± 3.1

Rat 102 60 11.1 ± 1.5

Rat 106 263 32.9 ± 5.2

Rat 129 83 24.9 ± 5.4

Figure 4 presents the effects of various time-lags and temporal
orders in each method. Figure 4A shows the results of SIR where
the smallest RMSE (8.47 ± 1.32 mm) was obtained by using
four time-lags (132 ms) and one temporal order. It can be seen
that SIR with four time-lags could achieve a significantly smaller
RMSE than those with various time-lags [F(5, 54) = 4.22, ∗P
< 0.002 with Two-way ANOVA with Bonferroni correction,
N = 145]. Furthermore, the RMSE of SIR had no conspicuous
variations among the three different temporal orders. As shown
in Figure 4B, OLE achieved the smallest RMSE (17.22 ±

3.80 mm) by using four time-lags and three temporal orders.
However, there was no significant enhancement of the prediction
performance using OLE decoding with different time-lags and
temporal orders. Figure 4C shows the results of PVA where the
RMSE decreased as the number of temporal orders increases.
PVA resulted in an average RMSE of 21.76± 8.11mmwhen using
one time-lag and three temporal orders. Figures 4D,E showed
the results of PCA and SFS, respectively, where the features were
selected via these two algorithms. PCA achieved a decreasing
RMSE as the number of time-lags increased and obtained the
smallest RMSE (19.13 ± 0.75 mm) when using four time-lags
and three temporal orders. The results of SFS did not present
a decreasing RMSE as the number of time-lags increased. SFS
achieved the smallest RMSE (22.75 ± 2.01 mm) when using
five time-lags and three temporal orders. Figure 4F shows the
results of NN where the smallest RMSEs (16.75± 2.02 mm) were
achieved by using three time-lags and two temporal orders. The
RMSEs of NN did not present a regular trend as the number of
time-lags increased. The forelimb movement predictions using
OLE, PVA, PCA, SFS, and NN were not affected by either time-
lag or temporal order. No significant interaction of time-lag and
temporal order was found in the decoding methods of OLE, PVA,
PCA, SFS, and NN in comparison to SIR. These results indicated
that SIR outperformed other methods for trajectory prediction.

DISCUSSION

The main finding of this study is that a rat’s forelimb movement
could be successfully predicted and reconstructed using relatively
few motor cortical neurons. In comparison with competing
neural decoding algorithms including PVA, OLE, PCA, SFS, and
NN, SIR presented an extremely superior RMSE in distance
deviation between the reconstructed and real forelimbmovement
trajectories.

Previous studies indicated that neuronal activity discharged
before the onset of the desired movement, such as the motor
preparation period, and encoded behaviors (Chapin et al., 1999;
Churchland et al., 2006). The kinematic parameters therefore
were decoded and reconstructed with high accuracy using the
neuronal activity before the onset of the movement. Hence,
in this study, SIR and the competing algorithms decoded
the neuronal activities during the motor preparation period
for reconstruction of introduced upcoming lever-pressing. The
results showed that SIR, OLE, and PCA achieved optimal
efficiency when using the neuronal activities that led to the onset
of forelimb movement for 132 ms. PVA, SFS and NN each

Frontiers in Neuroscience | www.frontiersin.org 6 December 2016 | Volume 10 | Article 556

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yang et al. Neural Decoding with Sliced Inverse Regression

FIGURE 2 | One example of forelimb movement over time. (A) The movement video of forelimb movement. (B) The neuronal activities were recorded from five

neurons during one movement displayed as spike trains and the neuronal activity histogram (a bin size of 33 ms). The red line indicated the moment when the rat

presses down the lever with the right-forelimb. Moreover, our results showed that neuronal firing rates highly correlated with forelimb movement; >71% (41/57)

neurons exhibited specific firing changes during movement used to discriminate directional pairs.

FIGURE 3 | Reconstructed trajectories of the test trial with the use of delayed activity with four time-lags (132 ms). The actual trajectory (blue solid line)

and the trajectories predicted by SIR (black dashed line), OLE (red dashed line), PVA (green dashed line), PCA (magenta dashed line), SFS (cyan dashed line), and NN

(yellow dashed line) are shown for an example trial using (A) one- and (B) three- temporal orders. The trajectory reconstructed by SIR is more accurate than the other

methods.

achieved optimal efficiency by using the neuronal activities that
led to the onset of forelimb movement for 33, 165, and 99 ms,
respectively. In Figure 2B, the peak of the spike train occurred at

four time-lags, prior to the onset of lever-pressing. The neuronal
firing rate then declined for 0.2 s as a result of the completion
of motor command transmission. Because the rat performed an
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FIGURE 4 | RMSEs of (A) SIR, (B) OLE, (C) PVA, (D) PCA, (E) SFS, and (F) NN decoding methods plotted with various time-lags (33 ms/lag) and temporal orders.

The error bars denote standard error of the mean (Mean ± SEM). The results showed that SIR is superior to the other methods for trajectory reconstruction. SIR is

unaffected by temporal orders, and the best performance was achieved with four time-lags (132 ms). The symbol * indicates significant different means with P <

0.002 and analyzed by Bonferroni correction for multiple comparisons, N = 145. Mean ± SEM%.

unexpected forelimb swing, the neuronal firing rate increased
again approximately 0.2 s after to the onset of lever-pressing.

The performance of cortical neural decoding hinged on
the exploited information in chronically-recorded neuronal
activities. Previous studies using PVA (Schwartz, 1994) and
OLE (Salinas and Abbott, 1994) show that cortical neurons
with known motor associations were chronically sampled and
as many as possible were recorded. Because of the lack of a
precise technique to target the modulated neurons that largely
contributed to goal-directed behavior, PVA and OLE summed
the weighted vectors across all neurons, performing a neuronal
vote, to predict the kinematic parameters (Salinas and Abbott,
1994; Schwartz, 1994). A large number of electrodes and sample
neurons (usually up to hundreds) was required for reconstruction
of kinematic parameters with a high degree of accuracy (Chapin
et al., 1999;Wessberg et al., 2000; Serruya et al., 2002; Taylor et al.,
2002). However, the neuronal activity was not as stable from day
to day (Sadtler et al., 2014). PVA and OLE may be affected by
neuron’s stability since they extract movement information from
the selected cortical population.

In this study, we recorded only tens of neurons from rat
M1 where the amount of recorded neurons was insufficient for
PVA and OLE, which usually require hundreds of neurons to
provide a robust neural decoding process (Takeda and Funahashi,
2004; Wahnoun et al., 2006). Compared to PVA and OLE,
SIR can effectively achieve nonlinear regression from a small
number of inputs (Li, 1991). SIR adopted a sliced regression
framework with a sorting procedure to divide the neuronal
dataset into several slices according to the sorted output variable
value. Each slice contained neurons with a similar contribution

to the introduced lever-pressing and was then modified by
a weight. Slices containing neurons with tiny or even a null
contribution to the lever-pressing may gain zero weight and can
be removed from the decoding model. Multiplied by a proper
weight according to the weighted PCA, a slice containing a
few neurons with a high contribution presented a comparable
influence on the prediction and reconstruction of the introduced
lever-pressing to the neuronal vote from hundreds of neurons.
Hence, SIR is able to perform forelimb prediction through a
small number of neurons. On the other hand, dimensionality
reduction technique factor analysis is usually adopted to describe
population activity using low-dimensional set of factors and
highlight feature of interest in data from a large number of
recorded neurons (Sadtler et al., 2014). Although SIR could
perform dimensionality reduction through weighted PCA, it
preserved all recorded neurons and assigned weights to the slices
according to their contribution. It learned forelimb movement
prediction from whole neuronal activities regardless of neuron’s
stability across days. Thus, SIR was robust to uncertain variation
of movements and neuronal activities across days due to the
success of inverse regression and effective dimension reduction.
Furthermore, using this SIR, the size of the neural decoding
model topology was significantly reduced, burdened with data
storage and reduced computational loading, indicating that
efficiency in neural decoding in comparison to PVA and OLE
was attainable. Compared to PCA and SFS, which perform
feature selection and dimensional reduction, PCA could further
project the data onto another space, which could lead to a
better reconstruction than SFS. However, SIR outperformed PCA
and SFS because SIR clusters data into each slice according
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to the output values. NN performed better prediction than
PCA and SFS because of its nonlinearity and learning ability.
Nevertheless, NN did not result in a robust reconstruction
because of the mechanism of random initialization and the
existence of many local optima. These comparisons indicate
that the neural decoding based on SIR with one temporal order
presents a smaller RMSE in reconstructing limb movement than
those based on PVA or OLE with three temporal orders and those
based on feature selection and learning ability. It indicates that
SIR can be a more suitable solution than the commonly used
linear progression methods using the neuronal ensemble inputs
to predict and reconstruct the introduced limb movement.

CONCLUSIONS

Neural decoding models that require hundreds of input
variables, such as PVA and OLE, not only require considerable
computation but also have detrimental effects in the decoding
process because of errors in assigning neuronal spikes or non-
stationary noise, especially for non-adaptive models. Reducing
the neurons that may cause model over-fitting emerges as a
significant neural decoding issue. However, with the help of the
proposed approached based on SIR, researchers can predict and
reconstruct the limb movement of interest with high accuracy
using only tens of neurons in a single setting. Furthermore,
SIR outperformed other feature selection methods, such as PCA
and SFS because of its clustering ability. SIR further achieved
more robust performance than NN because there is no random
initialization and local optimization problems in SIR. By indexing
the contribution of multiple cortical areas with different sizes, it
has become feasible to ascertain the importance of selected areas
for the motor commands. This will provide valuable insights for
follow-up studies in the future.
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