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The synthesis, NMR characterization, and X-ray crystallography of “lantern-shaped” platinum(III) complexes with four
pivaloamidate bridging ligands and two 9-ethylguanines (9-EtG) or 1-methylcytosines (1-MeC) in axial positions are reported:
cis-N2O2-[Pt2{HN=C(But)O}4(9-EtG)2](NO3)2 and cis-N2O2-[Pt2{HN=C(But)O}4(1-MeC)2](NO3)2. The last complex is, to the
best of our knowledge, the first dinuclear compound of platinum(III) with axially bound 1-MeC.

1. Introduction

The interest in dinuclear platinum(III) complexes is steadily
increasing because of their very interesting chemical proper-
ties. They contain a metal-metal single bond which is gener-
ally supported by two or four bridging ligands (the latter gen-
erally indicated as “lantern shaped” complexes) ([1–3] and
references therein). Only few exceptions with three bridging
ligands [4], or unsupported by covalent bridges [5, 6], have
been so far reported. Usually the bridging ligands form five-
member rings comprising the two platinum centers and a set
of three atoms providing a suitable bite, for example, NCO
[6–23] (including pyrimidine nucleobases), NCS, NCN, SCS,
OXO (X = C, S, P), or PXP (X = O, C) [24–29]. Some of these
dinuclear platinum(III) complexes have antitumor activity
[30–32] or have shown to act as catalysts for the oxidation of
olefins [2, 33, 34]. Dinuclear platinum(III) complexes have
equatorial and axial ligands [35]; these latter are invariably
more weakly bound, due to the strong trans labilizing
influence exerted by the intermetallic bond [5, 22]. In
previous works we have reported the synthesis and structural
characterization of “lantern-shaped” platinum(III) com-
plexes with acetamidate and pivaloamidate (HN=C(R)O−,
R = Me or But) bridging ligands and chloride, phosphine
or water axial ligands [22, 23]. We have now extended the

investigation to the case of axial ligands being purine and
pyrimidine nucleobases. In this paper we report the syn-
thesis and NMR characterization of pivaloamidate “lantern-
shaped” platinum(III) complexes with 9-ethylguanine (9-
EtG) and 1-methylcytosine (1-MeC). The two com-
plexes, cis-N2O2-[Pt2{HN=C(But)O}4(9-EtG)2](NO3)2 and
cis-N2O2-[Pt2{HN=C(But)O}4(1-MeC)2](NO3)2, have also
been characterized by X-ray crystallography.

2. Experimental

Physical Measurements. Elemental analyses were obtained
with an Elemental Analyzer mod. 1106 Carlo Erba instru-
ment. 1H, 13C, and 195Pt NMR spectra were recorded with a
DPX 300 Avance Bruker instrument. 1H and 13C chemical
shifts are referenced to TMS and 195Pt chemical shifts to
K2PtCl4 (1 M in water, δ = −1614 ppm).

2.1. Synthesis

2.1.1. Starting Materials. Reagent grade chemicals were used
as received. cis-N2O2-[Pt2{HN=C(But)O}4(NO3)2] was pre-
pared as already described in a previous work [23].
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2.1.2. cis-N2O2-[Pt2{HN=C(But)O}4(9-EtG)2](NO3)2 (1).
cis-N2O2-[Pt2{HN=C(But)O}4(NO3)2] (50.4 mg, 0.055
mmol) and 9-EtG (20.0 mg, 0.11 mmol) were dissolved in
methanol (40 mL) and the reaction solution stirred at 25 ◦C
for 6 hours. The solution was then taken to dryness under
reduced pressure and the obtained solid was triturated with
chloroform in order to remove unreacted reagents. The
suspension was centrifuged and the solid was separated
from the solution and dried in a stream of dry air. Anal.
calc. for C34H58N16O12Pt2·CHCl3·CH3OH: C, 30.35; H,
4.46; N, 15.73. Found: C, 30.87; H, 4.60; N, 16.18. 1H-NMR
(CD3OD, ppm): 8.20 (s, H8), 4.31 (q, CH2), 1.52 (t, CH3),
and 1.22 (s, But). The compound was obtained in crystalline
form (green crystals) from a methanol solution layered
under tetrahydrofurane (THF).

2.1.3. cis-N2O2-[Pt2{HN=C(But)O}4(1-MeC)2](NO3)2 (2).
cis-N2O2-[Pt2{HN=C(But)O}4(NO3)2] (129.0 mg, 0.14
mmol) and 1-MeC (35.3 mg, 0.28 mmol) were dissolved
in methanol (30 mL). The reaction mixture was stirred at
25 ◦C for 6 hours. The green solution was taken to dryness
under reduced pressure and the solid dried in a stream of
dry air. Anal. calc. for C30H54N12O12Pt2·H2O·CH3OH: C,
30.64; H, 4.98; N, 13.83. Found: C, 30.64; H, 4.65; N, 13.81.
1H-NMR (CD3OD, ppm): 7.83 (d, H6), 5.95 (d, H5), 3.45
(s, CH3), and 1.23 (s, But). The compound was obtained in
crystalline form (yellow crystals) from an ethanol solution
layered under 1,4-dioxane.

2.2. X-Ray Crystallography. Selected crystals of compounds 1
and 2 were mounted on a Bruker AXS X8 APEX CCD system
equipped with a four-circle Kappa goniometer and a 4K CCD
detector (radiation MoKα). For data reduction and unit cell
refinement the SAINT-IRIX package was employed [36].

For compound 1, that crystallizes from CH3OH/tetrahy-
drofurane incorporating a molecule of tetrahydrofurane
per molecule of compound (1·C4H8O), a total of 42660
reflections (Θmax = 25.18◦) were collected. For com-
pound 2, that crystallizes from CH3CH2OH/1,4-dioxane
incorporating two molecules of 1,4-dioxane per molecule
of compound (2·2C4H8O2), a total of 43490 reflections
(Θmax = 34.11◦) were collected. All reflections were
indexed, integrated, and corrected for Lorentz, polarization,
and absorption effects using the program SADABS [37].

The unit cell dimensions were calculated from all reflec-
tions and the structures were solved using direct methods
technique in the P 21/c space group.

The model was refined by full-matrix least-square meth-
ods. All non-hydrogen atoms were refined anisotropically,
except for atoms of tert-butyl group (disordered in the
case of 2) and of solvent of crystallization (disordered
tetrahydrofurane for 1 and disordered 1,4-dioxane for 2) that
required isotropic treatment in order to maintain satisfactory
thermal displacement parameters.

In the case of complex 1, the hydrogen atoms were
located by Fourier difference and refined isotropically except
for the hydrogen atoms of the tert-butyl groups that were
placed at calculated positions and refined given isotropic

parameters equal to 1.5 times theU(eq) of the atom to which
they are bound.

In the case of complex 2, all hydrogen atoms were placed
at calculated positions and refined given isotropic parameters
equivalent to 1.5 (methyl groups) or 1.2 (other groups) times
those of the atom to which they are attached.

All calculations and molecular graphics were carried out
using SIR2002 [38], SHELXL97 [39], PARST97 [40, 41],
WinGX [42], and ORTEP-3 for Windows packages [43].
Details of the crystal data are listed in Table 1. Selected bond
lengths and angles are listed in Table 2.

CCDC-762181 (1) and CCDC-762182 (2) are avail-
able. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from
the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or
e-mail: deposit@ccdc.cam.ac.uk.

3. Results and Discussion

3.1. Synthesis and Characterization. 9-EtG and 1-MeC both
react with lantern shaped [Pt2{HN=C(But)O}4(NO3)2]
(which has a cis-N2O2 configuration on both platinum
subunits), in methanol, giving, respectively, compounds
1 and 2 in almost quantitative yields. The new formed
complexes exhibit single 195Pt NMR signals (−69.8 and
28.2 ppm for 1 and 2, respectively, solvent CD3OD + 10%
H2O), which are indicative of dinuclear Pt(III) species with
symmetrical capping of the axial sites (the precursor com-
plex, [Pt2{HN=C(But)O}4(NO3)2], resonates at −4.41 ppm
in CD3OD). The 1H-NMR spectrum in CD3OD + 10%
H2O of complex 1 exhibits a single set of signals for 9-EtG
with frequencies at 11.32, 8.17, 6.71, 4.29, and 1.51 ppm
assigned, respectively, to NH, H(8), NH2, CH2, and CH3

protons (corresponding signals of free 9-EtG fall at 10.85,
7.78, 6.30, 4.07, and 1.40 ppm, respectively). The 0.40 ppm
downfield shift of the 9-EtG H8 proton suggests that the
coordination occurs through N7. One set of signals is also
observed for the pivaloamidate ligands with resonance peaks
at 8.66 and 1.23 ppm assigned, respectively, to NH and tert-
butyl protons (the corresponding protons in the precursor
complex [Pt2{HN=C(But)O}4(NO3)2] resonate at 7.54 and
1.22 ppm, respectively). The deshielding of about 1 ppm
observed for the amidic protons of the pivaloamidate ligands
may be attributed to the interaction with the guanine base in
apical position (see following discussion).

The 1H-NMR spectrum of compound 2 in CD3OD
+ 10% H2O exhibits one set of signals for 1-MeC with
resonance peaks at 8.82 and 6.82 (these first two peaks
exhibiting a strong exchange peak in the 2D NOESY
experiment), 7.83, 5.95, and 3.45 ppm assigned, respectively,
to the two unequivalent aminic protons and to H(6), H(5),
and methyl group (corresponding signals of free 1-MeC
fall at 7.18 (broad singlet), 7.55, 5.85, and 3.35 ppm). The
unequivalence of the aminic protons in coordinated 1-MeC
is due to the partial double bond character of the C4–N4
linkage, which is reinforced by the metal coordination to
N3 [44, 45]. The average deshielding of the aminic protons
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Table 1: Crystal data and structure refinement parameters for [Pt2{HN=C(But)O}4(9-EtG)2](NO3)2·tetrahydrofurane (1·C4H8O) and
[Pt2{HN=C(But)O}4(1-MeC)2](NO3)2·2(1,4-dioxane) (2·2C4H8O2).

Crystal 1·C4H8O 2·2C4H8O2

Empirical formula C38H66N16O13Pt2 C38H70N12O16Pt2

Formula weight 1345.24 1341.24

Temperature (K) 293(2) 293(2)

Wavelength (Å) 0.71073 0.71073

Crystal system monoclinic monoclinic

Space group P 21/c P 21/c

a (Å) 9.7776(3) 10.6566(5)

b (Å) 14.8367(5) 15.8137(6)

c (Å) 18.8734(7) 15.5868(6)

β(◦) 98.54(1) 102.51(1)

Volume (Å3) 2707.5(2) 2564.5(3)

Z 2 2

Density (calculated) (Mg/m3) 1.650 1.737

Absorption coefficient (mm−1) 5.231 5.524

F(000) 1332 1332

Crystal size (mm3) 0.300× 0.150× 0.080 0.240× 0.210× 0.075

θ range for data collection (◦) 1.75 to 25.18 2.34 to 34.11

Index ranges −11 ≤ h ≤ 11,−17 ≤ k ≤ 17,−22 ≤ l ≤ 22 −16 ≤ h ≤ 16,−24 ≤ k ≤ 24,−23 ≤ l ≤ 23

Reflections collected 42660 43490

Independent reflections 4843 [R(int) = 0.0917] 10083 [R(int) = 0.0639]

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 4843/0/301 10083/0/291

Goodness-of-fit on F2 1.046 1.003

Final R indices [I > 2σ(I)] R1 = 0.0398, wR2 = 0.0906 R1 = 0.0469, wR2 = 0.1117

R indices (all data) R1 = 0.0614, wR2 = 0.1014 R1 = 0.0968, wR2 = 0.1390

Largest diff. peak and hole (e Å−3) 1.372 and −0.751 2.571 and −0.766

of 1-MeC, as a consequence of coordination to platinum,
is 0.64 ppm. However, while one proton, presumably that
pointing towards platinum, undergoes a very large deshield-
ing (1.64 ppm), the other proton undergoes a slight upfield
shift (0.36 ppm). The pivaloamidate ligands exhibit one
signal for the iminic proton at 8.05 ppm and one signal for
the tert-butyl groups at 1.23 ppm. The cross peak between
the signals at 8.05 and 1.23 ppm, observed in the 2D NOESY
spectrum, supports this assignment. Coordination of 1-MeC
in apical position causes a deshielding of the amidic protons
of the pivaloamidate ligands which is less than half that
observed for coordination of 9-EtG (0.51 as compared to
1.12 ppm).

3.2. X-Ray Diffraction Analysis

3.2.1. [Pt2{HN=C(But)O}4(9-EtG)2](NO3)2 (1). Complex 1
crystallizes incorporating one molecule of THF per molecule
of complex. The asymmetric unit comprises half molecule
of complex and half molecule of THF and the structure is
generated by inversion at the midpoint of the Pt–Pt bond
(Figure 1). Each platinum(III) atom has distorted octahedral

geometry with the N7 of 9-EtG and the second platinum
subunit in axial positions.

The Pt–Pt distance (2.4512(5) Å) is closer to that of
the analogous complex with axial chlorides ([Pt2{HN=
C(But)O}4Cl2], 2.448(2) Å) than to that of the com-
plexes with one or two axial triphenylphosphine ligand(s)
([Pt2{HN=C(But)O}4 (PPh3 )(H2O)](NO3 )2, 2.468(1) Å;
[Pt2{HN=C(But)O}4(PPh3)2](NO3)2, 2.504(1) Å) [22, 23].
Thus the Pt–Pt distance is influenced by the nature of the
axial ligands and an N7-coordinated guanine appears to exert
a trans influence similar to that of a chloride. The platinum
coordination squares are perfectly eclipsed (maximum twist
angle 1.5◦); such a conformation allows the greatest separa-
tion between the platinum atoms. The platinum atoms are
displaced from the equatorial coordination planes by 0.087 Å
towards the axial 9-EtG, such a displacement being a measure
of the strength with which the four bridging ligands pull
together the two metal centers.

The equatorial Pt–N [1.993(7)–1.996(6) Å] and Pt–O
distances [2.019(5)–2.035(5) Å] are in the range of those
reported for doubly and quadruply bridged dinuclear plat-
inum(III) [17, 22, 23, 46], four-coordinate platinum(II), and
six-coordinate platinum(IV) complexes [4].
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Table 2: Bond lengths [Å] and angles [◦] for [Pt2{HN=C(But)O}4 ·
(9-EtG)2](NO3)2·tetrahydrofurane (1·C4H8O) and [Pt2{HN=C(
But)O}4 (1-MeC)2 ](NO3 )2·2(1,4-dioxane) (2· 2C4H8O2).

Crystal 1·C4H8O 2·2C4H8O2

Pt–N1 1.993(7) 1.967(5)

Pt–N2 1.996(6) 1.982(5)

Pt–O2 2.019(5) 2.025(4)

Pt–O1 2.035(5) 2.011(4)

Pt–Pta,b 2.4512(5) 2.4523(4)

Pt–N7g 2.200(5)

Pt–N3c 2.230(5)

N1–Pt–N2 90.6(3) 92.0(2)

N1–Pt–O2 90.4(3) 88.2(2)

N2–Pt–O1 90.4(2) 88.4(2)

O1–Pt–O2 88.1(2) 90.9(2)

N1–Pt–N7g 97.7(2)

N2–Pt–N7g 94.3(2)

O1–Pt–N7g 87.4(2)

O2–Pt–N7g 90.4(2)

Pta–Pt–N7g 177.2(1)

N1–Pt–N3c 95.3(2)

N2–Pt–N3c 95.4(2)

O1–Pt–N3c 89.9(2)

O2–Pt–N3c 89.8(2)

Ptb–Pt–N3c 179.0(1)

Symmetry transformations used to generate equivalent atoms: (a)
−x,−y,−z + 1 for crystal 1·C4H8O and (b) −x,−y,−z for crystal
2·2C4H8O2.

As expected, the axial Pt(III)–N7 bond length (2.200(5) Å
in 1) is longer than those typically seen in 4-coordinate plat-
inum(II) and 6-coordinate platinum(IV) guanine complexes
(∼1.96–2.11 Å) [47–51]. The lengthening can be ascribed
to the strong trans influence exerted by the Pt–Pt bond.
We also notice that the Pt(III)–N7 bond is slightly
longer in 1 than in analogous dinuclear Pt(III) species
(e.g., 2.189(6) Å in ht-cis-[Pt2(NH3)4(1-Mec-N3,N4)2(9-
EtG)2](ClO4)4·5H2O (ht indicates the head-to-tail arrange-
ment of the two bridging 1-MeC ligands) [52], 2.187(6)
and 2.181(7) Å in ht-cis-[Pt2(NH3)4(1-Mec- N3,N4)2(9-
EtG)2](NO3)4·9H2O) [53]. We believe that the longer
Pt(III)–N7 bond observed in 1 can be ascribed to a stronger
trans influence exerted by the Pt–Pt bond, that in 1 is shorter
(2.4511(4) Å) than in the latter two complexes (2.587(1)
and 2.586(1) Å in ht-cis-[Pt2(NH3)2(1-Mec-N3,N4)2(9-
EtG)2](ClO4)4·5H2O [52] and in ht-cis-[Pt2(NH3)4(1-Mec-
N3,N4)2(9-EtG)2](NO3)4·9H2O, respectively) [53].

The guanine is nearly coplanar with a pivaloamidate
(C5g–N7g–Pt–N1 torsion angle of 16.4(7)◦); this allows the
formation of a strong hydrogen bond between the NH of
the amidate ligand and the O6 of guanine (N1· · ·O6g
= 2.80(1) Å, (N1)H1· · ·O6g = 2.07(9) Å, N1–H1· · ·O6g
= 166(9)◦). The resulting seven-member ring motif can
be defined as S(7) by Etter’s graph-set notation [54].

N2g

C2g
N3g

C4g

C9g2

C9g1
N9g

C8g

N7g

C5gO6g

C6g

N1g

N2Pt1

O1O2

N1

Figure 1: View of the [Pt2{HN=C(But)O}4(9-EtG)2]2+ complex
showing the atomic numbering scheme of most important atoms.
Displacement ellipsoids are drawn at 20% probability level.

The orientation of the guanine in 1 is very similar
to that found in the tetrabridged dirhodium(II) com-
plex [Rh2{O=C(CH3)O}2{HN=C(CF3)O}2(9-EtG)2] [55]
also containing a strong H-bond (N· · ·O6g = 2.94(2) Å,
(N1)H1· · ·O6g = 2.20(9) Å, N1–H1· · ·O6g = 158(1)◦).
It appears that a pivaloamidato ligand is as good as the
trifluoroacetamidato ligand in forming such an H-bond.

The crystal packing is mainly governed by two symmet-
rical hydrogen bonds involving N2 and N3 of two adjacent
guanines (N2g· · ·N3gii = 3.07(1) Å, (N2g)H21g· · ·N3gii =
2.22(1) Å, N2g–H21g· · ·N3gii = 175(1)◦; ii = −x+ 1,−y+
1,−z + 1), forming a centrosymmetric eight-member ring.
This ring motif can be defined as R2

2(8) by Etter’s graph-set
notation (Figure 2). These H-bonds allow the formation of
chains of complexes extending, alternatively, parallel to the
(110) and to the (110) directions. The angle between adjacent
chains is 66◦.

Different chains are linked by nitrate anions. The
nitrate anion is anchored to the guanine base through two
strong H-bonds (N1g· · ·O5 = 2.81(1) Å, (N1g)H1g· · ·O5
= 1.99(8) Å, N1g–H1g· · ·O5 = 173(7)◦; N2g· · ·O4 =
2.87(1) Å, (N2g)H22g· · ·O4 = 2.02(8) Å, N2g–H22g· · ·O4
= 171(1)◦) forming an eight-member ring (R2

2(8) according
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Figure 2: View of the H-bonds along the chains of
[Pt2{HN=C(But)O}4(9-EtG)2]2+ complexes.

to Etter’s graph-set notation). The same nitrate anion
forms a third hydrogen bond with the amidic NH of an
adjacent complex (N2i · · ·O3 = 3.18(1) Å, (N2)iH2i · · ·O3
= 2.49(8) Å, N2i–H2i · · ·O3 = 157(8)◦; i = x,−y + 1/2, z−
1/2) with an Etter’s graph-set motif of type D.

The THF solvent molecule is disordered, the oxygen atom
of 50% of the molecules pointing in the direction opposite
to that of the other 50% molecules. As a consequence
THF appears as a flat 1,4-dioxane-type molecule with the
two oxygens having occupancy factor 0.5 and the carbons
occupancy factor 1. The accuracy of the X-ray data is not
allowed to distinguish between carbon atoms belonging to
the differently oriented THF molecules.

3.2.2. [Pt2{HN=C(But)O}4(1-MeC)2](NO3)2 (2). Com-
pound 2 crystallizes incorporating two molecules of
1,4-dioxane per molecule of complex. The asymmetric unit
comprises half molecule of complex and one of dioxane and
the structure is generated by inversion at the midpoint of the
Pt–Pt linkage (Figure 3). Each Pt(III) atom has a distorted
octahedral geometry with the N3 of 1-MeC and the second
platinum subunit in axial positions.

The Pt–Pt distance (2.4523(4) Å) is very similar to the
analogous distance observed in compound 1. As for 1,
the platinum coordination squares are perfectly eclipsed
(maximum twist angle of 0.8◦), and the platinum atoms
are displaced from the equatorial coordination planes by
0.090 Å towards the axial cytosine. Also the equatorial Pt–
N [1.967(5) and 1.982(5) Å] and Pt–O distances [2.011(4)
and 2.025(4) Å] are in the range of those observed in
1 and reported for four-coordinate platinum(II) and six-
coordinate platinum(IV) complexes [4].

As expected, the axial Pt(III)–N3c bond length
(2.230(5) Å) is longer than that observed in 4-coordinate
platinum(II) and 6-coordinate platinum(IV) complexes
with cytosine (∼2.025–2.082 Å) [45, 47, 56–58]. It is to be
noted that the Pt–N3c distance is slightly longer than the
Pt–N7g distance observed in compound 1. The cytosine
plane bisects the angle between two adjacent pivaloamidate
planes forming a C2c–N3c–Pt–N1 torsion angle of 44◦. This
allows the formation of bifurcated hydrogen bonds between
N4 of 1-MeC and the O atoms of two amidate ligands
(N4c· · ·O1 = 2.92(1) Å, (N4c)H41c· · ·O1 = 2.30(1) Å,
N4c–H41c· · ·O1 = 130(1)◦; N4c· · ·O2 = 2.93(1) Å,
(N4c)H41c· · ·O2 = 2.31(1) Å, N4c–H41c· · ·O2 = 130(1)◦)

C1c C6c

C5c

C4c

N3c N4c
C2c

O2c

N1c

Pt1

O1

O2N1

N2

Figure 3: View of the [Pt2{HN=C(But)O}4(1-MeC)2]2+ complex
showing the atomic numbering scheme of most important atoms.
The tert-butyl groups are disordered and can occupy two different
positions; only one position is shown for clarity. Displacement
ellipsoids are drawn at 20% probability level.

[59]. Each nitrate anion (nitrate oxygens O6, O7, and
O8) is anchored to one 1-MeC through a hydrogen bond
(N4c· · ·O8 = 2.85(1) Å, (N4c)H42c· · ·O8 = 2.00(1) Å,
N4c–H42c· · ·O8 = 167(1)◦, Figure 4).

In the crystal packing, complex molecules are located
(with the inversion center) at the four corners and at
the center of face A. The crystal packing is mainly gov-
erned by hydrogen bonds between complexes and 1,4-
dioxane molecules. Each molecule of 1,4-dioxane (1,4-
dioxane oxygens O4 and O5) bridges two adjacent molecules
of complex (N2· · ·O4 = 2.98(1) Å, (N2)H2· · ·O4 =
2.19(1) Å, N2–H2· · ·O4 = 152(1)◦; N1i · · ·O5 = 3.02(1) Å
(N1i)H1i · · ·O5 = 2.25(1) Å, N1i–H1i · · ·O5 = 149(1)◦;
i = −x,−y + 1/2, z − 1/2). In this way each molecule
of complex is surrounded by four molecules of dioxane
connecting the former complex to the four adjacent complex
molecules on face A (Figure 4).

The tert-butyl groups are disordered and each set of
three methyl groups can occupy two different positions, each
position with occupancy factor 0.5. Also the 1,4-dioxane
solvent molecules are disordered. The position is fixed for
the two oxygen atoms while the four carbon atoms can
occupy two different positions each one with occupancy
factor 0.5. In each case the 1,4-dioxane molecule adopts a
chair conformation.
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a
c

b

Figure 4: View of the crystal packing along the a direction for
[Pt2{HN=C(But)O}4(1-MeC)2](NO3)2·2(1,4-dioxane). Since the
tert-butyl groups and the dioxane molecules are disordered, only
one occupation site is shown for clarity.

4. Conclusions

The coordination of 9-EtG and 1-MeC to the axial sites of
quadruply bridged dinuclear species of platinum(III) has
been established. The complexes are stable in solution as
well as in the solid state. Complex 1 is one of the few
examples of dinuclear platinum(III) species with axially
bound guanines, while complex 2 is, to the best of our
knowledge, the first compound of this type (axially bound
1-MeC). The axial Pt–N3 bond in 2 is 0.010 Å longer
than the axial Pt–N7 bond in 1. Since the Pt–Pt core is
very similar in the two cases, we argue that the longer
distance found in 2 is indicative of a weaker binding of
1-MeC as compared to 9-EtG. Previous attempts to bind
1-MeC in the axial positions of a dinuclear platinum(III)
complex, (e.g., cis-[Pt2(NH3)4(1-Mec- N3,N4)2XY]Zn, X
and Y stand for axial ligands of different types and Z
stands for counteranion(s)) have been unsuccessful [52]. In
contrast our dinuclear Pt(III) core, with four pivaloamidate
bridging ligands, readily binds nucleobases, comprising 1-
MeC, forming stable compounds. It is possible that the
presence in the equatorial platinum coordination plane of
groups with good H-bond donor/acceptor properties, and
therefore able to establish additional bonds with the apical
ligands, gives a decisive contribution to the formation of
such complexes. H-bond interaction causes, in the case of
1, a downfield shift of the pivaloamidate amidic proton
by 1.12 ppm and, in the case 2, a downfield shift of one
aminic proton of 1-MeC by 1.64 ppm. In the latter case
the H-bond is bifurcated and the 1-MeC aminic proton,
(N4c)H41c, interacts, simultaneously, with the oxygen atoms
of two cis pivaloamidate ligands. In principle, the 1-MeC
could form, in addition to the H-bond described above,
also an H-bond between the 1-MeC oxygen, O2c, and the
pivaloamidate amidic protons; such an H-bond, however,
does not form or is extremely weak (downfield shift of the

amidic proton of only 0.51 ppm as compared to 1.12 ppm
observed in compound 1). A possible cause of weakness of
the latter H-bond is the dihedral angle of 45◦ between 1-
MeC and pivaloamidate planes; such an angle is optimal
for the bifurcated H-bond involving the aminic group but
is detrimental for a potential H-bond involving the 1-MeC
oxygen. In fact it appears that, while a proton can interact
with two oxygens (bifurcated H-bond), one oxygen can only
interact with one proton (regular H-bond as observed in
compound 1).

“Lantern shaped” platinum(III) complexes have been
shown, by Cervantes and coworkers, to be endowed with
antitumor activity (e.g., [Pt2(2-mercaptopyrimidine)4Cl2]
and [Pt2(2-mercaptopyridine)4Cl2]) [30–32]. It will be
worth investigating the antitumor activity of our amidate
complexes for which we have shown a greater propensity to
form adducts with nucleobases in apical positions.
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[16] B. Lippert, H. Schöllhorn, and U. Thewalt, “Facile substi-
tution of NH3 ligands in a diplatinum(III) complex of 1-
methyluracil,” Inorganic Chemistry, vol. 25, no. 4, pp. 407–408,
1986.
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al., “Induction of apoptosis by the bis-Pt(III) complex
[Pt2(2-mercaptopyrimidine)4Cl2],” Biochemical Pharmacol-
ogy, vol. 60, no. 3, pp. 371–379, 2000.

[33] N. Saeki, N. Nakamura, T. Ishibashi, et al., “Mecha-
nism of ketone and alcohol formations from alkenes
and alkynes on the head-to-head 2-pyridonato-bridged



8 Bioinorganic Chemistry and Applications

cis-diammineplatinum(III) dinuclear complex,” Journal of the
American Chemical Society, vol. 125, no. 12, pp. 3605–3616,
2003.

[34] M. Ochiai, Y.-S. Lin, J. Yamada, H. Misawa, S. Arai, and K.
Matsumoto, “Reactions of a platinum(III) dimeric complex
with alkynes in water: novel approach to α-aminoketone, α-
iminoketone, and α, β-diimine via ketonyl-Pt(III) dinuclear
complexes,” Journal of the American Chemical Society, vol. 126,
no. 8, pp. 2536–2545, 2004.

[35] K. Matsumoto, “Inorganic and organometallic chemistry of
PtIII complexes having a delocalized PtIII-PtIII bond,” Russian
Chemical Bulletin, vol. 52, no. 12, pp. 2577–2587, 2003.

[36] Bruker, SAINT-IRIX, Bruker AXS Inc., Madison, Wis, USA,
2003.

[37] G. M. Sheldrick, SADABS: Program for Empirical Absorption
Correction of Area Detector Data, University of Göttingen,
Göttingen, Germany, 1996.

[38] M. C. Burla, M. Camalli, B. Carrozzini, et al., “SIR2002: the
program,” Journal of Applied Crystallography, vol. 36, no. 5, p.
1103, 2003.

[39] G. M. Sheldrick, Programs for Crystal Structure Analysis
(Release 97-2), Institut für Anorganische Chemie der Univer-
sität, Göttingen, Germany, 1998.

[40] M. Nardelli, “Parst: a system of Fortran routines for calcu-
lating molecular structure parameters from results of crystal
structure analyses,” Computers and Chemistry, vol. 7, no. 3, pp.
95–98, 1983.

[41] M. Nardelli, “PARST95—an update to PARST: a system of
Fortran routines for calculating molecular structure param-
eters from the results of crystal structure analyses,” Journal of
Applied Crystallography, vol. 28, no. 5, p. 659, 1995.

[42] L. J. Farrugia, “WinGX suite for small-molecule single-crystal
crystallography,” Journal of Applied Crystallography, vol. 32,
no. 4, pp. 837–838, 1999.

[43] L. J. Farrugia, “ORTEP-3 for windows—a version of ORTEP-
III with a graphical user interface (GUI),” Journal of Applied
Crystallography, vol. 30, no. 5, p. 565, 1997.

[44] A. Hegmans, E. Freisinger, E. Zangrando, et al., “Tris- and
tetrakis(1-methyIcytosine) complexes of Pt(II): syntheses and
X-ray structures of [Pt(1-MeC-N3)3Cl]+ and [Pt(1-MeC-
N3)4]2+ compounds,” Inorganica Chimica Acta, vol. 279, no.
2, pp. 152–158, 1998.

[45] J. D. Orbell, L. G. Marzilli, and T. J. Kistenmacher, “Prepara-
tion, 1H NMR spectrum and structure of cis-diamminebis(1-
methylcytosine)platinum(II) nitrate-1-methylcytosine. Cis
steric effects in pyrimidine ring-bound cis-bis(nucleic acid
base)platinum(II) compounds,” Journal of the American
Chemical Society, vol. 103, no. 17, pp. 5126–5133, 1981.

[46] L. S. Hollis, M. M. Roberts, and S. J. Lippard, “Synthesis
and structures of platinum(III) complexes of α-pyridone,
[X(NH3)2Pt(C5H4NO)2Pt(NH3)2X](NO3)2 · nH2O, (X− =
Cl−, NO−

2 , Br−),” Inorganic Chemistry, vol. 22, no. 24, pp.
3637–3644, 1983.

[47] A. Erxleben, S. Metzger, J. F. Britten, C. J. L. Lock, A. Albinati,
and B. Lippert, “Model of the most abundant DNA interstrand
cross-link of transplatin: X-ray structures of two modifications
and H bonding behavior in the solid state and in solu-
tion of trans-[Pt(NH3)2(1-MeC-N3)(9-EtGH-N7)](ClO4)2 ·
nH2O (1-MeC=1-methylcytosine; 9-EtGH=9-ethylguanine),”
Inorganica Chimica Acta, vol. 339, pp. 461–469, 2002.

[48] B. Lippert, G. Raudaschl, C. J. L. Lock, and P. Pilon,
“‘Real’ model compounds for intrastrand cross-linking of two
guanine bases by cisplatin: crystal structures of cis-diammin-
ebis(9-ethylguanine-N7)platinum(II) dichloride trihydrate,

[Pt(NH3)2(C7H9N5O)2]Cl2 · 3H2O, and cis-diamminebis(9-
ethylguanine-N7)platinum(II) sesquichloride hemibicarbon-
ate sesquihydrate, [Pt(NH3)2(C7H9N5O)2]Cl1.5(HCO3)0.5 ·
1.5H2O,” Inorganica Chimica Acta, vol. 93, no. 1, pp. 43–50,
1984.

[49] M. S. Ali, S. R. A. Khan, H. Ojima, et al., “Model platinum
nucleobase and nucleoside complexes and antitumor activity:
X-ray crystal structure of [PtIV(trans-1R,2R-diaminocyclo-
hexane)trans-(acetate)2(9-ethylguanine)Cl]NO3 ·H2O,” Jour-
nal of Inorganic Biochemistry, vol. 99, no. 3, pp. 795–804, 2005.

[50] R. K. O. Sigel, M. Sabat, E. Freisinger, A. Mower, and B.
Lippert, “Metal-modified base pairs involving different donor
sites of purine nucleobases: trans-[a2Pt(7,9-DimeG-N1)(9-
EtGH-N7)]2+ and trans-[a2Pt(7,9-DimeG-N1)(9-EtG-N7)]+

(a = NH3 or CH3NH2; 9-EtGH = 9-ethylguanine; 7,9-dimeg
= 7,9-dimethylguanine). Possible relevance to metalated DNA
triplex structures,” Inorganic Chemistry, vol. 38, no. 7, pp.
1481–1490, 1999.

[51] S. Shamsuddin, M. S. Ali, K. H. Whitmire, and A. R. Khokhar,
“Synthesis characterization and X-ray crystal structures of cis-
1,4-diaminocyclohexane-platinum(II) nucleobase adducts,”
Polyhedron, vol. 26, no. 3, pp. 637–644, 2007.

[52] G. Kampf, M. Willermann, E. Zangrando, L. Randaccio, and
B. Lippert, “Axial guanine binding to a diplatinum(III) core,”
Chemical Communications, no. 8, pp. 747–748, 2001.

[53] G. Kampf, M. Willermann, E. Freisinger, and B. Lippert,
“Diplatinum(III) complexes with bridging 1-methylcytosinate
ligands and variable axial ligands, including guanine nucle-
obases,” Inorganica Chimica Acta, vol. 330, no. 1, pp. 179–188,
2002.

[54] M. C. Etter, “Encoding and decoding hydrogen-bond patterns
of organic compounds,” Accounts of Chemical Research, vol. 23,
no. 4, pp. 120–126, 1990.

[55] K. Aoki and Md. Abdu. Salam, “Interligand interactions
affecting specific metal bonding to nucleic acid bases. A
case of [Rh2(OAc)4], [Rh2(HNOCCF3)4], and [Rh2(OAc)2 ·
(HNOCCF3)2] toward purine nucleobases and nucleosides,”
Inorganica Chimica Acta, vol. 339, pp. 427–437, 2002.

[56] J. F. Britten, B. Lippert, C. J. L. Lock, and P. Pilon,
“Platinum(II) complexes with terminal hydroxo and aquo
groups: crystal structures of hydroxo-cis-diammine(1-
methylcytosine-N3)platinum(II) nitrate dihydrate, [Pt(OH)
(NH3)2(C5H7N3O)]NO3 · 2H2O, and cis-diammineaquo(1-
methylcytosine-N3)platinum(II) dinitrate hydrate, [Pt(NH3)2·
(H2O)(C5H7N3O)](NO3)2 · H2O,” Inorganic Chemistry, vol.
21, no. 5, pp. 1936–1941, 1982.

[57] R. Faggiani, B. Lippert, C. J. L. Lock, and R. Pfab,
“Crystal structure of cis-diammine(1-methylcytosine-N3)
(thyminato-N1)platinum(II) perchlorate, cis-[Pt(NH3)2·
(C5H5N2O2)(C5H7N3O)]ClO4, and its 1H NMR and vi-
brational spectra and those of the corresponding mono-
and trihydrates,” Inorganic Chemistry, vol. 20, no. 8, pp.
2381–2386, 1981.
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