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Abstract

In the animal kingdom, various forms of swarming enable groups of autonomous individuals

to transform uncertain information into unified decisions which are probabilistically benefi-

cial. Crossing scales from individual to group decisions requires dynamically accumulating

signals among individuals. In striking parallel, the mammalian immune system is also a

group of decentralized autonomous units (i.e. cells) which collectively navigate uncertainty

with the help of dynamically accumulating signals (i.e. cytokines). Therefore, we apply tech-

niques of understanding swarm behavior to a decision-making problem in the mammalian

immune system, namely effector choice among CD4+ T helper (Th) cells. We find that incor-

porating dynamic cytokine signaling into a simple model of Th differentiation comprehen-

sively explains divergent observations of this process. The plasticity and heterogeneity of

individual Th cells, the tunable mixtures of effector types that can be generated in vitro, and

the polarized yet updateable group effector commitment often observed in vivo are all

explained by the same set of underlying molecular rules. These rules reveal that Th cells

harness dynamic cytokine signaling to implement a system of quorum sensing. Quorum

sensing, in turn, may confer adaptive advantages on the mammalian immune system, espe-

cially during coinfection and during coevolution with manipulative parasites. This highlights

a new way of understanding the mammalian immune system as a cellular swarm, and it

underscores the power of collectives throughout nature.

Author summary

Across the animal kingdom, swarming is a common phenomenon by which many auton-

omous individuals act as a unified group. Similarly, helper T cells in the mammalian

immune system are numerous and autonomous, and yet they collectively make important

decisions, such as which immune weapons to recruit during a given infection (i.e. “effec-

tor choice”). However, due to varying experimental results, it is unclear when, how, and

why helper T cells coordinate unified effector choices. Inspired by studies of swarms in
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the animal kingdom, we answer all three questions with a single set of simple mathemati-

cal rules governing the interactions of individual cells. Helper T cells engage in quorum

sensing, transitioning from mixed to unified group decisions only at high cell densities.

Quorum sensing emerges naturally from the interplay between molecular circuits within

helper T cells and dynamically accumulating signals between helper T cells. Quorum sens-

ing may have evolved because it helps our immune systems discern legitimate changes in

effector needs from parasitic sabotage of the effector choice system. These insights dem-

onstrate that the quantitative study of swarm biology can shed new light on the organiza-

tion and function of the mammalian immune system.

Introduction

Collective behavior–the coordinated action of many autonomous individuals–can accomplish

sophisticated information-processing tasks that may be impossible for lone individuals. This

has led to the repeated evolution of swarming across various taxa [1]. For example, honeybee

swarms leverage multiple types of interactions among individuals to choose the best nesting

site among several options [2,3]. Ant swarms leverage variability in chemical signaling among

individuals to dynamically track moving food sources [4,5]. Bacterial swarms use quorum

sensing–a special class of collective behavior in which different group decisions emerge

depending on the density of constituent individuals–to measure and respond in unison to fluc-

tuating environmental conditions [6,7]. In each example, collective behavior allows swarms to

integrate conflicting, changing and otherwise uncertain information into unified decisions

which are dynamically updated and probabilistically beneficial.

Although swarms are typically considered to comprise distinct organisms, collective behav-

ior can also arise from cells within an organism. In particular, the mammalian immune system

embodies many aspects of collective behavior. Immune cells are decentralized and autono-

mous individuals that together make coherent decisions despite substantial uncertainty [8,9].

For example, CD4+ helper T (Th) cells collectively decide whether a foreign invader warrants

an immune response, and which immune effectors to deploy. Understanding how such deci-

sions emerge requires understanding how cells collectively coordinate their behavior [10,11].

Just as in insect swarms, this communication involves complex feedbacks within and among

Th cells [12,13], which vary drastically in their signaling outputs [14,15,16,17]. Thus, we pro-

pose that the lens of collective behavior may reveal novel insights into how the immune system

processes uncertain, conflicting, and changing information [8,9].

We apply that lens here to study Th effector choice. This process begins when sentinels

called antigen-presenting cells (APCs) enter lymph nodes, bearing fragments of parasites

called antigens. Th cells that recognize and bind these antigens form immunological synapses

with APCs, through which they receive instructions to proliferate and differentiate into a given

effector type (e.g. Th1, Th2, Th17) [18]. These types correspond to different classes of infec-

tion; for example, Th1 cells combat intracellular microparasites, while Th2 cells combat extra-

cellular macroparasites [18]. Each Th cell broadcasts its type to its neighbors via diffusible

signaling molecules called cytokines, influencing their effector differentiation [19,20]. At the

Th group scale (e.g., across a lymph node), accurate differentiation into the effector type best

matched to the current threat is critical for host survival [21,22,23].

Effector choice is difficult for several reasons. First, information is limited: APCs are rare,

such that each Th cell has a low probability of receiving effector instruction from an APC on a

per-hour basis [24]. After APC contact, a Th cell resists further contact for up to 72 hours,
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precluding ongoing APC instruction [25]. Second, information may be conflicting: because

mammalian hosts in nature are constantly coinfected with parasites requiring different effector

responses [26], APCs that have encountered different types of parasites will instruct for differ-

ent effector types. Third, information may be changing and deceptive: many parasites manipu-

late APCs to instruct for inaccurate effector types in order to escape clearance [27,28,29]. At

first glance, cytokine signaling among Th cells may only amplify this uncertainty. It is unclear

how Th cells process conflicting and potentially untrustworthy information.

Furthermore, Th cells seem to process information differently in different settings. In vivo,

Th cells often make strictly polarized decisions. Coinfections with parasites requiring different

effector responses often elicit unified commitment to one effector type exclusively [30,31,32].

On the other hand, in vitro, Th cells given conflicting effector stimulation adopt mixed effector

types, simultaneously secreting cytokines characteristic of different effector types [17,33,34].

These contradicting results are difficult to reconcile. Given that Th cells can plastically switch

effector types [13,35,36,37] and display broad cell-to-cell variability in their cytokine expres-

sion [14,15,16,17], the strictly polarized decisions that arise despite conflicting APC instruction

in vivo seem especially difficult to explain.

Here, we solve this immunological puzzle by understanding Th cells as a swarm. Through

collective behavior, group consensus and commitment can arise despite conflicting environ-

mental cues via dynamic signals that cross scales from the individual to the group. Whether

these signals are autoinducers secreted by bacteria [6], pheromones deposited by ants [4], or

even startle responses among schooling fish [38], what matters is that they dynamically accu-

mulate. By analogy, Th cells are individuals, all Th cells in a lymph node form a group, APCs

are (possibly) conflicting environmental signals, and cytokines are the dynamically accumulat-

ing signals among individuals. With this motivation, we modified a well-studied model of the

gene expression motif driving Th1 vs. Th2 differentiation [33,39,40,41] to include the key cyto-

kines in this process. We then addressed four Questions:

1. Does the model explain how mixed Th effector types arise in vitro?

2. Does the same model explain how polarized group effector decisions arise in vivo?

3. When does dynamic cytokine signaling matter in vivo, given the presence of APCs?

4. What advantages could collective coordination via dynamic cytokine signaling provide?

We find that polarized group effector decisions emerge only above a threshold cell density,

simultaneously explaining in vitro and in vivo observations, and epitomizing quorum sensing.

Moreover, our model predicts that quorum sensing operates even in the presence of APCs and

leverages cell-to-cell variability in cytokine signaling to discern true from deceptive informa-

tion. Indeed, it has recently been suggested that Th cells use quorum sensing to make other

immune decisions [42,43], and one group has provided empirical evidence that Th cell density

modulates the rate of memory differentiation [44]. Empirical studies have also demonstrated

that quorum sensing regulates key processes in other closely related immune cells, such as

CD8+ killer T cell proliferation [45] and B cell motility [46]. Here, we provide the first compre-

hensive explanation of how a quorum emerges from a group of Th cells, and why Th quorum

sensing might adaptively benefit the host organism.

Model development

Although Th effector differentiation is the result of a complex gene expression program, the

simplifying assumption that the transcription factor T-bet primarily drives Th1 differentiation

and the transcription factor GATA3 primarily drives Th2 differentiation is both common and
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empirically supported [33,39,40,41]. Both transcription factors induce their own expression

(“self-activation”) and diminish each other’s expression (“cross-inhibition”), forming a previ-

ously analyzed transcription factor motif [33,39,40,41]. While these transcription factors are

confined within Th cells, Th1 and Th2 cells also secrete cytokines–IFNγ and IL-4, respec-

tively–that diffuse through the extracellular space and similarly self-activate and cross-inhibit

[13]. We searched the immunological literature for all known molecular interactions among

these transcription factors and cytokines. Together, they form a system of four ordinary differ-

ential equations (“ODEs”) (Fig 1 and S1 Table, see S1 Text regarding mathematical forms).

The parameter values assigned to each interaction were also grounded in the immunological

literature (S1 Table); nonetheless, sensitivity analyses show that errors in these parameter esti-

mates do not qualitatively alter our results (S2 Text). Thus, these ODEs and parameter values

describing average molecular expression across a group of Th cells are the foundation of our

Fig 1. Model schematic. T-bet and GATA3 are the master transcription factors controlling Th1 and Th2

differentiation, respectively, and are confined within Th cells. IFNγ and IL-4 are the master cytokines controlling Th1

and Th2 differentiation, respectively, and are free to diffuse through the extracellular space. Together, expression of

these four molecules are the four state variables of the dynamic model. Each of these four molecules can upregulate

(arrow-head interactions) or downregulate (T-head interactions) the expression of the other molecules in the model.

References to the immunological literature supporting the existence of the depicted interactions and their assigned

parameter values are provided in S1 Table.

https://doi.org/10.1371/journal.pcbi.1008051.g001
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We made several modifications to this basic ODE model in order to address the four Ques-

tions outlined above. First, Question 1 requires studying not just the mean but the full distribu-

tion of molecular expression across a group of Th cells. Thus, we extended our model into a

system of four stochastic differential equations (“SDEs”), by adding to each equation the differ-

entials of independent Brownian motion processes (+[nTFTF1]dWTF1 for Eq 1, and analo-

gously for Eqs 2–4, see S3 Text). Because mammalian cells express proteins in nearly discrete

bursts [47,48] such that any given cell fluctuates across the entire distribution of expression

through time [49,50], SDEs are an appropriate mathematical tool [51]. In fact, the specific

form of our stochastic term appropriately models lognormal fluctuations in molecular expres-

sion, because distributions of T-bet, GATA3, IFNγ, and IL-4 expression among Th cells span

several orders of magnitude with large positive skew [34,52]. Therefore, many simulated sam-

ple paths of these SDEs together approximate the distribution of molecular expression in a

group of Th cells.

Second, Question 2 requires comparing Th cells in vitro vs. in vivo. A major difference

between these settings is cell density: in vitro Th culture requires ~106 cells/mL [33,34],

whereas Th cells exist in vivo in lymph nodes at ~109 cells/mL [20]. Thus, we extended our

model to accommodate this range of cell densities, by identifying which parameters depend on

cell density. While intracellular transcription factors are measured as the number of copies per

cell and therefore do not depend on cell density, extracellular cytokines are measured in terms

of concentration in the extracellular space and do depend on cell density. As cell density

increases, the proportion of extracellular space decreases, compacting secreted cytokines into

smaller volumes. Thus, in terms of extracellular concentration, both cytokine production (a1,2)

and removal (dCY1,2) rates increase with increasing cell density (S1 Fig and S1 Text). Moreover,

production is driven only by cellular secretion, but removal is driven by both cellular con-

sumption and free decay (which is often fast for molecules involved in cytokine regulation

[53]). Therefore, over the range of cell densities we studied, a1,2 scales more steeply with cell

density than does dCY1,2. Consequently, cytokines dynamically turn over faster and accumulate

to higher levels as cell density increases (S1 Fig). See S1 Text for a full explanation of the units

and cell density dependencies in this model.

Third, both Questions 3 and 4 require accounting for instruction by APCs. Biologically,

APCs provide Th1 or Th2 instruction by secreting Th1- or Th2-driving cytokines directly

onto a Th cell surface via an immunological synapse [18,54,55,56]. Therefore, we included
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APC instruction by augmenting every appearance of CY1 and CY2 (except decay) in the model

equations with constants APC1 and APC2, whose values depend on the frequencies of Type 1

and 2 APCs, respectively (see S1 Table). For example,
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Eq 1, and so forth. This allows APCs to influence Th decision-making without following the

same rules of production and removal as cytokines.

Results

In answering the four Questions above, we find that our model explains the divergent behavior

of Th cells in different settings. The flexibility and heterogeneity of individual Th cells observed

in vitro as well as the polarization of Th groups observed in vivo emerge from the same set of

underlying molecular rules. Among these rules, dynamic cytokine signaling is the key to all

behaviors. Because the role of dynamic cytokine signaling in group behavior depends on cell

density, Th effector choice is a clear example of quorum sensing.

Dynamic cytokine signaling drives mixed Th effector types in vitro
In vitro, Th cells differentiate into highly heterogeneous mixtures of Th1, Th2, and Th1-Th2

hybrid effector types [33,34]. In fact, at the individual cellular scale, there is a nearly uniform

distribution of cells that are fully Th1 (only express T-bet), fully Th2 (only express GATA3), or

some mixture of the two (express both T-bet and GATA3 at varying levels) (Fig 2A inset, from

[34]). Using 1000 sample paths of our SDE model to predict the distribution of Th1 vs. Th2

transcription factor expression across cells under these conditions, we also observe a nearly

uniform distribution (Fig 2A). In contrast, when the same experiment is run with αIFNγ and

αIL-4 antibodies to block cytokine signaling, this uniform distribution transforms into a U-

shaped distribution, in which Th cells express either T-bet or GATA3, but few express both

(Fig 2B inset, from [34]). When cytokine secretion is eliminated, our SDE model also correctly

predicts this U-shaped distribution (Fig 2B).

These agreements between our stochastic model and experimental data can be explained by

the underlying equilibrium behavior of our deterministic model. Under normal model param-

etrization at 106 cells/mL, cytokine accumulation drives stable coexpression of T-bet and

GATA3. However, as the degree of permitted cytokine secretion is reduced, as by cytokine-

blocking antibodies, model terms involving cytokines fade in importance compared to terms

involving only transcription factors. This drives a bifurcation, in which transcription factor

expression becomes bistable–only pure Th1 or pure Th2 cell types are stable cellular states (Fig

2C). Thus, our model’s equilibrium behavior explains the experimental finding that some

degree of dynamic cytokine signaling is required to produce mixed Th effector types.

In addition to equilibrium behavior, our model also reproduces the dynamics by which

mixed Th effector types arise in vitro. Mean cellular levels of T-bet and GATA3 grow non-line-

arly through time and eventually favor Th2, a pattern which is captured well by our ODE and

SDE models (Fig 3). In fact, the timescale of these dynamics resolves a conflict between experi-

ment and prior theory. Empirically, varying inputs of exogeneous Th1- and Th2-stimulation

to 7-day Th cultures leads to a continuum of T-bet and GATA3 expression levels which

appears stable [17,33]. But mathematically, merely varying input conditions to a dynamical

system cannot change where its stable equilibria lie. Our model agrees with experimental data

in that varying inputs of IFNγ and IL-4 create a continuum of T-bet and GATA3 expression

after 7 days (S2A and S2B Fig). But our model also shows that although these tunable states

appear stable, they are truly transient and eventually converge on a common mixed effector

type (S2C–S2F Fig). This common mixed effector type is not observed empirically because it
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would take much longer than feasible Th culture experiments to emerge (S2C–S2F Fig). Thus,

our model explains a diversity of experimental results demonstrating that dynamic cytokine

signaling drives the balance of mixed Th effector types observed in vitro.

Dynamic cytokine signaling drives polarized Th effector types in vivo, via

quorum sensing

While cytokine signaling drives mixed effector types at 106 cells/mL, our simple assumptions

about cytokine production and removal imply that cytokine dynamics change with cell density

(S1 Text). As cell density increases ~1000-fold from in vitro (~106 cells/mL) to in vivo (~109

Fig 2. The model captures the distribution of Th effector types in vitro in the presence and absence of cytokine signaling, due to an

underlying bifurcation in the dynamical system. All data are from [34]. Experiments and the model were both run at 2�106 cells/mL. (a) When

cytokines accumulate unhindered, a uniform distribution of Th1, Th2, and mixed effector types is observed, as measured by the balance of T-bet

and GATA3 expression, across 1000 sample paths of the SDE system. This closely matches empirical observations (inset). (b) When cytokine

accumulation is blocked, a U-shaped distribution of Th1 and Th2 effector types is observed across 1000 sample paths of the SDE system. This also

closely matches empirical observations (inset). (c) Analysis of the ODE system shows that mixed effector types are only stable in the presence of

cytokine signaling. As cytokine secretion is removed from the model, the mixed effector type becomes unstable and bifurcates into polarized Th1

and Th2 effector types.

https://doi.org/10.1371/journal.pcbi.1008051.g002
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cells/mL) levels, cytokine concentrations fluctuate faster and accumulate to higher levels (S1

Fig). Faster and stronger cytokine dynamics drives a bifurcation in Th behavior, where mixed

effector types become unstable, and the Th group commits fully to either a Th1 or a Th2 effec-

tor type (Fig 4A). This contrasts with the previous bifurcation (Fig 2C), in which dynamic

extracellular processes were eliminated via cytokine-blocking to decouple the behavior of

neighboring Th cells, allowing opposite polarization among individual Th cells. Instead, in this

bifurcation (Fig 4A), dynamic extracellular processes are intensified via increased cell density

to link the polarization of neighboring Th cells, forcing unified commitments among the Th

group. Sensitivity analyses confirm that this result is general and not driven by particular

choices of parameter values (S2 Text, S3 and S4 Figs). Because this stark change in group

behavior occurs as a function of cell density, this constitutes quorum sensing [6].

Quorum sensing arises naturally from the underlying web of molecular interactions.

Among the interactions in our model, some are categorized as “within-scale” because they

involve only one spatial scale (i.e. transcription factors directly affecting each other’s expres-

sion is strictly within cells, and cytokines directly affecting each other’s expression is strictly

between cells). Other interactions are categorized as “cross-scale” because they involve both

spatial scales (i.e. cytokines directly affecting the expression of transcription factors, or vice

versa, involves molecules at both the within-cell and between-cell scales). Although some

Fig 3. The model predicts the dynamics of transcription factor expression under in vitro conditions with no exogeneous effector

stimulation. Experiment and model were both run at 2�106 cells/mL. Data are replotted from [34]. SDE mean and interquartile range

are drawn from 1000 SDE sample paths.

https://doi.org/10.1371/journal.pcbi.1008051.g003
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within-scale interactions favor polarized Th effector types, the net effect of all within-scale

interactions together favors mixed effector types. Meanwhile, every cross-scale interaction

favors polarized effector types. Therefore, whether the Th group tends toward a mixed or

polarized effector type depends on the relative strengths of the within-scale vs. cross-scale

molecular interactions (see S4 Text for proof and details). This is consistent with the fact that

quorum sensing is inherently a cross-scale phenomenon [1], and it further highlights the

importance of dynamic cytokine accumulation, without which there would be no cross-scale

interactions.

Fig 4. Th group polarization emerges as cell density increases, due to the changing relative strengths of within-scale vs. cross-scale molecular interactions. (a) The

stable effector balance among a group of Th cells transitions from mixed to polarized as the quorum cell density is surpassed. (b) The quorum cell density corresponds to a

particular ratio of cytokine production: removal. (c) This cytokine production: removal ratio controls the ratio of cytokine: transcription factor expression at the mixed

effector type equilibrium (y-axis is independent variable and x-axis is dependent variable). (d) The ratio of cytokine: transcription factor expression controls whether the

net stabilizing effect of within-scale molecular interactions or the total destabilizing effect of cross-scale molecular interactions is stronger, and therefore whether the

mixed equilibrium is stable or unstable.

https://doi.org/10.1371/journal.pcbi.1008051.g004
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Because the relative strengths of within- vs. cross-scale molecular interactions depend on

cytokine accumulation and therefore on cell density, the emergence of quorum sensing can be

explained as follows. The transition in Th group behavior toward unified commitment occurs

at the quorum density (Fig 4A). This cell density corresponds to a certain ratio between cyto-

kine production and removal (Fig 4B and S1 Fig). This ratio corresponds to a certain extracel-

lular cytokine concentration at the mixed effector type equilibrium (regardless of whether that

equilibrium is stable) (Fig 4C). This extracellular concentration is exactly where the destabiliz-

ing cross-scale interactions overpower the stabilizing within-scale interactions (Fig 4D and S4

Text). Among these interactions, only those which are cytokine-mediated change strength

with cell density; therefore, it must be the presence of dynamic cytokine signaling in the system

which drives quorum sensing. The quorum density is high enough that it is only achieved in
vivo, leading to self-organized group effector polarization.

Polarization and frequency of incoming APCs determine speed of Th

quorum formation

Having established that biological cell density permits Th quorum sensing, we wondered

whether quorum sensing matters during true infections, when APCs are also present. APCs

instruct Th effector differentiation via targeted cytokine secretion (see Model Development),

which may alter the quorum sensing process. In fact, in our ODE model, even a mixture of

Type 1 and Type 2 APCs at very low frequencies sparks the formation of a Th quorum strongly

committed to whichever effector type holds a slight majority among the APCs (Fig 5A). How-

ever, once a quorum of Th cells is established, even very high frequencies of APCs fully biased

toward the opposite effector type cannot overcome the Th quorum to reverse the Th effector

choice (Fig 5A). This suggests that APCs play a pivotal role in sparking Th effector choice early

in an immune response, but their influence fades as self-organized Th quorum sensing domi-

nates and becomes irreversible.

The transition from APC instruction to Th quorum sensing during the early immune

response defines a time window during which APC instruction influences Th effector choice.

The duration of this time window is determined by several factors. Most importantly, the

more biased incoming APCs are toward a single effector type, the more quickly a Th quorum

forms in favor of that type (Fig 5B). Moreover, when APCs are strongly biased, larger numbers

of them cause faster quorum formation, although this effect disappears for weakly biased

APCs (Fig 5B). This suggests that quorum sensing allows Th cells to translate more confident

instruction by APCs into faster effector decisions.

Cell-to-cell variability in cytokine expression enables Th quora to switch

effector types

Because altered APC instruction cannot change the effector choice of a Th quorum, the forma-

tion of a Th quorum is irreversible in our ODE model. Irreversibility may be advantageous, as

when a growing within-host parasite population manipulates APCs into instructing for the

incorrect effector type after some initial time delay. On the other hand, irreversibility may be

disadvantageous, as when a secondary coinfection legitimately requires a different effector

type in the same lymph node. An optimal Th effector response ought to discern between these

two scenarios. Discernment is possible in our model when a Th quorum exhibits cell-to-cell

variability in cytokine expression, via stochastic attractor switching.

We demonstrate this discernment by randomly generating time courses of APC instruc-

tion, which can range from 100% Th1-biased to 100% Th2-biased (e.g. Fig 6A–6D, gray line).

We hypothesize that an optimal Th effector response will ignore sporadic and incomplete
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changes to APC signaling, which may reflect parasitic manipulation, but will obey sustained

and complete changes to APC instruction, which may reflect a legitimate new infection (Fig

6A–6D, black line). In contrast to this hypothesis, the ODE version of our model predicts that

a Th quorum will ignore all changes to APC instruction, even sustained and complete changes

(Fig 6A, green line). The SDE version of our model, which incorporates cell-to-cell variability

in molecular expression, shows that such disadvantageous behavior can be overcome. Low sto-

chastic variability in transcription factor and cytokine expression does not alter the basic result

that the Th quorum commitment is irreversible by APCs (Fig 6B). Larger stochastic variability,

on the other hand, permits the Th quorum to ignore sporadic and incomplete changes to APC

instruction, while obeying sustained and complete changes, albeit with some time lag (Fig 6C).

This matches our hypothesis for optimal Th quorum behavior. If stochastic variability is

Fig 5. APCs spark and guide the Th quorum sensing process, but after enough time has passed, they cannot reverse the Th quorum decision. (a) A

representative scenario at biological cell density (109 cells/mL) in which 10 APCs enter a lymph node, six instructing for Th1 and four instructing for Th2.

Even this small Th1 bias among APCs sparks a Th1-committed Th cell quorum. At some time marked by the grayscale dashed lines, the number of APCs

increases to 1000, all instructing for Th2. This drastic switch can only reverse the commitment of the Th quorum if it occurs soon after initial arrival of

APCs in the lymph node (here ~20 hr). (b) The time required for Th quorum commitment to become irreversible is most strongly controlled by the

initial APC effector bias–the higher the percentage of APCs in favor of one effector type, the sooner the resulting Th quorum becomes irreversible.

Timing is also impacted by the initial number of APCs–the larger the number of APCs, the sooner the resulting Th quorum becomes irreversible.

https://doi.org/10.1371/journal.pcbi.1008051.g005
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Fig 6. Cell-to-cell variability in molecular (esp. cytokine) expression allows Th quora to discern when to switch effector types. All simulations were run at 109 cells/

mL. (a) Simulated time-courses of APC effector instruction may include transient and/or sustained changes in instruction (gray line), which Th quora ought to ignore

and/or obey, respectively (black line). In the ODE model, Th quora cannot obey even sustained changes to APC instruction. (b) In the SDE model with low levels of

variability, Th quora struggle to obey sustained changes to APC instruction. Twenty sample paths along with their mean and median (shades of green) are shown. (c)

PLOS COMPUTATIONAL BIOLOGY Quorum sensing explains effector choice among helper T cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008051 July 30, 2020 12 / 21

https://doi.org/10.1371/journal.pcbi.1008051


increased further, the Th quorum obeys even transient changes in APC instruction and can

even switch effector types at random (Fig 6D), nullifying the benefit of cell-to-cell variability.

This suggests an optimal level of stochastic variability in molecular expression. To test this,

we randomly generated 200 time-courses of APC instruction, which may or may not include

sporadic and/or sustained changes, and we mapped an optimal Th quorum response to each

(as in Fig 6A–6D, gray line and black line). We then measured how well 100 SDE sample paths

tracked each APC time-course, across a range of magnitudes of stochastic cell-to-cell variabil-

ity. Indeed, an intermediate magnitude of stochasticity optimized the Th quorum’s ability to

track the desired response (Fig 6E). This result holds regardless of assumptions of sensitivity,

i.e. how long a change in APC instruction must last before it is considered “sustained” and

therefore prudent to obey.

This putatively optimal level of stochasticity in molecular expression raises the question:

does stochastic variability in the expression of different types of molecules contribute equally

to Th discernment? To answer this question, we repeated the previous analysis but varied the

level of stochasticity in transcription factor and cytokine expression independently. This

revealed that the performance of the Th quorum is truly optimized when stochasticity in cyto-

kine expression is quite high, while stochasticity in transcription factor expression is quite low

(Fig 6F). This suggests that cell-to-cell variability in cytokine expression may be important for

effector-type switching in the Th quorum, to discern trustworthy from untrustworthy changes

in APC instruction.

Discussion

Quorum sensing, and other forms of swarming, have repeatedly evolved across various taxa to

allow groups of organisms to collectively navigate their environments [1]. Swarming is particu-

larly useful when information is limited [2,3], changing [4,5], or otherwise uncertain [7,38].

All three qualifiers describe the information regarding effector choice that Th cells receive

from APCs, which are rare, mutable in effector type, and even subject to sabotage from para-

sites [e.g. 27,28,29]. Moreover, Th cells possess a well-known mechanism of dynamic signal

accumulation–a requirement for quorum sensing [6] and other forms of swarming–in the

form of cytokine secretion and consumption. Finally, Th cells are well-suited to swarming in

an evolutionary sense. In most swarms, fitness is measured at the individual level (e.g. one fish

in a school), such that the benefit of information-sharing to an individual must outweigh the

individual cost of helping conspecific competitors, if swarming is to evolve. To the contrary,

the evolutionarily relevant fitness of Th cells is measured at the group scale (i.e. the entire host

organism) and is unconstrained by costs to individual Th cells [8]. For all these reasons, a sys-

tem of quorum sensing among Th cells may be logically expected.

Following this expectation, we modeled the quantitative system by which Th cells integrate

potentially conflicting and uncertain information from various sources, including each other

and APCs, to make effector choices. We label this system quorum sensing because it requires

both dynamic signaling across scales and sufficient cell density. At artificially low cell density,

as in cell culture, with signaling among Th cells prohibited, individual Th cells polarize toward

Th1 or Th2, but not as a unified collective (Fig 2C and Fig 7A). At artificially low cell density

Medium levels of variability permit discernment by ignoring transient changes to APC instruction but obeying sustained changes. (d) High levels of variability begin to

diminish discernment. (e) Th discernment peaks for intermediate levels of stochasticity in molecular expression, regardless of sensitivity (i.e. how long a change in APC

instruction must last before it is considered “sustained”). Percentage volatility = 100�nTF1 = 100�nTF2 = 100�nCY1 = 100�nCY2. Relative performance scores how well Th

quora tracked the theoretically optimal response, relative to the quorum that did best, across 200 randomly generated time-courses of APC instruction. (f) The analysis

shown in (e) was repeated, but where nTF1 = nTF2 need not equal nCY1 = nCY2. Data from (e) appear along the diagonal; new data are contained off the diagonal. Th

quora perform best when stochasticity in cytokine expression is high, and stochasticity in transcription factor expression is low.

https://doi.org/10.1371/journal.pcbi.1008051.g006
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with signaling among Th cells permitted, cytokines promote stable mixtures of Th1, Th2, and

Th1-Th2 hybrid T cells (Fig 2C and Fig 7B). Both conclusions resonate with experimental data

(Fig 2A and 2B, and Fig 3). Only at biologically realistic cell density with signaling among Th

cells permitted do unified group decisions between Th1 and Th2 effector types emerge (Fig 4A

and Fig 7C). This too resonates with various experimental observations [e.g. 30,31,32]. The

necessary ingredients for this committed effector choice–dynamic cross-scale signaling among

cells and sufficient cell density–define a quorum sensing process.

Because this progression of scenarios also implies a progression of the extracellular cytokine

concentration, Th quorum sensing can be understood as a series of phases in time (Fig 7C). Th

cells deciding between Th1 and Th2 effector types begin by collecting binary information from

APCs. As secreted cytokines accumulate, they invoke molecular feedbacks by which Th cells

share information and tune the Th1-Th2 balance of their neighbors. Cytokines continue to

dynamically accumulate until they surpass a threshold that is only attainable at biological cell

density, precipitating a unified group-level decision between Th1 and Th2 effector types.

Fig 7. Cartoon of major conclusions. Orange circles represent Th1 cells, blue circles represent Th2 cells, and other shades represent Th1-Th2 hybrid cells. The large gray

shapes represent APCs, or experimentally provided effector stimulation. (a) At 106 cells/mL with no dynamic cytokine signaling, individual neighboring Th cells adopt

oppositely polarized effector types. (b) At 106 cells/mL with dynamic cytokine signaling, oppositely polarized Th cells cause each other to become Th1-Th2 hybrids. (c) At

109 cells/mL with dynamic cytokine signaling, mixed effector types resolve into fully polarized Th1 or Th2 groups, via quorum sensing. Initial polarization by APCs,

effector hybrid formation as cytokines dynamically accumulate, and quorum emergence as cytokines accumulate further and APCs are ignored, may define 3 phases of Th

effector differentiation in vivo.

https://doi.org/10.1371/journal.pcbi.1008051.g007
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This series of phases discounts APC instruction over time, such that the Th quorum deci-

sion is eventually irreversible by APC instruction (Fig 5A and 5B). This is consistent with the

idea that information gathered by the immune system early in an infection is most trustworthy

[54]. Many parasites are capable of manipulating APCs into instructing for the incorrect effec-

tor type [28,29]; for example, during infection with Leishmania spp., APCs provide appropri-

ate Th1 instruction early in an infection, but later succumb to sporadic manipulation events

that alter their effector instructions [27]. Because parasitic manipulation is predicted to influ-

ence the evolved structure of immune systems [8,57,58], it may be that quorum sensing is an

adaptive parry. If a Th quorum has ceased obeying APC instruction by the time manipulation

occurs, then the quality of the host immune response is not compromised, providing robust-

ness in the face of sabotage.

Nonetheless, quorum commitment could be maladaptive when a switch in effector type is

truly required. Our model predicts that such switches are possible, when opposing APC

instruction is coupled with stochastic variability in molecular expression (Fig 6A–6E). The

underlying mechanism, stochastic attractor switching, is observed in other natural systems of

collective decision-making, for example by allowing insect swarms to respond to dynamically

changing environments [4,5]. Because stochastic attractor switching is a probabilistic phenom-

enon, the cumulative probability of a transition between states increases with the length of the

time window under consideration. Importantly, this allows a Th quorum to discern sustained

and legitimate changes in APC instruction from transient and manipulated perturbations to

APC instruction. We find that discernment operates best when cytokines, rather than tran-

scription factors, are subject to large cell-to-cell expression variability (Fig 6F). Combined with

the observation that exaggerated cell-to-cell variability in cytokine expression is a conserved

trait across mammalian species [59], this raises the tantalizing possibility that cytokine expres-

sion variability is an adaptive feature of immune signaling [8]. Indeed, signaling variability in

other biological swarms, such as house-hunting ants, has already been postulated as an adap-

tive mechanism to mitigate the speed vs. accuracy tradeoff inherent to decision-making pro-

cesses with uncertain information [60]. It is possible that natural selection has converged on

swarming as a common solution to such problems of uncertainty, both among individual

organisms in groups as well as among individual cells within organisms. If the evolution of the

mammalian immune system can be understood in this way, then more insights into its organi-

zation and functioning may emerge as analogies with other biological swarms are explored fur-

ther [8,9].

Despite offering a quantitative explanation of Th effector choice that reconciles disparate

observations by conceptually unifying collective behavior and immunology, our model does

have limitations. For example, our model explains why unified effector choices can emerge in
vivo but not in vitro, and yet unified effector choices are not always observed in vivo [e.g. 61].

While our model predicts the long-term equilibrium outcome of Th effector choice, immunity

in vivo is a non-equilibrium process: cellular birth, migration, and death, parasite replication

and death, metabolic inputs and constraints, stochastic events, and a plethora of other factors

constantly perturb the immune system. Not every data set will conform to equilibrium predic-

tions, but equilibrium predictions can help explain broad patterns that emerge from the bal-

ance of many studies.

Additionally, while the model only addresses Th1 vs. Th2 differentiation, many other effec-

tor types exist [18]. In fact, Th differentiation choices between Th17 and iTreg are driven by

self-promoting and cross-inhibiting molecular interactions similar to those in this model [62].

Just as this model assumes that a single master transcription factor underlies Th1 and Th2

effector types (T-bet and GATA3, respectively), so too has this “master regulator” assumption

been applied to other effector types (e.g. RORγt for Th17, Foxp3 for iTreg) in other
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mathematical studies to insightfully recover experimentally observed patterns of Th effector

differentiation [63,64]. Thus, this model could likely be adapted to represent different or addi-

tional Th effector types without changing its basic predictions.

The model also simplifies several details of T cell biology. First, while we have assumed that

Th cells exist at roughly 109 cells/mL inside lymph nodes, not all these Th cells actively partici-

pate in immunity. In fact, early during infection, only 1 in every 105 or fewer Th cells are acti-

vated by any given antigen [65], such that the density of activated Th cells is quite small.

However, these activated Th cells proliferate, increasing their numbers by several orders of

magnitude [65,66]. Moreover, bystander Th cells which have not been activated by the antigen

still participate in effector choice [31]. These processes greatly increase local cell density in the

lymph node, likely surpassing the threshold density for quorum sensing. Accounting for Th

proliferation might lengthen the information collection and information sharing phases iden-

tified by our model, tuning the amount of time until the onset of the decision-making phase

(Fig 7C), but it should not preclude quorum sensing altogether. Second, Th cells given consis-

tent effector instruction for long periods of time may undergo epigenetic modifications to

commit irreversibly to an effector type, losing plasticity [67]. While our model does not

include epigenetic entrenchment, this phenomenon likely requires over a week of stimulation

[33] and therefore does not interfere with any of the results we present.

Finally, while our mathematical approach highlights key design principles embedded in the

vast complexity of mammalian immunity, direct empirical evidence of quorum sensing in the

Th effector choice process remains to be collected. Though technically challenging, experi-

ments that track the effector commitment of individual Th cells over extended time periods

given conflicting or fluctuating instructions are needed to test the predictions of this model

further. Although unified effector commitment among Th groups may benefit hosts who have

coevolved with deceptive parasites, it can also be detrimental. For example, helminth infection

can establish an organ-scale commitment to Th2 immunity that prevents vaccines from elicit-

ing proper Th1 memory against deadly intracellular pathogens [31]. Indeed, there is evidence

that pre-existing chronic infections consistently diminish vaccine efficacy [68]. Ultimately, we

expect that parallel mechanistic and evolutionary understandings of emergent immune phe-

nomena can suggest new ways to manipulate our immune systems, and when it is wise to do

so. In turn, successful application of such cross-disciplinary thinking to immunological prob-

lems can highlight the power and importance of collectives throughout the natural world.
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increases faster than removal. Therefore, the ratio of production rate: removal rate increases

with cell density.

(TIF)

S2 Fig. The balance of Th effector types after 1 week in culture can be tuned by the input

levels of exogeneous stimulation; however, on longer timescales these effector types con-

verge to a single mixed effector type. Experiments and model were both run at 2�106 cells/

mL. (a) T-bet and (b) GATA3 expression, after 1 week in culture, both follow a continuum

based on exogeneous stimulation (or blocking via antibodies), just as observed in [33] (c-f)

Regardless of the input stimulation and the transient effector balance achieved at 1 week, all

conditions converge on a common mixed effector type after approximately 10 weeks.

(TIF)

S3 Fig. Sensitivity analyses near two parameter points-of-interest, in which parameter val-

ues can vary simultaneously near their originally assigned value. “Asym” can be shown ana-

lytically to have no effect on equilibrium position, and therefore marks an effect size that must

be insignificant. (a) Near the low-density point-of-interest, the net effect size on equilibrium

position of each parameter, controlling for variation in all other parameters, does not exceed

5%. (b) Near the high-density point-of-interest, the net effect size on equilibria position of

each parameter, controlling for variation in all other parameters, does not exceed 6%. (c) Near

the low-density point-of-interest, the most influential parameters (D and F) exhibit smooth,

slight, largely linear, and largely non-interacting effects on the position of the equilibrium. (d)

Near the high-density point-of-interest, these parameters still exhibit smooth, slight, largely

linear, and largely non-interacting effects on the position of the equilibria.

(TIF)

S4 Fig. Sensitivity analyses straying from the two parameter points-of-interest, in which

parameter values can vary simultaneously up to +/- 90% of their originally assigned value.

(a) Straying from the low-density point-of-interest, new regimes of model behavior (i.e. new

numbers of stable equilibria) appear with as little as 20% variation in parameter values, but

over half of sampled parameter sets still follow the original model behavior. (b) Straying from

the high-density point-of-interest, new regimes of model behavior do not appear even up to

50% variation in parameter values.

(TIF)
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