
Microfluidics combined with
fluorescence in situ hybridization
(FISH) for Candida spp. detection

Violina Baranauskaite Barbosa1,2, Célia F. Rodrigues1,2,
Laura Cerqueira1,2*, JoãoM.Miranda2,3* and Nuno F. Azevedo1,2

1LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department
of Chemical Engineering, Faculty of Engineering of University of Porto, Porto, Portugal,
2ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto,
Porto, Portugal, 3CEFT–Transport Phenomena Research Center, Department of Chemical
Engineering, Faculty of Engineering of University of Porto, Porto, Portugal

One of the most prevalent healthcare-associated infection is the urinary tract

infection (UTI), caused by opportunistic pathogens such as Candida albicans or

non-albicansCandida species (NACS). Urine culturemethods are routinely used

for UTI diagnostics due to their specificity, sensitivity and low-cost. However,

these methods are also laborious, time- and reagent-consuming. Therefore,

diagnostic methods relying on nucleic acids have been suggested as

alternatives. Nucleic acid-based methods can provide results within 24 h and

can be adapted to point-of-care (POC) detection. Here, we propose to

combine fluorescence in situ hybridization (FISH) with a microfluidic

platform for the detection of Candida spp. As a case study we used C.

tropicalis, which is reported as the second most common NACS urine

isolate obtained from patients suspected with UTI. The microfluidic platform

proposed in this study relies on hydrodynamic trapping, and uses physical

barriers (e.g., microposts) for the separation of target cells from the suspension.

Using a specific peptide nucleic acid (PNA) probe, the FISH procedure was

applied onto previously trappedC. tropicalis cells present inside themicrofluidic

platform. Fluorescence signal intensity of hybridized cells was captured directly

under the epifluorescence microscope. Overall, the PNA probe successfully

detected C. tropicalis in pure culture and artificial urine (AU) using FISH

combined with the microfluidic platform. Our findings reveal that FISH using

nucleic acidmimics (PNA) in combinationwithmicrofluidics is a reliablemethod

for the detection of microorganisms such as C. tropicalis. As such, this work

provides the basis for the development of a POC detection platform in the

future.
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1 Introduction

Urinary tract infections (UTI) represent one of the most

common healthcare-associated infection across EU countries,

accounting for 18.9% of all cases (OECD/European Union,

2018). These infections are caused by microbial pathogens, either

bacteria or fungi. While Candida species are natural residents of the

genitourinary, gastrointestinal tract and skin human flora

(Kauffman, 2014), they are also considered as opportunistic

pathogens and can cause fungal infections (Richardson, 1991;

Fisher, 2011). Infections resulting from Candida albicans and

non-Candida albicans Candida (NCAC) species have increased

significantly in the last decade. The presence of Candida species

in urine–candiduria - is a common clinical finding, particularly in

hospitalized patients, mainly with the use of medical devices and/or

immunosuppression (e.g., antibiotic therapy, diabetes) (Alvarez-

Lerma et al., 2003; Kauffman, 2014; Rodrigues C. F. et al., 2019;

Gajdacs et al., 2019). Candiduria denotes a diagnostic and

therapeutic challenge for physicians from primary care or

infectious diseases, intensive medicine and surgery

(Bongomin et al., 2017), because it may be linked to

numerous conditions that require careful interpretation,

from sample contamination to UTI or even disseminated

candidiasis. The identification of Candida isolates to species

level is necessary due to different antifungal susceptibility

patterns, which is important for administration of

appropriate therapeutic strategy (Kauffman et al., 2011).

Candida albicans is the most prevalent species isolated

from urine samples (51.8%) (Kauffman et al., 2000;

Fisher, 2011). However, recent studies indicate increased

incidence of NCAC in clinical samples (Goyal et al., 2016;

Taei et al., 2019). For instance, Candida tropicalis is reported

as the second most common NCAC (14.3%) identified in

urine samples obtained from patients suspected with UTI

(Gharanfoli et al., 2019). It is also a frequent isolate detected

in urine samples of both inpatients (8.95%) and outpatients

(8.69%) (Gajdacs et al., 2019).

In clinical microbiology, urine culture methods are used for

UTI diagnosis. At first the causative microorganism is identified

from urine culture which takes 18–48 h. Afterwards, the

antimicrobial susceptibility testing (AST) is performed, which

takes additional 24 h (Wilson and Gaido, 2004; Davenport et al.,

2017). While these culture methods are used for routine urine

examination (Aspevall et al., 2001) due to their cost-effectiveness

and specificity, although some limitations are also present

(Kauffman, 2014). Besides standard urine culture-based

methods, Candida spp. Can be detected through microscopy

visualization with the aid of Gram staining (e.g., Candida

albicans appear in budding yeast 4–10 μm in diameter)

(Kauffman et al., 2011). Other diagnostic techniques include

the imaging studies, such as ultrasonography, ultrasound or

computed tomography urograms (Kauffman et al., 2011;

Kauffman, 2014).

This diagnostic delay may eventually result in increased

severity of the infection. As such, molecular detection

methods that rely on proteins or nucleic acids have also been

suggested for routine urine analysis. These methods identify

microorganisms at the species level within 24 h, which is

important for selecting appropriate therapeutics. One example

of a molecular method is fluorescence in situ hybridization, that

relies on fluorescently labelled nucleic acids [DNA, RNA or

nucleic acid mimics (NAM’s)] probes (Almeida et al., 2013c;

Cerqueira et al., 2013; Mendes et al., 2016; Ferreira et al., 2017;

Azevedo et al., 2019) to bind to target sequences of the

microorganism of interest by complementary base pairing

(Gall and Pardue, 1969). The hybrid complex can then be

visualised directly with an epifluorescence microscope (Moter

and Gobel, 2000). The miniaturization concept found application

in biotechnology, due to certain advantages such as single-cell

analysis or high surface area to volume (S/V) ratio, which results

in reduced mass and heat transfer times and shorter diffusion

distances (Walker et al., 2004). As such, the biochemical reaction

time is improved which is important for reducing the overall

diagnostic time (Asghar et al., 2019; Sohrabi et al., 2020). Also,

upon microfluidics integration with molecular methods, the

amount of sample required is reduced and doesn’t

compromise the sensitivity and specificity of the system

(Hsieh et al., 2022). Moreover, for sample analysis, different

visualization devices can be combined with microfluidic

platform, allowing spatiotemporal resolution and high

detection efficiency (Fan et al., 2021). While other study

developed mobile platform with a sensitivity comparable to

that of a conventional microscope (Muller et al., 2018).

Microchannel geometries are also prone to massive

parallelization, allowing high-throughput analysis (Mach and

Di Carlo, 2010). Equally important, microfluidic platforms

allow to concentrate and separate target microorganisms from

biological fluids, thus reducingcircumventing lengthy culture

times (Wang et al., 2012; Beech et al., 2018). A number of

studies have explored hydrodynamic filtration (Yamada and

Seki, 2005), deterministic lateral displacement (DLD) (Inglis

et al., 2011), microfiltration (Ji et al., 2008) methods, which

allow to separate or enrich microorganisms. These methods do

not require any external force field (passive cell separation),

making them simple, low-cost and label-free, which simplifies the

overall procedure (Zhou et al., 2019). Such passive separation

techniques rely on inherent hydrodynamic forces, channel

geometries and physical obstacles, such as micropost arrays,

microfiltration, microwells and chambers (Luan et al., 2020).

The use of these techniques eliminates the need for sophisticated

and expensive devices. Hydrodynamic cell trapping has shown to

be applicable for single cell imaging and quantification (Park

et al., 2011), microorganism enrichment (Whang et al., 2018) and

size-selective trapping and sorting (Kim et al., 2014).

The FISH method robustness and implementation as

molecular diagnostic tool greatly improves when using
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NAM’s, which have enhanced sensitivity and specificity, when

compared to DNA or RNA probes (Nacher-Vazquez et al., 2022).

Moreover, when combined with microfluidics, the analysis time

is reduced when compared to standard FISH method (Chien-

Hsuan et al., 2013). In spite of its great potential, the integration

of FISH and microfluidics has been achieved in a limited number

of works (Ferreira et al., 2017; Nguyen et al., 2017; Lee et al.,

2022), especially for the diagnostics of fungal infections (Hussain

et al., 2020). Therefore, the goal of this work is to develop a

microfluidic platform combined with FISH for the detection of

Candida spp. The proposed method was tested using C. tropicalis

as a case study.

2 Materials and methods

2.1 Cell culture maintenance and
microbial cell suspension preparation

C. tropicalis reference strain (ATCC 750) from the American

Type Culture Collection was used in this work. For inoculum

preparation, cells were grown overnight (≈16 h) at 37C° and

120 rpm, under aerobic conditions. The growth rate under these

conditions was determined by measuring optical density (OD

600 nm) (VWR V-1200 spectrophotometer, United States) over

time. Subsequently, cell concentration was adjusted by OD for a

final single cell concentration of 1 × 108 cells/ml or 1 × 105 cells/

ml (for artificial urine (AU)). To assess cultivability, 1:

10 dilutions were prepared in Phosphate Buffered Saline (PBS,

180 mM NaCl, 3 mM KCl, 9 mM Na2HPO4.2H2O, and 1.5 mM

KH2PO4, pH 7.4) and plated onto SD agar plates and incubated

overnight, at 37°C, under aerobic conditions (Rodrigues et al.,

2018). Then, colony forming units (CFU) were counted to

confirm microbial cell concentration (CFU/ml). Finally, 1 ml

of C. tropicalis cell suspension was centrifuged at 13.000 g for

10 min and resuspended in 1 ml of PBS before proceeding to

fluorescence in situ hybridization and microfluidic experiments.

2.2 Microfluidic platform development

The microchannel geometry was designed using AutoCAD

2013® software (Autodesk Inc., United States) and then a silicon

master mold was fabricated at the International Iberian

FIGURE 1
Schematic representation of microfluidic channel layout with single inlet and outlet (A). Enlarged view representing pre-filters (B) and the
detection region (C) containing microposts of different geometries: front (Micropost I), lateral (Micropost II) and support (Micropost III and IV).
Rectangles 1–5 enlarged microchannel layout sections.
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Nanotechnology Laboratory-INL facilities (Braga, Portugal)

combining direct laser write lithography and deep reactive ion

etching. The microchannel layout proposed in this study

consisted of an inlet, an outlet and a widened detection region

(500 μm) (Figure 1A). The depth of the microchannel was set to

30 μm, because low height/width ratio provides better micropost

stability (Ferreira et al., 2017). Also, the depth of 30 μm was

calculated to be the maximum value at which low height/width

ratio is still maintained. This is an important parameter, as on

one hand low height/width ratio provides better micropost

stability and on the other high depths maximise the flow rate.

In comparison to a previous design (Ferreira et al., 2017),

three rows of pre-filters (Figure 1B) were introduced to separate

target microorganisms from particles or other cells that may be

present in clinical samples (e.g., blood or urine). The detection

region consisted of different micropost geometries designed to

trap cells larger than 5 μm (such as C. tropicalis) (Figure 1C,

Micropost I and II), while larger microposts provided structural

support to the larger cross-sectional area of the microchannel

(Figure 1C, Micropost III and IV). The gaps were set to 5 μm

throughout the whole trapping array (Figure 1C, Gap I and II).

2.2.1 Microchannel fabrication
The microchannels were produced using the soft-lithography

method–a replication of the silicon mold. At first the master

mold was placed in a laminar flow chamber with a few drops of

trichlorosilane (UCT Specialities, United States) for 1 h. The

vapour of trichlorosilane allows an easier removal of the

elastomer block (Jung et al., 2005). The two-part

polydimethyl-siloxane (PDMS) silicone elastomer kit (Sylgard

184; Dow Corning, United States) was used to produce the liquid

polymer. To produce a negative PDMS slab, 5:1 ratio (5 parts of

base polymer by weight to one part of curing agent by weight)

and mixed for 10 min with vortex mixer (VV3, VWR) at

2,500 min−1. Afterwards, the mixture was placed in a

desiccator connected to a vacuum line for degassing to

remove air bubbles. Then, the liquid polymer was poured

onto a master mold, subjected again to degassing and

eventually cured for 20 min at 80°C in the incubator (FD 23,

Binder, Germany). Afterwards, the negative PDMS slab

containing the microchannels was cut out and peeled off from

the master mold. Finally, the inlet and outlet holes were punched

with a precision tip (7018178, 20 GA, Nordson EFD,

United States). For PDMS-glass bonding, the imprinted

surface of the negative PDMS stamp and clean ultra-thin

cover glass (631.0178, VWR International) were subjected to

oxygen plasma treatment (ZEPTO, Diener electronic GmbH,

Germany) at 20W and 1.2mBar for 30 s, with subsequent joining

of the two surfaces. The PDMS-glass was left in contact for 5 min

to form an irreversible bond. Before the oxygen plasma

treatment, the cover glass was cleaned with acetone

(20063.365, VWR Chemicals, France) then rinsed with high-

purity water (HPW) and dried with compressed air.

2.2.2 Microchannel geometrical
characterization

First, each fabrication microchannel geometry was inspected

visually for any geometrical errors or structural instabilities (e.g.,

micropost bending) using a microscope (see section: 2.6.2).

Afterwards, the experimental geometry characterization was

performed. For this, one PDMS slab of each design was cut to

obtain the channel cross section and placed downwards onto a glass

slide. Then, images were recorded (see section: 2.6.2) and subsequently

processed with Fiji® (ImageJ.net) software (Schindelin et al., 2012) in

order to measure the height (H) and width (W) of the microchannel

(inlet/outlet and micropost array). The characterization was

performed in triplicate and measurements were used to calculate

the percent error (%) between nominal and experimental values

(Supplementary Table S1).

2.2.3 Computational fluid dynamics (CFD)
The 2D CAD geometry of the microchannel was extruded to

obtain a 3D geometry and was imported to OpenSCAD. In

OpenSCAD, the boundaries of the domain were created and

exported as STL files. As the geometry is symmetric relatively to

two planes (Figure 2A), the flow was solved for 1/4 of the domain

(Figure 2B). The boundaries were subsequently named and

merged in a single file. This file was used as input to generate

the mesh (Figure 2B) using snappyMesh, a mesh generator

available on the OpenFOAM framework (version 4.1). The

mesh is refined in the gaps (inset in Figure 2B) to ensure an

accurate solution of the velocity field.

The flow in the microchannel was solved using the icoFoam

solver (OpenFOAM framework, version 4.1), modified to enable

an adjustable time step, with the following boundary conditions

(Figure 2A): Inlet: i) Uniform velocity corresponding to the flow

rate of 1 μl/min; ii) pressure gradient normal to the boundary

equal to zero; Outlet: i) Velocity gradient normal to the

boundary equal to zero; ii) pressure set to zero. Walls: i) No-

slip boundary conditions; ii) pressure gradient normal to the

boundary equal to zero. Symmetry planes: i) Velocity gradient

normal to the boundary equal to zero; ii) pressure gradient

normal to the boundary equal to zero. The flow conditions

for the simulation are discussed in section 3.1.1. The primary

results obtained were the velocity and pressure fields in the

domain. These fields were visualized in paraFoam and post-

processed to obtain the velocities in the gaps using openFoam

post-processing tools.

2.3 Fluid handling

For fluid injection in the microchannel and FISH experiments in

microfluidic device, gravity- and/or pressuredriven low systems were

used (Figure 3). The gravity-driven system was composed of fluid

reservoir (e.g., syringe without a plunger) attached to a Tygon

microtube (0.44 mm ID) and connected to the inlet of
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microfluidic platform. The pressure-driven flow system consisted of

500 μl syringe (Hamilton Company, Bonaduz, Switzerland)

connected to the inlet of microfluidic platform through Tygon

microtube (0.44 mm ID). To achieve pressure-induced laminar

flow, the syringe was mounted on a neMESYS low pressure

syringe pump (Cetoni, neMESYS syringe pump, Germany), which

was controlled through computer software and with the flow rate set

to 1 μl/min. In both fluid handling systems, the single microtube was

filled with different solutions, which were separated with an air

microbubble.

2.4 PNA probe design

The PNA-probe targeting Candida 18S rRNA was designed by

Oliveira (Oliveira, 2018) using BLAST (https://blast.ncbi.nlm.nih.gov/

Blast.cgi) and Clustal W (https://www.ebi.ac.uk/Tools/msa/clustalo/)

programs for selection and alignment of gene sequences, respectively.

Also, the theoretical specificity (%) of 96.04 was calculated. Finally, the

PNA-probe containing the following sequence 5′-Alexa488-OO-
CACCCACAAAATCAA-3′ was synthesized and HPLC-purified

at >90% (BioPortugal, Portugal).

2.5 PNA-FISH adaptation to microfluidic
environment

2.5.1 PNA-FISH off chip
The hybridization procedure was performed as previously

reported (Perry-O’Keefe et al., 2001) with some modifications. A

C. tropicalis cell suspension (1 × 108 cells/mL) was centrifuged at

10.000 g for 5 min (Centrifuge 5,418, Eppendorf, Germany)

and resuspended in 500 μl of 4% (w/v) paraformaldehyde

(Acros Organics, Belgium) with subsequent incubation for

1 h at room temperature. Then, cells were centrifuged again

at 10.000 g for 5 min, the pellets re-suspended in 50% (v/v)

ethanol (VWR Chemicals, Belgium), and incubated for at

least 30 min at -20°C. Subsequently, C. tropicalis cells were

re-suspended in hybridization solution (pH 7.5) containing

200 nM PNA probe and incubated (FD 23, Binder, Germany)

for 1 h at 53°C. The hybridization solution was composed of

10 mM NaCl (VWR Chemicals); 30% (v/v) formamide

(VWR, United States); 0.1% (w/v) sodium pyrophosphate

(Acros Organics, Spain); 0.2% (w/v) polyvinylpyrrolidone

(Sigma-Aldrich, China); 0.2% (w/v) Ficoll® 400 (Sigma-

Aldrich, United States); 50 mM di-sodium EDTA (Panreac

Quimica, Spain); 50 mM Tris-HCl (Fisher Scientific,

United States); 0.1% (v/v) Triton X-100 (Panreac

Quimica, Spain) and 10% (w/v) dextran Sulfate (Fisher

Scientific, United States) (Cruz-Moreira, 2014). A negative

control was performed using hybridization solution without

PNA probe. Afterwards, hybridized C. tropicalis cells were

re-suspended in 500 μl washing solution (pH 10), 5 mM Tris

Base (Fisher Scientific, United States), 15 mM NaCl (VWR

Chemicals), and 1% (v/v) Triton X-100 (Panreac Quimica),

further incubated at 53°C, for 30 min and re-suspended in

500 μl of sterile water. Next, 10 μl of the suspension was

injected into microfluidic channel using pressure-driven

flow, set at 1 μl/min flow rate (see section: 2.3). Cell

fluorescent signal was detected by epifluorescence

FIGURE 2
Schematic representation of the device computational domain (A) and detailed view of the mesh (inset) (B).
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microscopy (see section: 2.6.1). In parallel, 20 μl of the

previously re-suspended pellets were placed on a glass

slide (Hecht Assistent®, Germany), dried, mounted with

BacLightTM mounting oil (Invitrogene, United States)

and covered with a cover slip (24 × 60 mm) for

microscopy visualization (Almeida et al., 2013c).

2.5.2 PNA-FISH on chip
The standard PNA-FISH protocol was adapted to work

inside the microfluidic device. For this, 20 μL of C. tropicalis

cell suspension or artificially contaminated urine samples were

injected into the microfluidic device by gravity-driven flow (see

section: 2.3). The artificially contaminated samples were prepared

by resuspension of C. tropicalis cell pellets (1 × 105 cells/mL) in

1,000 μl of artificial urine (AU) (CaCl2, 0.65 g/L; MgCl2, 0.65 g/L;

NaCl, 4.6 g/L; Na2SO4, 2.3 g/L; Na3C3H5O(CO2)3, 0.65 g/L;

Na2C2O4, 0.02 g/L; KH2PO4, 2.8 g/L; KCl, 1.6 g/L; NH4Cl,

1.0 g/L; urea, 25.0 g/L; creatinine, 1.1 g/L; and glucose, 0.3%

and adjusted to pH 6.5) (Negri et al., 2011). Subsequently,

trapped cells were exposed to 20 μl of 4% (w/v)

paraformaldehyde and 20 μl of 50% (v/v) ethanol by gravity-

driven flow. Next, 10 μl of hybridization solution with PNA

probe (200 nM) or hybridization solution alone (control),

10 μl wash buffer and 10 μl of sterile water were introduced

through pressure-driven flow system (see section: 2.3). The

incubation times and temperatures were maintained as

described above. For keeping the temperature during the

hybridization and washing steps, a heating plate (Leica TPX-

TypeF, Leica Microsystems, Germany) was used. Finally, trapped

C. tropicalis were visualised under the microscope (see

section: 2.6.1).

2.6 Microscopy visualisation

2.6.1 PNA-FISH signal
Images were acquired with a Nikon EclipseTi SR inverted

epifluorescence microscope (Nikon Instruments, Netherlands)

connected to a DS-Ri2 camera (Nikon Instruments). The

microscope was equipped with a FITC (fluorescein

isothiocyanate) filter sensitive to the Alexa Fluor®

488 fluorophore labelled PNA probe (Excitation 465–495 nm;

Barrier 515–555 nm; Dichroic mirror 505 nm). The microscope

software NIS-elements 4.13.04 (Nikon Instruments, Amsterdam,

Netherlands) was used and parameters such as exposure, gain

and saturation were maintained constant in all experiments

involving FISH. The acquired images were used for

fluorescence signal quantification (see section: 2.7).

2.6.2 Geometrical characterisation and cell
trapping

Images were recorded with Leica DMI 5000 inverted

microscope (Leica Microsystems, Germany) coupled with

Leica DFC350 FX camera (Leica Microsystems) and imaging

software Leica Application Suite 3.7.0 (Leica Microsystems).

To assure the reproducibility and consistency among

experimental assays, the microscope parameters

(exposure, gain and saturation) were maintained the same

in each microscope.

2.7 Fluorescence quantification

The fluorescence signal intensity of C. tropicalis cells,

from 3 independent assays, was quantified from images using

Fiji® Software and the procedures described in (Schindelin

et al., 2012; Fontenete et al., 2016), with minor modifications.

Initially, the original RGB channels (red, green, and blue

light) were split and the green channel (where the

fluorescence was emitted) was used for fluorescence signal

intensity analysis.

The total cell fluorescence, TCF, of individual cell was

determined as follows:

TCF � ID − CA × MBF
CA

(1)

where ID is the integrated density, CA the selected cell area and

MBF the mean background fluorescence.

This would provide cell size independent quantification

and measure of contrast. Then, the mean fluorescence

intensity of each cell (considering the cell area), was

calculated by:

MCF � TCF
CA

(2)

where MCF is the mean cell fluorescence.

Then mean image fluorescence, MIF, was determined as

follows:

MIF � ∑
N
i�1MCFi

∑
N
i�1CAi

(3)

whereN is the number of cells,MCFi is the mean fluorescence of

each cell and CAi is the area of each cell.

2.8 Statistical analysis

All experiments (“PNA-FISH on chip” see section: 2.5.2)

were repeated three times in independent assays. Statistical

analysis was performed using GraphPad Prism 9 (GraphPad

Software, CA, United States). The normality of distribution

was tested with D’Agostino-Pearson test, followed by

comparison between conditions with the t-test. All

experimental data are presented as mean ± standard

error of the mean (SEM) and statistical significance set at

p < 0.05.
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3 Results

3.1 Microfluidic channel characterization

After fabrication, visual examination of the microfluidic

channels revealed that microposts were not visibly bent or

deformed and that the microchannel had a well-defined

rectangular shape (data not shown) with a vertical side

wall (Figure 4). As expected, minor differences in

microposts height were observed (Figure 4A, white dashed

line). To understand if microposts would fail to bond to glass

substrate due to differences in height, we applied oxygen

plasma treatment to the microfluidic channel (Ferreira et al.,

2017). After treatment it was observed that the surface of all

microposts were in contact with the glass substrate

(Figure 4B, black dashed line).

Afterwards, the nominal height (H) and width (W) of the

proposed microchannel geometry were compared with the

experimental dimensions. Therefore, the microchannel

dimensions were measuredat different regions, namely the

inlet/outlet and the detection region and the percent error was

determined (Supplementary Table S1). It was observed that

FIGURE 3
Schematic representation of gravity- and pressure-driven fluid handling systems applied in FISH integration with microfluidics experiments and
microfluidic device illustration (A).
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width percent error ranged between 1.6 and 17.2%. The higher

percent error was found to be in the gaps. This was expected

because the percent error is generally higher in smaller

dimensions (Pinto et al., 2013). Moreover, the height percent

error was 10.9–16.0%, suggesting that the master mold height

was below 30 μm.

3.1.1 Flow conditions
The next step was to assess hydrodynamic flow conditions by

calculating the flow rate (Q, µl/min), mean velocity (V, m/s) and

Reynolds number (Re) (Table 1). Since the microchannel has

different dimensions of cross-sectional area along the

microchannel, the Re number was calculated at different

regions. Based on previous studies (Ferreira et al., 2017), an

inlet velocity of 0.006 m/s was set, which corresponds to an inlet

flow rate of 1 μl/min in a cross-section of 100 μm × 30 μm, where

the fluid was assumed to be water (ρ = 998.2 kg/m3; μ =

0.001003 kg m−1. s−1) (Table 1). As expected, the Re number

varied 0.51–0.13 among different regions (inlet/outlet and

detection region). These values confirm low Re, thus

indicating laminar flow and consistency with other

microfluidic devices. This data was then used as a starting

point to perform computational fluid dynamics (CFD)

simulations.

3.1.2 CFD simulations
The results obtained by the CFD simulations are represented

in Figure 5. More specifically, Figure 5A shows the velocity

magnitude field at the device horizontal plane of symmetry

(Symmetry plane II, Figure 2A). When the fluid enters the

trapping region the velocity starts decreasing in the retentate

side and increases along the x axis in the permeate side, due to the

fluid flowing through the gaps. The maximum velocity in the

gaps decreases along the x direction (Figure 5B) in the first two

sets of gaps and stabilizes in the third set of gaps. The maximum

velocity ranges from 0.0014 m/s to 0.0031 m/s. As shown in

Figure 5C, the velocity magnitudes in the lateral gaps are very

similar and it can be assumed that the flow does not have

preferential paths. The velocity profile of the front microposts

is also similar to the velocity profile of the lateral microposts. The

maximum velocity ranges from 0.0009 m/s, in the central gaps, to

0.0018 m/s in the lateral gaps.

3.2 Integration of FISH method to
microfluidic environment

In here, the sample was introduced to microfluidic channel

using gravity-driven flow, while the fixation, hybridization and

TABLE 1 Hydrodynamic flow conditions (nominal).

Flow rate (Q,
µl/min)

Velocity (V, m/s) Reynolds number (Re)

Inlet/Outlet 1 0.006 0.51

Detection region 1 0.001 0.13

FIGURE 4
Representative examples of microfluidic channel detection region at cross-section (A) and horizontal view (B). White dashed line represents
micropost height. Black linemicropost contour; Black dashed linemicropost contact with glass substrate. Original magnification 400 X (A), 100 X (B).
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washing solutions were injected using the pressure-driven flow

system. The experimental set-up used in these assays is outlined

in Figure 3. At first, using gravity-driven flow, viable C. tropicalis

cells were introduced into the microfluidic channel, so that they

could be retained along the microposts. Then, using the same

flow system, the fixation/permeabilization solutions of the FISH

protocol were applied onto trapped C. tropicalis cells. During this

step the microorganism was permeabilized while preserving the

morphological structure of the cells, so that the probe can be

internalized in the hybridization step. Cell trapping was

confirmed with bright field microscopy (Figures 6A,B). C.

tropicalis was mainly trapped along the lateral (Figure 6A,

black dashed arrow) and front microposts (Figures 6A,B,

black arrow). Subsequently, using pressure-driven flow,

subsequent hybridization and washing steps were performed.

Overall, C. tropicalis cells revealed strong fluorescence signal. This

confirmed that the PNA probe successfully hybridized to the target

microorganism and that FISH steps were performed correctly in the

microfluidic environment. Some C. tropicalis cells were observed in

different focus planes (Figure 6D, white arrow) which may partly

explain differences in the fluorescence signal of different cells. Because

the microchannel height (≈30 μm) is higher that C. tropicalis cell

dimension, single or multiple cells can be found in different positions

along the microchannel height. As such, images should be acquired at

different focus planes.

Different morphological growth forms were observed among

C. tropicalis cells during integration studies [i.e., yeast, hyphae,

pseudohyphae (Figures 7A–C)]. Islam et al. (Islam et al., 2020)

also assessed Candida spp. Cell morphology before microfluidic

experiments. In the case of C. tropicalis they revealed several

morphologies: first spherical (with larger diameter of x = y =

5.98 ± 0.75 μm) and then pseudosphere with ellipsoidal

morphology (length of the pseudohyphae ranged from 7 to

27 μm with an average width of 1.89 ± 0.4 μm). These

findings are in the agreement with our observations. Thus, it

is possible that elongated filamentous C. tropicalis cells may pass

through the gaps because of their orientation (e.g., minor length)

when flowing in the microchannel.

3.3 Microfluidic platform validation in
artificially contaminated samples

Finally, the proposed method was tested in artificially

contaminated samples, where AU was contaminated with C.

tropicalis at 105 cells/mL, a representative concentration for UTI

(Fisher et al., 2011). At first, 20 μl of AU contaminated with C.

tropicalis was introduced to the microfluidic channel.

Subsequently, the solutions of FISH protocol were applied

sequentially onto already trapped C. tropicalis cells using the

same fluid handling system as described previously. A negative

control with C. tropicalis exposed to HS alone was included.

Finally, cell trapping was confirmed with bright field microscopy

(Figures 8A,C, black arrow). Overall, strong fluorescence signal

of C. tropicalis cells was observed (Figure 8D) when subjected to

PNA probe, compared to cells hybridized in HS alone (Figure 8B,

FIGURE 5
Contours of the velocity magnitude (m/s) for proposed microfluidic devices along the horizontal plane of symmetry (Symmetry plane II,
Figure 2A) predicted by the CFD simulations (A), maximum velocity along the lateral gaps (B) and detail of the contours of the velocity magnitude in
the lateral gaps (C).
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FIGURE 6
Representative example ofC. tropicalis subjected to FISH inmicrochannel (A,B) Previously trappedC. tropicalis (≈1 × 108 cells/mL) after fixation/
permeabilization, (C,D) hybridization and washing steps of FISH protocol. The microscope parameters maintained the same. Black dashed arrow
represents cells at lateral microposts; Rectangle enlarged microchannel section; Black arrow trapped cell cells at front microposts; White dashed
arrow fluorescence cells; White arrow fluorescence cells in different focus plane. Original magnification 400 X (A,B), 1,000 X (C,D).

FIGURE 7
Morphological growth forms of C. tropicalis: (A) yeast, (B) pseudohyphae, (C) hyphae. The microscope parameters maintained the same. Black
arrow represents trapped cell. Original magnification 400 X (A–C).
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dashed circle). Additionally, the fluorescence signal

quantification results revealed that the signal intensity was

significantly higher in C. tropicalis cells hybridized with probe,

when compared to cells subjected to hybridization solution alone

(Figure 8E). These findings corroborate with previous

observations of visual detection using microfluidic PNA-FISH

method (Figure 8D).

4 Discussion

The proposed microfluidic channel was fabricated using the

silicon-based organic polymer–PDMS. This material is widely

used in biological studies (Ferreira et al., 2017) since it presents

several advantages, such as biocompatibility, optical

transparency, low-cost, and rapid prototyping (Torino et al.,

2018). PDMS is composed of -O-Si(CH3)2- repeating units and

the CH3 is responsible for hydrophobic surface properties. As

such, it is difficult to wet with aqueous solutions andmay result in

microchannel blocking by air bubbles (Sia andWhitesides, 2003).

This challenge can be circumvented by exposing PDMS to

oxygen plasma treatment, during which the silanol groups

(SiOH) are replaced by methyl groups (SiOH3) (Duffy et al.,

1998; Kim et al., 2004; Bodas and Khan-Malek, 2007). This

changes PDMS surface properties to hydrophilic, thus

resulting in surface wetting (Bartali et al., 2017). Additionally,

PDMS can be joined with different surfaces through reversible or

irreversible seals to form closed microfluidic channel (Tan et al.,

2010; Xiong et al., 2014). In this study we used the irreversible

seal, where the PDMS block and the glass substrate were exposed

to plasma oxidation following by immediate bonding forming a

closed microchannel. This type of bonding withstands higher

pressures (30–50 psi) when compared to the reversible seal (5 psi)

(Sia and Whitesides, 2003) and is more suitable for pressure-

driven flow systems. Simultaneously, oxygen plasma treatment

also was used for PDMS surface hydrophilization.

Flow in the device is crucial to adequate cell sieving. If the

flow velocity in the gaps is too high, cells may be dragged through

the gaps. One of the goals of CFD simulations was the analysis of

possible preferential paths due large asymmetries in flow

resistance in the device. Preferential paths lead to high

velocities in specific regions of the device, favouring cell

dragging through the gaps. CFD results show that the velocity

in the gaps is higher in the first set of gaps. To balance the flow

between the gaps, the flow resistance must be increased in the

gaps with higher velocity by increasing the gap length.

Nonetheless, the maximum velocity in the gaps is 0.0031 m/s

and in a previous work we showed that the velocity in the gaps

can be as high as 0.02 m/s without significant cell dragging

(Ferreira et al., 2017).

The dimensional deviations of the fabricated microchannels

were also evaluated, as microchannel and gap dimensions impact

fluid velocity and sieving performance during experimental

assays. For example, non-vertical side walls may result in

different velocity contours and streamlines, when compared

with numerical simulations (e.g., CFD), which may impact

FIGURE 8
Representative example of artificial urine (AU) contaminated with C. tropicalis subjected to microchannel integrated FISH method (A,C).
Previously trapped C. tropicalis (≈1 × 105 cells/mL) after fixation/permeabilization step. And subjected to hybridization solution (HS) alone (control,
dashed circles) (B) or (D) PNA probe suspended in HS (200 nM). The microscope parameters were kept the same. Black arrow represents trapped
cell; Dashed circle hybridized cell contour. Original magnification 400 X (A,C), 1,000 X (B,D) (E) The fluorescence signal quantification of C.
tropicalis. The data is shown as mean fluorescence intensity (arbitrary units a. u.) ± SEM. p>0.05: * vs HS alone [Neg], HS + PNA probe [Pos].
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cell trajectories when flowing in microfluidic channel

(Karthikeyan et al., 2018). Additionally, the percent error was

determined as a measure of fabrication accuracy. Fabrication

accuracy was assessed by Sampaio et al. (Sampaio et al., 2015)

and Lepowsky et al. (Lepowsky et al., 2018) in microfluidic chips

fabricated by soft-lithography and 3D-printing methods,

respectively. For instance, Lepowsky et al. reported varying

width percent errors from 5.38 to 10.75% in different

microchannel regions. These findings are similar to the

microchannel proposed in the present study. Overall, the

developed microfluidic geometry had minor differences in

microchannel height among different microposts which did

not prevent from successful microchannel bonding to glass

substrate, after oxygen plasma treatment. Therefore, it was

assumed that minor differences in micropost heights should

not impact overall microfluidic platform performance in

further experiments.

The main objective of this study was to integrate microfluidic

channel based on hydrodynamic cell trapping with PNA-

FISH. This can provide several advantages for UTI

diagnostics from clinical urine samples, such as direct

target visualisation (Moter and Gobel, 2000) in complex

biological matrices (Almeida et al., 2013a; Almeida et al.,

2013b), using epifluorescence microscope - a standard

equipment found in clinical laboratories. Also, target

microorganisms can be detected within a few hours, while

the standard culture-based method would require several

days (Almeida et al., 2013b). Furthermore, studies showed

that the pre-enrichment time can be reduced using PNA-

FISH technique (Almeida et al., 2013c; Cerqueira et al.,

2020). Nevertheless, the PNA probes can be designed to

target microorganisms at species or genus level (Almeida

et al., 2013b; Cerqueira et al., 2013; Rocha et al., 2019) and in

this case, it is important for the quick identification of

Candida spp. Isolates and initiation of appropriate

treatment (Oliveira Santos et al., 2018; Rodrigues M. E.

et al., 2019). Moreover, biological fluids and matrices may

contain inhibitory substances, that may interfere with

molecular method performance (Morshed et al., 2007;

Schrader et al., 2012).

In FISH, one the main challenge is the autofluorescence

arising from biological matrices and inorganic debris. This

natural fluorescence could impact microscopic sample

examination (Moter and Gobel, 2000; Rohde et al., 2015).

Clinical samples, such as urine, may exhibit different

fluorescence depending on individuals’ health status (Anwer

et al., 2009; Spakova et al., 2020). Finally, the microfluidic

device can be operated with small volumes (in μl range),

resulting in lower costs of probes used in FISH assays.

Despite the successful PNA-FISH procedure integration

with a microfluidic platform was attained, some

adjustments to microfluidic design should be further

considered. For instance, it was observed that some C.

tropicalis cells pass through the gaps (Figure 6B, black

arrow). Kim et al. showed that elongated cells moving

with the flow in microchannels follow different

trajectories than spherical shape cells. Using

computational simulations, it was observed, that

elongated cell orientation varied through the flipping

motion (Kim et al., 2011). Therefore, the microchannel

gap size should be adjusted, taking into consideration the

width of C. tropicalis.

To further decrease the time of the proposed method several

strategies could be applied. Such as, optimising laboratory

infrastructures and experimental set-up would streamline the

process. Also, the pressure-driven flow could be applied for the

entire PNA-FISH method in microchannel. Thus, using one type

of liquid handling system would simplify the overall procedure.

Finally, the incubation times of hybridization and washing steps

could be reduced without compromising the fluorescence signal

intensity.

5 Concluding remarks

The combination of FISH with microfluidics demonstrated

number of advantages, such as cell separation from fluid with

subsequent pre-enrichment, also reduced reagent consumption

and analysis time. However, this integration was achieved in a

limited number of works, especially for the diagnostics of fungal

infections (Asghar et al., 2019; Hussain et al., 2020). As such, the

work presented in this manuscript aimed to develop a

microfluidic platform combined with FISH for the detection

of C. tropicalis. Overall, the obtained results confirm that FISH

worked well in microfluidic channels and demonstrated

successful C. tropicalis detection in biologically-relevant

samples, such as AU. Using our proposed PNA-FISH

integrated microfluidic platform, C. tropicalis was visually

detected in AU in 6 h, which is faster than current urine

culture method that takes 18–48 h (Wilson and Gaido, 2004;

Davenport et al., 2017). Ultimately, this work provides the

necessary fundaments towards development of future POC

detection platform.
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