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A B S T R A C T   

Oxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such 
as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory 
and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Acti
vation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds 
with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust 
antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabi
noid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, 
we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. 
This new CBD derivative provides neuroprotection in cell models of relevance to Huntington’s disease, setting 
the basis for further developments in vivo.   

1. Introduction 

Cells are continuosuly exposed to reactive oxygen species (ROS) from 
both exogenous and endogenous sources. To counteract the potential 
harmful effects of ROS, cells have evolved constitutive (housekeeping) 
as well as inducible antioxidant systems that regulate redox homeosta
sis. The master regulator of the inducible antioxidant responses is the 
transcription factor NF-E2–related factor 2 (NRF2), a member of the 
cap’n’collar basic region leucine zipper (CNC-bZip) transcription factor 
family. NRF2 binds to Antioxidant Response Elements (ARE) in the 
promoters of its target genes, many of which encode antioxidant and 
other cytoprotective proteins, and triggers their expression [1]. BTB And 
CNC Homology 1 (BACH1) is a transcriptional repressor, also belonging 
to the CNC-bZip family, that competes with NRF2 for binding to ARE 
sites located at the promoter of oxidative stress responsive genes, such as 
heme oxygenase 1 (HMOX1) [2]. 

In homeostatic conditions, NRF2 binds to its negative regulator 

Kelch-like ECH-associated protein 1 (KEAP1) in the cytoplasm, and is 
targeted for ubiquitination and subsequent proteasomal degradation by 
the Cullin3-containing E3-ligase complex [3]. When cells are exposed to 
oxidants or electrophiles, KEAP1 is disabled, allowing for accumulation 
and translocation of de novo synthesized NRF2 to the nucleus [4] while 
BACH1 is exported out of the nucleus and degraded [5]. Only a subset of 
NRF2 target genes are regulated by BACH1, HMOX1 being the best 
characterized one. It encodes heme oxygenase 1 (HMOX1), an enzyme 
which catalyzes the rate-limiting reaction in heme degradation [6]. It is 
generally accepted that BACH1 and NRF2 work together to regulate the 
expression of HMOX1, with the negative effect of BACH1 dominating 
over the positive effect of NRF2. This means that BACH1 needs to be 
displaced from the HMOX1 promoter in order for NRF2 to bind and 
induce its expression [7]. However, we and others have shown that 
HMOX1 induction can be BACH1-dependent, but NRF2-independent [8, 
9], suggesting that the regulation of HMOX1 is most likely cell type- and 
context-dependent. 
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HMOX1 has anti-inflammatory properties [10,11], and its knockout 
in mouse models leads to the development of chronic inflammation [12, 
13]. The antioxidant role of HMOX1 is largely attributed to its capacity 
to degrade heme into biliverdin, which is rapidly converted to the 
antioxidant bilirubin, free iron, and carbon monoxide [14,15]. 
Furthermore, various studies have shown that overexpression of 
HMOX1 protects cells from oxidative damage and neurotoxicity [11,16]. 
Oxidative stress and inflammation in the brain are two key hallmarks of 
neurodegenerative diseases (NDs) such as Alzheimer’s, Parkinson’s, 
Huntington’s and multiple sclerosis (MS). Thus, BACH1 inhibitors, by 
inducing HMOX1, could be developed as neuroprotective agents. 

Despite their therapeutic potential, so far only very few BACH1 in
hibitors have been reported. The compound most widely used to inhibit 
BACH1 is the oxidized form of its endogenous ligand heme. Hemin binds 
to BACH1, impairing its binding to DNA, promoting its nuclear export 
and its degradation via the E3 ligase Fbxo22 [17–19]. Hemin is a very 
potent inhibitor, but its clinical use is limited by the toxic nature of free 
heme [20]. Other BACH1 inhibitor is the natural non-psychotropic 
phytocannabinoid cannabidiol (CBD). We have shown that CBD tar
gets BACH1 for degradation and, consequently, induces HMOX1 [9]. 
CBD is neuroprotective in a murine MS model [21] and has been tested 
in various animal and cell models of other NDs [22], and some of its 
beneficial effects could indeed be related to its inhibitory effect on 
BACH1. Another reported BACH1 inhibitor is the synthetic compound 
HPP-4382 [23] that, to the best of our knowledge, has not yet been 
tested in any disease models. 

Pharmacological activation of NRF2 is also beneficial in most pa
thologies with underlying oxidative stress and inflammation [24]. Most 
compounds that stabilise NRF2 are either electrophilic molecules that 
covalently modify certain cysteine residues in KEAP1, impairing its ac
tivity [25], or inhibitors that interfere with the binding between NRF2 
and KEAP1 [26]. Stabilisation of NRF2 triggers the transcription of 
multiple enzymes involved in scavenging ROS and in generating anti
oxidant molecules like glutathione [27,28] while leading to a reduction 
of pro-inflammatory cytokines such as IL-6 [29,30]. Thus NRF2 activa
tors have also been studied for their potential neuroprotective effect 
[31]. In fact, the activation of the NRF2 pathway has been shown to be 
neuroprotective in various models of NDs such as MS and Huntington 
disease (HD) [32,33]. HD is caused by a mutation in the huntingtin 
(HTT) gene; this mutant HTT tends to form aggregates that lead to the 
dysfunction and eventual death of neurons within the striatum [34]. HD 
presents high levels of oxidative stress, brain inflammation and impaired 
NRF2 activity [35], and NRF2 activation has been shown to repress 
proinflammatory processes in preclinical HD models [35]. Furthermore, 
treatment with the NRF2 activator dimethyl fumarate (DMF) resulted in 
improved motor function in a mouse HD model [36]. 

While NRF2 activators induce the expression of many cytoprotective 
genes, BACH1 inhibitors activate only a few, although they are 
extremely potent at inducing HMOX1. Thus, the individual knockdown 
of KEAP1 (leading to constitutive NRF2 activation) or BACH1 in HaCaT 
cells induced the expression of HMOX1 by 2.3- and 136-fold, respec
tively, whereas the combined knockdown of KEAP1 and BACH1 resulted 
in a 388-fold increase of HMOX1 mRNA [37]. Consequently, com
plementing NRF2 activation with BACH1 inhibition would result in a 
highly robust anti-inflammatory and antioxidant response, and poten
tially a better therapeutic effect. 

Cannabidiol has sparked attention due to its therapeutic potential, 
and there is considerable interest in synthesizing new CBD derivatives 
with improved pharmacological and clinical properties. In this study, we 
report the identification of a novel CBD derivative that is highly effective 
at both inhibiting BACH1 and activating NRF2, and show its cytopro
tective efficacy in cell models of relevance to Huntington’s disease. 

2. Materials and methods 

2.1. Cell culture 

The following cell lines were used in this study: HaCaT, THP1, SH- 
SY5Y, Hepa 1c1c7, A549 and Q7/Q111. HaCaT cells have been vali
dated by STR profiling and were routinely tested for mycoplasma. 
HaCaT-ARE-Luc cells were generated as described previously [38]. 
HaCaT NRF2-KO cells were produced using the CRISPR-Cas9 system as 
described [9]. CRISPR-edited HaCaT BACH1-KO and HaCaT 
NRF2-KO/BACH1-KO cells were generated by transfecting either HaCaT 
WT or HaCaT NRF2-KO cells with two different pLentiCRISPR-v2 (a gift 
from Dr Feng Zhang, Addgene plasmid #52961) containing each one a 
guide RNA against the first exon and the second exon of BACH1, 
respectively (5′-CGATGTCACCATCTTTGTGG-3′, 5′-GACTCTGAGACG 
GACACCGA-3′). All CRISPR-edited cell lines were selected for two days 
using puromycin, cells were clonally selected by serial dilution and 
positive clones were identified, as previously described [39]. Control 
cells, referred to as HaCaT wild type (HaCaT WT), are the pooled pop
ulation of surviving cells transfected with an empty pLentiCRISPRv2 
vector treated with puromycin. THP1, SH-SY5Y, Hepa-1c1c7 and A549 
cells were obtained from ATCC and were routinely tested for myco
plasma. Clonal striatal cell lines established from E14 striatal primordia 
of HdhQ111/Q111 (mutant) and HdhQ7/Q7 (wild-type) knock-in mouse lit
termates and immortalized as previously described [40]. Cell lines were 
grown in RPMI (HaCaT, THP1), DMEM (A549), DMEM/F12 (SH-SY5Y) 
or alpha-MEM (Hepa-1c1c7) with 10% FBS at 37 ◦C and 5% CO2. Striatal 
Q7 and Q111 cells were maintained in DMEM containing 25 mM 
D-glucose, 1 mM L-glutamine, 10% fetal bovine serum (FBS), 1 mM so
dium pyruvate, and 400 μg/mL Geneticin (Invitrogen, Carlsbad, CA) and 
were incubated at 33 ◦C with 5% CO2. 

2.2. Antibodies and reagents 

Antibodies recognizing Beta-Actin (C-4) and anti-BACH1 (F-9) were 
obtained from Santa Cruz Biotechnology (Dallas, Texas, USA). anti- 
NRF2 (D1Z9C) was obtained from Cell Signalling Technology (Dan
vers, MA, USA) and anti-HMOX1 was purchased from Biovision (San 
Francisco, CA, USA). The siRNAs used as control or against KEAP1 were 
the SMART pool: ON-Target Plus from Dharmacon (Lafayette, CO, USA). 
CBD (Fig. 1B (1)) was isolated from the Cannabis strain Carmagnola 
[41]. 

2.3. Synthesis of the CBD derivatives 

O-Methyl para-cannabidiolquinone (Compound 2): To a cooled 
(ice bath) solution of cannabidiolquinone (Fig. 1B (4)) (1.87 g, 5.69 
mmol) [42] in DMF (19 mL), solid NaHCO3 (0.95 g, 11.31 mmol) was 
added. After stirring for 10 min, methyl iodide (1.75 g, 28.11 mmol) was 
added, and the resulting mixture was stirred overnight at room tem
perature. The reaction was worked up by dilution with water (75 mL) 
and EtOAc (75 mL), and, after a 5 min stirring, the two layers were 
separated. The lower organic layer was washed with water (2 × 25 mL), 
dried (Na2SO4) and evaporated to obtain a dark oily residue, that was 
purified by gravity column chromatography on silica gel, using an 
EtOAc gradient in hexane (from 1:99 to 4:96). 960 mg (49%) O-methyl 
para-cannabinodiolquinone were obtained as a red oil. 1H NMR (300 
MHz, CDCl3) δ = 6.37 (t, J = 1.5, 1H), 5.10 (s, 1H), 4.59–4.48 (m, 2H), 
3.87 (s, 3H), 3.82–3.67 (m, 1H), 2.70 (td, J = 11.1, 10.7, 3.2, 1H), 2.36 
(dd, J = 10.2, 6.2, 1.5, 2H), 2.29–2.10 (m, 1H), 2.07–1.91 (m, 1H), 
1.81–1.59 (m, 3H), 1.69 (s, 3H), 1.64 (s, 3H), 1.57–1.42 (m, 2H), 
1.42–1.24 (m, 4H), 0.97–0.83 (m, 3H). 

O-Methyl ortho-cannabidiolquinone (Compound 3): To a solu
tion of O-methyl cannabidiol (Fig. 1B (5)) [43] (2.25 g, 6.85 mmol) in 
EtOAc (150 mL), SIBX (42.7%, 13.5 g, 20.59 mmol) was added, and the 
mixture was stirred at room temperature for 24 h. The reaction was 
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worked up by filtration, and the filtrate was washed with sat. NaHCO3 
(3 × 100 mL), dried (Na2SO4), and evaporated. A dark red oil was ob
tained, that was purified by gravitiy column chromatography (silica gel, 
EtOAc/hexanes 4:96 as eluant) to afford 1.19 g (51%) of O-methyl 
ortho-cannabidiolquinone as a dark red oil. 1H NMR (300 MHz, CDCl3) δ 
= 6.84 (s, 1H), 5.08 (s, 1H), 4.61–4.51 (m, 2H), 3.89 (s, 3H), 3.74–3.61 
(m, 1H), 2.76–2.62 (m, 1H), 2.35 (t, J = 7.7, 2H), 2.27–2.10 (m, 1H), 
2.03–1.91 (m, 1H), 1.80–1.59 (m, 3H), 1.66 (s, 3H), 1.63 (s, 3H), 1.49 
(m, 2H), 1.39–1.24 (m, 4H), 0.95–0.82 (m, 3H). 

2.4. Quantitative real time PCR (rt-qPCR) 

Samples were lysated and homogenised using the QIAshredder 
(Qiagen, Hilden, Germany) and RNA was extracted using RNeasy kit 
(Qiagen). 500 ng of RNA per sample was reverse-transcribed to cDNA 
using Omniscript RT kit (Qiagen) supplemented with RNase inhibitor 
(Invitrogen, Waltham, MA, USA) according to the manufacturer’s in
structions. Resulting cDNA was analysed using TaqMan Universal 
Master Mix II (Life Technologies, Carlsbad, CA, USA). Gene expression 
was determined by the comparative ΔΔCT method, using a QuantStudio 
7 Flex qPCR machine. All experiments were performed at least in trip
licates and data were normalised to the housekeeping gene HPRT1. The 
TaqMan probes used are: 

HPRT1 Hs02800695_m1 HPRT1TaqMan(s). 
HMOX1 Hs01110250_m1 HMOX1 TaqMan(s). 
AKR1B10 Hs00252524_m1 AKR1B10 TaqMan (s). 
NQO1 Hs01045993_g1 NQO1 TaqMan (m). 

2.5. Cell lysis and Western blot protocol 

Cells were washed and harvested in ice-cold phosphate-buffered 
saline (PBS) and lysed in RIPA buffer supplemented with phosphate and 
protease inhibitors [50 mM Tris- HCl pH 7.5, 150 mM NaCl, 2 mM 
EDTA, 1% NP40, 0.5% sodium deoxycholate, 0.5 mM Na3VO4, 50 mM 
NaF, 2 μg/mL leupeptine, 2 μg/mL aprotinin, 0.05 mM pefabloc]. Ly
sates were sonicated for 15 s at 20% amplitude and then cleared by 
centrifugation for 15 min at 4 ◦C. Protein concentration was established 
using the BCA assay (Thermo Fisher Scientific, Waltham, MA, USA). 
Lysate was mixed with SDS sample buffer and boiled for 7 min at 95 ◦C. 
Equal amounts of protein were separated by SDS-PAGE, followed by 
semidry blotting to a polyvinylidene difluoride membrane (Thermo 
Fisher Scientific). After blocking of the membrane with 5% (w/v) TBST 
non-fat dry milk, primary antibodies were added overnight. Appropriate 
secondary antibodies coupled to horseradish peroxidase were detected 
by enhanced chemiluminescence using ClarityTM Western ECL Blotting 
Substrate (Bio-Rad, Hercules, CA, USA). Resulting protein bands were 
quantified and normalised to each lane’s loading control using the 
ImageStudio software (LI-COR). 

2.6. siRNA cell transfections 

The day before the transfection cells were plated into 6-well plates to 
70–90% confluency. The siRNA and Lipofectamine RNAiMAX (Invi
trogen, Carlsbad, CA, USA) were individually diluted in Opti-MEM (Life 
Technologies) and incubated for 10 min at room temperature. Diluted 
siRNA was added to the diluted Lipofectamine solution (1:1 ratio) and 
further incubated for 15 min. The complex was added to the cells and 
incubated in a humidified incubator at 37 ◦C and 5% CO2 for 36 h prior 
treatment and lysis. 

2.7. Cell viability assays 

To assess cell viability of HaCaT cells after drug treatment we per
formed an Alamar Blue assay. One day before the experiment, HaCaT 
cells were seeded into a 96-well plate to 50–60% confluency. Cells were 
treated with the corresponding compounds for 16 h and Alamar Blue 

(Thermo Fisher Scientific) was added to the wells. After 4 h of incuba
tion at 37 ◦C the fluorescence was measured using a microplate reader 
(Spectramax m2) and viability was calculated relative to the DMSO 
treated control. For the in vitro HD model we used STHdhQ7/Q7 and 
STHdhQ111/Q111 cells, which express either a wild type or a mutated form 
of the huntingtin protein [44]. These cells were cultured at 33 ◦C and 5% 
CO2 in DMEM supplemented with 10% FBS, 2 mM L-glutamine and 1% 
(v/v) penicillin/streptomycin (Epub 2000/11/25). STHdhQ7/Q7 and 
STHdhQ111/Q111 cells (104 cells/well) were seeded in DMEM supple
mented with 10% FBS in 96 well plates incubated with increased con
centrations of compound 2 and treated with 3-NP at 10 mM (#N5636, 
Sigma). Then, 3-NP-induced cytotoxicity was measured by fluorescence 
using the die YOYO-1 (#Y3601, Life Technologies). Treated cells were 
placed in an Incucyte FLR imaging system and the YOYO-1 fluorescence 
was measured after several time points. Object counting analysis is 
performed using the Incucyte FLR software to calculate the total number 
of YOYO-1 fluorescence positive cells and total DNA containing objects 
(endpoint). The cytotoxicity index is calculated by dividing the number 
of YOYO-1 fluorescence positive objects by the total number of DNA 
containing objects for each treatment group. 

2.8. Luciferase assays 

HaCaT-ARE-Luc cells were stimulated with the indicated compounds 
for either 6h (one time-point) or for the indicated time points (kinetic). 
After the treatment the cells were washed twice in PBS and lysed in 25 
mM Tris-phosphate pH 7.8, 8 mM MgCl2, 1 mM DTT, 1% Triton X-100, 
and 7% glycerol during 15 min at room temperature in a horizontal 
shaker. After centrifugation, luciferase activity in the supernatant was 
measured using a GloMax 96 microplate luminometer (Promega) 
following the instructions of the luciferase assay kit (Promega, Madison, 
WI, USA). Results are expressed in RLU over control untreated cells. 

2.9. ROS determination 

The intracellular accumulation of ROS was detected using 2′,7- 
′dihydrofluorescein-diacetate (DCFH-DA). HaCaT cells (15 × 103 cells/ 
well) were cultured in a 96-well plate in DMEM supplemented with 10% 
FBS until cells reached 80% confluence. Cells were pre-treated with the 
compounds for 30 min and treated with 0,4 mM Tert-butyl- 
hydroperoxide (TBHP). At the indicated time points, the cells were 
incubated with 10 μM DCFH-DA in the culture medium at 37 ◦C for 30 
min. Then, the cells were washed with PBS at 37 ◦C and the production 
of intracellular ROS was measured by DCF fluorescence and detected 
using the Incucyte FLR software. The data were analysed by the total 
green object integrated intensity (GCUxμm2xWell) of the imaging sys
tem IncuCyte HD (Sartorius, Göttingen, Germany). 

2.10. NQO1 activity assay 

Cells were lysed in digitonin (0.8 g/L in 2 mM EDTA, pH 7.8), and the 
lysates were subjected to centrifugation at 4 ◦C (15,000×g for 10 min). 
The enzyme activity of NQO1 was measured in lysate supernatants using 
menadione as a substrate as previously described [45]. 

2.11. Statistical analysis 

Most experiments were repeated 3–5 times with multiple technical 
replicates to be eligible for the indicated statistical analyses. Data were 
analysed using Graphpad Prism statistical package. All results are pre
sented as mean ± SD unless otherwise mentioned. When applicable, the 
differences between groups were determined by either one-way ANOVA 
or 2-way ANOVA. A P value of <0.05 was considered significant. *P ≤
0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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3. Results and discussion 

3.1. Identification of CBD derivatives that activate ARE-dependent gene 
expression 

We have recently shown that CBD is a potent BACH1 inhibitor, but a 
very weak NRF2 activator in HaCaT cells [9]. In search for CBD de
rivatives with higher potency in activating NRF2, we screened a library 
of semi-synthetic cannabidiol quinone derivatives in the NRF2 reporter 
cell line HaCaT ARE-Luc. This reporter cell line responds well to NRF2 
activation (after treatment with the NRF2 activator sulforaphane), but 
not to BACH1 inhibition (treatment with the BACH1 inhibitor hemin) 
(Suppl. Fig. S1A), thus discriminating between both activities. We 
identifying the isomeric quinoids O-methyl para-cannabidiolquinone 
(hereinafter referred to as compound 2) and O-methyl ortho-cannabi
diolquinone (hereinafter referred to as compound 3) as reporter acti
vators in a concentration-dependent manner (Fig. 1A). 

Compared to CBD, compounds 2 and 3 are characterized by the 
oxidation of the resorcinyl core to a methoxylated quinone moiety 
(Fig. 1B). Early studies preceding the discovery of NRF2 had shown that 
among diphenols, only 1,2 diphenols (catechols) and 1,4-diphenols 
(hydroquinones), but not 1,3-diphenols (resorcinols), were inducers of 
the cytoprotective enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) 
[46] which is now widely accepted as a classical NRF2-regulated protein 
[47]. This realization established that oxidative lability among diphe
nols, i.e. their ability to form quinones in the presence of oxygen, was 
essential for inducer activity. This notion was further strengthened by 
the finding of a linear correlation between the NQO1 inducer activity 
and the ability to release an electron among inducers of different classes, 
including diphenols, phenylpropenoids, and flavonoids [48]. Subse
quent work showed that the stronger the electron-attracting property of 
a quinone, the greater its inducing potency [49], implicating oxidation 
of cysteine sensors of KEAP1 by quinones in the mechanism of NRF2 
activation. Experiments using recombinant KEAP1 in the presence or 
absence of Cu++ and oxygen firmly established that oxidizable diphe
nols are not NRF2 activators themselves, but their corresponding qui
nones are the ultimate inducers [50]. 

Diphenols have been proposed as pro-drugs to combat oxidative 
stress based on the concept that such compounds are chemically con
verted to their active quinone forms by the oxidative environment that 
they are designed to protect against [51]. It is therefore highly likely that 
the NRF2 inducer property of these compounds is conferred by their 
quinone functionalities. 

To validate the results from the screen, we first compared the effect 
of compound 2 and 3 to that of CBD on the protein levels of BACH1 and 
NRF2 in HaCaT cells. Both compounds were more potent than CBD at 
stabilising NRF2, fully retaining the ability to reduce the levels of 
BACH1 (Fig. 1C). 

3.2. Validation of compound 2 as a dual BACH1 inhibitor and NRF2 
inducer 

To further characterise the effect of compound 2 and compound 3 on 
BACH1 and NRF2, we compared them with the BACH1 inhibitor hemin 
and the NRF2 activator sulforaphane (SFN) (Fig. 1D and quantification 
in Suppl. Fig. S1B). Both compound 2 and compound 3 reduced BACH1 
protein levels. Consistent with the negative regulation of HMOX1 
expression by BACH1, treatment with compound 2 or compound 3 
increased the protein levels of HMOX1. When compared with hemin, 
both compounds at a concentration of 10 μM showed similar efficacy in 
decreasing BACH1 levels as that of hemin at a concentration of 1 μM. 
Furthermore, both compound 2 and compound 3 stabilised NRF2 in a 

concentration-dependent manner, and this effect was comparable to the 
effect of SFN. As compound 3 was more toxic (Suppl. Fig. S1C) and less 
stable at room temperature (Suppl Fig. S1D), we focused on compound 2 
for the rest of this study. 

To confirm that the activation of NRF2 by compound 2 was not 
limited to HaCaT cells, we tested this compound in Hepa1c1c7 cells, a 
cell line widely used to study NRF2 activation [52]. Our results showed 
that in Hepa1c1c7 cells, compound 2 stabilised NRF2 and induced 
HMOX1 (Suppl. Fig. S1E). Compound 2 also dose-dependently induced 
the enzyme activity of the classical NRF2 target, NAD(P)H:quinone 
oxidoreductase 1 (NQO1) (Suppl. Fig. S1F). 

We have previously shown that in HaCaT cells, HMOX1 expression is 
an excellent surrogate for BACH1 activity as it is regulated primarily by 
BACH1 and not by NRF2, while AKR1B10 is a surrogate for NRF2 ac
tivity and does not respond to BACH1 modulation [9] (also see Suppl. 
Fig. S2). To further validate compound 2 as a dual BACH1 inhibitor and 
an NRF2 inducer, we analysed its effect on the expression of these sur
rogate markers in HaCaT cells. As shown in Fig. 1E, compound 2 was 
more potent than CBD at inducing HMOX1 and AKR1B10 expression. As 
expected, SFN induced the expression of AKR1B10, but not HMOX1, 
whereas hemin induced HMOX1, but not AKR1B10 expression. Addi
tionally, we also analysed the effect of compound 2 on genes that, based 
on the literature were regulated by both NRF2 and BACH1, such as 
NQO1, GCLC and p62. We first tested that in our cell system these genes 
were actually regulated by both factors (Suppl. Fig. S1G), and once 
validated, we showed that compound 2 activated all three genes, 
although with different efficiency (Suppl. Fig. S1H). 

3.3. Characterisation of the effect of compound 2 on NRF2 and BACH1 

To further characterise the effect of compound 2, we tested whether 
in a similar way to CBD, the compound 2-mediated induction of HMOX1 
was dependent on BACH1. As observed in Fig. 2A, the ability of both 
compound 2 and hemin to induce HMOX1 was abolished in BACH1-KO 
cells (validation of BACH1-KO cells in Suppl Fig. S2A and Suppl S2B). On 
the other hand, BACH1 knockout did not impair the effect of compound 
2 inducing AKR1B10 (Fig. 2B) or stabilising NRF2 (Fig. 2C), showing 
that NRF2 activation by compound 2 does not depend on BACH1. 
Similarly, the inhibition of BACH1 by compound 2 was still evident in 
NRF2-KO cells (Fig. 2D), indicating that the two effects of compound 2 
are independent (validation of NRF2-KO cells in Suppl Fig. S2C and 
Suppl Fig. S2D). 

Next, we compared the kinetics of HMOX1 and AKR1B10 expression 
in response to compound 2, hemin and SFN in WT and NRF2-KO cells 
(Fig. 3A, B and 3C). Compound 2 increased HMOX1 mRNA levels in an 
NRF2-independent manner, with similar kinetics as hemin; starting as 
early as 2 h and reaching its peak around 8 h (Fig. 3A and C). As pre
viously observed, SFN induced HMOX1 very weakly at the 8-h time point 
(Fig. 3B). On the other hand, compound 2 induced AKR1B10 expression 
in an NRF2-dependent manner with similar kinetics as SFN, starting 
around 4 h and reaching its peak around 8 h (Fig. 3A and B). As ex
pected, hemin did not induce AKR1B10 (Fig. 3C). These results further 
confirm that compound 2 has dual activity targeting both BACH1 and 
NRF2. 

Based on the strong effect of compound 2 increasing NRF2 levels, we 
hypothesise that this stabilisation must be a consequence of impairing 
the activity of its main regulator KEAP1. To test this possibility, we 
compared the effect of compound 2 on NRF2 levels in HaCaT cells 
treated with either siRNA control or an siRNA against KEAP1. The sta
bilisation of NRF2 induced by compound 2 was clearly impaired in 
KEAP1-silenced cells (Fig. 3D and Suppl Fig. S3A). We also tested 
compound 2 in the lung cancer cell line A549 bearing a loss-of-function 
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Fig. 1. Screening of CBD derivatives and characterization of compound 2 as a BACH1 inhibitor and NRF2 inducer. A) HaCaT-ARE-Luc cells were treated with either 
DMSO or increasing concentrations of CBD, compound 2 (Cmpd2) or compound 3 (Cmpd3) for 6 h. Luciferase activity was measured in the cell lysates and expressed 
as RLU (x 104). Data represent means ± SD (n = 4) and are expressed relative to untreated cells. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. B) Schematic representation of 
the sinthesis of the isomeric methoxyquinones 2 (compound 2) and 3 (compound 3) from 1 (CBD). (a): MeI, NaHCO3, DMF, 49%; (b) SIBX, EtOAc, 51%. C) HaCaT 
cells were incubated with either DMSO, compound 3 (Cmpd3), compound 2 (Cmpd2) or CBD. Three hours later, cells were lysed and samples were analysed by 
Western Blot. D) HaCaT cells were incubated with either DMSO, or increasing concentrations of compound 3 (Cmpd3), compound 2 (Cmpd2), hemin or sulforaphane 
(SFN). Three hours later, cells were lysed and levels of BACH1, NRF2, HMOX1 and Actin were analysed by Western Blot. A representative blot is shown; the cor
responding quantifications of BACH1, NRF2 and HMOX1 protein levels are shown in Suppl. Fig. S1A. E) HaCaT cells were treated with either DMSO, compound 2 (5 
μM), CBD (10 μM), Hemin (5 μM) or SFN (5 μM) for 8 h. The mRNA levels of HMOX1 and AKR1B10 were quantified by real-time PCR and the data were normalised 
using HPRT1 as an internal control. Data represent means ± SD (n = 3) and are expressed relative to the DMSO sample. Statistical analysis was performed against the 
DMSO sample. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 

L. Casares et al.                                                                                                                                                                                                                                 



Redox Biology 37 (2020) 101689

6

mutation in KEAP1, and found that the NRF2 levels were not signifi
cantly changed by compound 2 (Suppl. Fig. S3B). Collectively, these 
results suggest that NRF2 activation by compound 2 requires KEAP1, 
and is independent of its effect on BACH1. 

3.4. Compound 2 protects against oxidative stress in cell-based models 

The characterization of the effect of compound 2 on BACH1 and 
NRF2 was performed in HaCaT cells because this is a validated model 
where we can individually assess the compound activity on BACH1 and 
NRF2. However, to answer whether compound 2 could have a thera
peutic benefit in NDs, we used two cell lines of relevance to 

Fig. 2. Compound 2-mediated NRF2 induction and BACH1 inhibition are not interdependent. A) HaCaT WT and BACH1-KO cells were treated for 8 h with DMSO, 
compound 2 (10 μM) or Hemin (10 μM). Cells were lysed and HMOX1 mRNA levels were quantified (n = 3). To compare the HMOX1 induction upon compound 2 or 
Hemin treatment in each cell line, the levels of HMOX1 in either treated WT or treated BACH1-KO samples were compared against the basal level of HMOX1 in DMSO 
WT or DMSO BACH1-KO respectively (HMOX1 levels in DMSO samples were set in both cases as 1). **P ≤ 0.01, ***P ≤ 0.001. B) HaCaT WT and BACH1-KO cells 
were treated as indicated in A. Cells were lysed and AKR1B10 mRNA levels were quantified by real-time PCR and the data were normalised using HPRT1 as an 
internal control (n = 3). As described in A, AKR1B10 levels in DMSO WT and BACH1-KO samples were set in both cases as 1. C) HaCaT BACH1-KO cells were 
incubated with either DMSO or different concentrations of compound 2, Hemin or SFN. After 3 h, cells were harvested and lysates were analysed by Western Blot. 
Upper panel is a representative Western blot and the bottom panel shows the quantification of NRF2 protein levels against the loading control actin. Data represent 
means ± SD (n = 3) and are expressed relative to the DMSO treated samples. D) HaCaT NRF2-KO cells were treated and harvested as described in C and samples were 
analysed by Western Blot. Upper panel is a representative Western blot and the bottom panel shows the quantification of BACH1 protein levels against the loading 
control actin. Data represent means ± SD (n = 3) and are expressed relative to the DMSO samples. 
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Fig. 3. Compound 2 inhibits BACH1 in a NRF2 and KEAP1 independent manner, and stabilizes NRF2 in a KEAP1-dependent manner. A) HaCaT WT and NRF2-KO 
cells were treated with compound 2 (10 μM) and were harvested after 1, 2:30, 4, 8 or 16 h. Samples were lysed and HMOX1 (left panel) or AKR1B10 (right panel) 
mRNA levels were quantified by real-time PCR using HPRT1 as an internal control. HMOX1 and AKR1B10 levels in DMSO samples were set in both cell lines as 1 with 
the purpose of comparing the induction after compound 2 treatment in WT and NRF2-KO cells. Data represent means ± SD (n = 3). *P ≤ 0.05, **P ≤ 0.01 B) HaCaT 
WT and NRF2-KO cells were treated with SFN (5 μM) for 1, 2:30, 4, 8 or 16 h mRNA HMOX1 and AKR1B10 levels were analysed as described in A (n = 3). C) HaCaT 
WT and NRF2-KO cells were treated with SFN (5 μM) for 1, 2:30, 4, 8 or 16 h mRNA HMOX1 and AKR1B10 levels were analysed as described in A (n = 3). D) HaCaT 
cells were transfected with either siControl or siKEAP1. 36 h later cells were treated with either DMSO, compound 2 (10 μM) or SFN (5 μM) for 3 h. Cells were lysed 
and samples were analysed by Western Blot. Left panel is a representative Western blot and right panel shows the quantification of NRF2 protein levels against the 
loading control. Data represent means ± SD (n = 2) and are expressed relative to the siControl DMSO sample; the corresponding quantifications of BACH1 and 
HMOX1 protein levels are shown in Suppl. Fig. S3A. 
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Fig. 4. Compound 2 stabilizes NRF2 
and induces HMOX1 in macrophages 
and neural cells and protects cells 
from 3-NP mediated cytotoxicity in an 
in vitro HD model. A) THP1 or SH- 
SY5Y cells were treated with either 
DMSO or compound 2 (10 μM). After 
3 h, cells were lysed and BACH1, 
NRF2, HMOX1 and Actin protein 
levels were analysed by Western Blot. 
B) HaCaT cells were treated as indi
cated for 3h, 6h, 15h or 24h and the 
detection and quantification of ROS 
(DCF fluorescence) was measured by 
fluorescence microscopy. Data repre
sent means ± SD (n = 3) and are 
expressed relative to control cells. *P 
≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. C) 
Striatal Q111 cells were pre-treated 
with either DMSO, compound 2 (5 
μM) or hemin (5 μM) for 6 h and then 
exposed to 10 mM 3-NP in low glucose 
media for an additional 24 h. Cell 
death was monitored using the INCU
CYTE. ****P ≤ 0.0001.   
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Huntington’s disease as models for inflammation and oxidative stress in 
the brain. First, we tested for target engagement in macrophage-like 
THP1 cells and the neuroblastoma cell line SH-SY-5Y. Compound 2 
treatment efficiently decreased the levels of BACH1, induced HMOX1 
and stabilised NRF2 in these cell lines (Fig. 4A). As ROS play a role in 
HD, and may be the initial molecules leading to apoptosis, we compared 
the ability of compound 2 to decrease the levels of ROS generated by 
treatment with tert-butyl hydroperoxide (tBHP) with that of SFN and 
dimethyl fumarate (DMF) at different time points. DMF is a NRF2 
inducer that has been approved for the treatment of multiple sclerosis by 
the FDA. At all time points tested, compound 2 decreased the ROS levels 
more efficiently than either SFN or DMF (Fig. 4B). It is known that CBD 
is a direct antioxidant, and our results suggest that compound 2 main
tains such properties. This highlights that compound 2 has three 
important activities, i.e. direct antioxidant, NRF2 activator and BACH1 
inhibitor. Its antioxidant properties will provide acute protection (in
dependent of cell signalling) while its effects due to NRF2 and BACH1- 
targetting will be slower but sustained (signalling-dependent). 

Furthermore, we tested whether compound 2 could provide neuro
protection in an in vitro model for HD, using conditionally-immortalized 
striatal neuronal progenitor cell lines expressing endogenous levels of 
mutant huntingtin (STHdhQ111/Q111). 3-nitropropionic acid (3-NP) is 
a natural toxin that significantly induces oxidative damage in the brain, 
producing striatal lesions that are very similar to those of patients with 
HD [53]; and thus, it is widely used as the model agent to mimick HD. 
When used in the Q111 striatal neural cell line, treatment with com
pound 2 significantly reduced the cytotoxicity caused by 3-NP (Fig. 4C), 
as efficiently as hemin did, confirming its protective effect. 

Our data demonstrate that O-methyl para-cannabidiolquinone 
(compound 2) has dual activity as a BACH1 inhibitor and an NRF2 
activator, as well as direct antioxidant properties, which would collec
tively contribute to its overall cytoprotective effect. This is a very 
attractive profile for drugs against oxidative stress and/or inflammatory 
associated conditions, such as most neurodegenerative disorders, and 
our data on a HD cell model provide a solid rationale for future studies in 
vivo using NDs models. It is noteworthy that with aging, NRF2 signaling 
is impaired [54–56]. A comparison of NRF2 activation by sulforaphane 
in bronchial epithelial cells isolated from young human subjects (21–29 
years) and older (60–69 years) individuals, non-smokers, has shown that 
the inducibility of the NRF2-mediated cytoprotective responses is 
diminished in cells from older adults [57]. Importantly, this is accom
panied by an increased expression of BACH1 [57]. Conversely, silencing 
of BACH1 enhances sulforaphane-induced expression of NRF2-target 
genes in cells from older subjects [58]. Thus, our findings suggest that 
compounds such as compound 2 may have beneficial effects in aging. 
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