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Abstract

‘Causal’ direction is of great importance when dealing with complex systems. Often big volumes of data in the form of time
series are available and it is important to develop methods that can inform about possible causal connections between the
different observables. Here we investigate the ability of the Transfer Entropy measure to identify causal relations embedded
in emergent coherent correlations. We do this by firstly applying Transfer Entropy to an amended Ising model. In addition
we use a simple Random Transition model to test the reliability of Transfer Entropy as a measure of ‘causal’ direction in the
presence of stochastic fluctuations. In particular we systematically study the effect of the finite size of data sets.
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Introduction

Many complex systems are able to self-organise into a critical

state [1,2]. The local properties of the system will typically

fluctuate in time and space but the way the fluctuations are

interrelated or correlated may differ. In this context a critical state

is defined in terms of the way in which the correlations of the local

fluctuations decay in space and time. When a system isn’t critical,

the correlations of the fluctuations of a quantity A measured in two

different positions at two different times, say A(r0,t0) and

A(r0zr,t0zt) decay as an exponential function of the separation

in space DrD and also decay exponentially as function of the

separation in time t. However in a critical state the correlations

exhibit a much slower algebraic decay, i.e. the correlation

functions decay as negative powers of DrD and t. This is the

behaviour observed at second order phase transitions in thermal

equilibrium, which are denoted the critical points. The slow

algebraic decay of correlations is equivalent to correlations

effectively spanning across the entire system. Or in other words,

in the critical state local distortions can propagate throughout the

entire system [2–4]. We address here how to identify directed

stochastic causal connections embedded in a background of

strongly correlated stochastic fluctuations.

Most of ‘causality’ and directionality measures have been tested

on low dimension systems and neglect addressing the behaviour of

systems consisting of large numbers of interdependent degrees of

freedom that is a main feature of complex systems. From a

complex systems point of view, on one hand there is the system as

a whole (collective behaviour) and on another there are individual

interactions that lead to the collective behaviour. A measure that

can help understand and differentiate these two elements is

needed. We shall first seek to make a clear definition of ‘causality’

and then relate this definition to complex systems. We outline the

different approaches and measures used to quantify this type of

‘causality’. We highlight that for multiple reasons, Transfer

Entropy seems to be a very suitable candidate for a ‘causality’

measure for complex systems. Consequently we seek to shed some

light on the usage of Transfer Entropy on complex systems.

To improve our understanding of Transfer Entropy we study

two simplistic models of complex systems which in a very

controllable way generate correlated time series. Complex system

whose main characteristic consist in essential cooperative behav-

iour [5] takes into account instances when the whole system is

interdependent. Therefore, we apply Transfer Entropy to the

(amended) Ising model in order to investigate its behaviour at

different temperatures particularly near the critical temperature.

Moreover, we are also interested in investigating the different

magnitude of Transfer Entropy in general (which is not fully

understood [6]) by looking at the effect of different transition

probabilities, or activity levels. We discuss the interpretation of the

different magnitudes of the Transfer Entropy by varying transition

rates in a Random Transition model.

Quantifying ‘Causality’

The quantification of ‘causality’ was first envisioned by the

mathematician Wiener [7] who propounded the idea that the

‘causality’ of a variable in relation to another can be measured by

how well the variable helps to predict the other. In other words,

variable Y ‘causes’ variable X if the ability to predict X is

improved by incorporating information about Y in the prediction

of X . The conceptualisation of ‘causality’ as envisioned by Wiener

was formulated by Granger [8] leading to the establishment of the

Wiener-Granger framework of ‘causality’. This is the definition of

‘causality’ that we shall adopt in this paper.
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In literature, references to ‘causality’ take many guises. The

term directionality, information transfer and sometimes even

independence can possibly refer to some sort of ‘causality’ in line

with the Wiener-Granger framework. Continuing the assumption

that Y causes X , one would expect the relationship between X
and Y to be asymmetric and that the information flows in a

direction from the source Y to the target X . One can assume that

this information transfer is the unique information provided by the

causal variable to the affected one. When one variable causes

another variable, the affected variable (the target) will be

dependent (to certain extent) on the causal variable (the source).

There must exist a certain time lag however small between the

source and the target [9–11], this will be henceforth referred to as

the causal lag [8]. One could also say the Wiener-Granger

framework of prediction based ‘causality’ is equivalent to looking

for dependencies between the variables at a certain causal lag.

Roughly, there are two different approaches in establishing

‘causality’ in a system. One approach is to make a qualified guess

of a model that will fit the data, called the confirmatory approach

[12]. Models of this nature are typically very field specific and rely

on particular insights into the mechanism involved. A contrasting

approach known as the exploratory approach, infers ‘causal’

direction from the data. This approach does not rely on any

preconceived idea about underlying mechanisms and let results

from data shape the directed model of the system. Most of the

measures within the Wiener-Granger framework falls into this

category. One can think of the different approaches as being on a

spectrum from purely confirmatory to purely exploratory.

The nature of complex systems calls for the exploratory

approach. The abundance of data emphasises this even more so.

In fact ‘causality’ measures in the Wiener Granger framework

have been increasingly utilised on data sets obtained from complex

systems such as the brain [13,14] and financial systems [15].

Unfortunately, most of the basic testings of the effectiveness of

these measures are mostly done on dynamical systems [16–18] or

simple time series, without taking into account the emergence of

collective behaviour and criticality. Complex systems are typically

stochastic and thus different from deterministic systems where the

internal and external influences are distinctly identified. As

mentioned above, here we focus on the emergence of collective

behaviour in complex systems and in particular on how the

intermingling of the collective behaviour with individual (coupled)

interactions complicates the identification of ‘causal’ relationships.

Identifying a measure that is able to distinguish between these

different interactions will obviously help us to improve our

understanding of the dynamics of complex systems.

Transfer Entropy

Within the Wiener-Granger framework, two of the most

popular ‘causality’ measure are Granger Causality (G-causality)

and its nonlinear analog Transfer Entropy. G-causality and

Transfer Entropy are exploratory as their measures of causality

are based on distribution of the sampled data. The standard steps

of prediction based ‘causality’ that underlies these measures can be

summarized as follows. Say we want to test whether variable Y
causes variable X . The first step would be to predict the current

value of X using the historical values of X . The second step is to

do another prediction where the historical values of Y and X are

both used to predict the current value of X . And the last step

would be to compare the former to the latter. If the second

prediction is judged to be better than the first one, then one can

conclude that Y causes X . This being the main idea, we outline

why Transfer Entropy is more suitable for complex systems.

Granger causality is the most commonly used ‘causality’

indicator [9]. However, in the context of the nonlinearities of a

complex systems (collective behaviour and criticality being the

main example), using G-causality may not be sufficient. Moreover,

the inherently linear autoregressive framework makes G-causality

less exploratory than Transfer Entropy. Transfer Entropy was

defined [16,17] as a nonlinear measure to infer directionality using

the Markov property. The aim was to incorporate the properties of

Mutual Information and the dynamics captured by transition

probabilities in order to understand the concept and exchange of

information. More recently, the usage of Transfer Entropy to

detect causal relationships [19–21] and causal lags (the time

between cause and effect) has been further examined [6,22]. Thus

we are especially interested in Transfer Entropy due to its

propounded ability to capture nonlinearities, its exploratory nature

as well as its information theoretic background that provides

information transfer related interpretation. Unfortunately, some of

the vagueness in terms of interpretation may cause confusion in

complex systems. The rest of the paper is an attempt to discuss

these issues in a reasonably self-contained manner.

Mutual Information based measures
Define random variables X ,Y and Z with discrete probability

distributions pX (x),x[X , pY (y),y[Y and pZ(z),z[Z. The entropy

of X is defined [23,24] as

H(X )~{
X
x[X

pX (x) log pX (x) ð1Þ

where log to the base e and 0 log 0~0 is used. The joint entropy

of X and Y is defined as

H(X ,Y )~{
X
x[X

X
y[Y

pXY (x,y) logpXY (x,y) ð2Þ

and the conditional entropy can be written as

H(X DY )~{
X
x[X

X
y[Y

pXY (x,y) logpX DY (xDy) ð3Þ

Figure 1. Susceptibility x on the Ising model with lengths
L=10,25,50,100 obtained using equation (9). Peaks can be seen at
respective Tc.
doi:10.1371/journal.pone.0099462.g001
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where pXY is the joint distribution and pX DY is the respective

conditional distribution. The Mutual Information [24,25] is

defined as

I(X ,Y )~H(X ){H(X DY ): ð4Þ

Taking into account conditional variables, the conditional

Mutual Information [19,24] is defined as I(X ,Y DZ)~
H(X DZ){H(X DY ,Z). A variant of conditional Mutual Informa-

tion namely the Transfer Entropy was first defined by Schreiber in

[16]. Let X t be the variable X that is shifted by t, so that the

values of X t(n)~X (n{t) where X (n) is the value of X at time

step n and similarly for Y . We highlight a simple form of Transfer

Entropy where conditioning is minimal such that

T
(t)
YX ~I(X ,Y tDX 1)~H(X DX 1){H(X DX 1,Y t): ð5Þ

The idea is that, if Y causes X at causal lag tY , then T
(tY )

YX §T
(t)
YX

for any lag t since H(X DX 1,Y tY )ƒH(X DX 1,Y t) due to the fact

that Y tY should provide the most information about the change of

X 1 to X . This simple form allows us to vary the values of time lag

t in ascertaining the actual causal lag. This form of Transfer

Entropy was also used in [13,18,22,26,27]. The Transfer Entropy

in equation (5) can also be written as

T
(t)
YX ~

X
x[X

X
x’[X

X
y[Y

p
XX1Yt (x,x’,y) log

p
X DX1Yt (xDx’,y)

p
X DX1 (xDx’)

: ð6Þ

Our choice of this simple definition was motivated by the fact that

it directly captures how the state of Y t(n)~Y (n{t) influences the

changes in X i.e. from X (n) to X 1(n)~X (n{1). In other words,

equation (5) is tailor made to measure whether the state of

Figure 2. Covariance C(A,G) on the Ising model with lengths
L=10,25,50,100 obtained using equation (10).
doi:10.1371/journal.pone.0099462.g002

Figure 3. Mutual Information I(A,G) on the Ising model with
lengths L=10,25,50,100 obtained using equation (4).
doi:10.1371/journal.pone.0099462.g003

Figure 4. Transfer Entropy T (10)
AG and T (10)

GA on the Ising model of
lengths L=50 obtained using equation (5). Peaks for both direction
are at Tc.
doi:10.1371/journal.pone.0099462.g004

Figure 5. Transfer Entropy T(10)
GA on the Ising model of lengths

L=10,25,50,100 obtained using equation (5). Peaks can be seen at
respective Tc.
doi:10.1371/journal.pone.0099462.g005
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Y (n{t) influences the current changes in X . This coincides with

the predictive view of ‘causality’ in the Wiener-Granger frame-

work where the current state of one variable (the source) influences

the changes in another variable (the target) in the future. The same

concept will be applied in order to probe this kind of ‘causality’ in

our models.

The Ising Model

A system is critical when correlations are long ranged. A simple

prototype example is the Ising model [2] at critical temperature,

Tc. Away from Tc correlations are short ranged and dies off

exponentially with separation. We shall apply Transfer Entropy to

the Ising model in order to investigate its behaviour at different

temperatures particularly in the vicinity of the critical temperature.

One can visualize the 2D Ising model as a two dimensional square

lattice with length L composed of N~L2 sites si,i[N~f1 � � �Ng.
These sites can only be in two possible states, spin-up (si~1) or

spin-down (si~{1). We restrict the interaction of the sites to only

its nearest neighbours (in two dimensions this will be sites to the

north, south, east and west). Let the interaction strength between i
and j be denoted by

Jij~
J§0, if i and j are nearest neighbours and i,j[N

0, otherwise

�
ð7Þ

so that the Hamiltonian (energy), H, is given by [2,28]

H~{
X
i[N

X
j[N

Jijsisj : ð8Þ

H is used to obtain the Boltzmann (Gibbs) distribution

cB~ exp({bH)X
exp({bH)

with b~
1

KBT
where KB is the Boltzmann

constant and T is temperature.

We implement the usual Metropolis Monte Carlo (MMC)

algorithm [2,29,30] for the simulation of the Ising model in two

dimensions with periodic boundary conditions. The algorithm

proposed by Metropolis and co-workers in 1953 was designed to

sample the Boltzmann distribution cB by artificially imposing

dynamics on the Ising model. The implementation of the MMC

algorithm in this paper is outlined as follows. A site is chosen at

random to be considered for flipping (change of state) with

probability cB. The event of considering the change and

afterwards the actual change (if accepted) of the configuration,

shall henceforth be referred to as flipping consideration. A sample

is taken after each N flipping considerations. The logic being that,

since sites to be considered are chosen randomly one at a time,

after N flips, each site will on average have been selected for

consideration once. The interaction strength is set to be J~1 and

the Boltzmann constant is fixed as KB~1 for all the simulations.

We let the system run up to 2000 samples before sampling at every

N~L2 time steps.

Through the MMC algorithm, a Markov chain (process) is

formed for every site on the lattice. The state of each site at each

sample will be taken as a time step n in the Markov chain (sX )n.

Let S be the number of samples (length of the Markov chains). To

Figure 6. Transfer Entropy T (10)
AG on the Ising model of lengths

L=10,25,50,100 obtained using equation (5). Peaks can be seen at
respective Tc.
doi:10.1371/journal.pone.0099462.g006

Figure 7. Susceptibility x on the amended Ising model of
lengths L=10,25,50,100 obtained using equation (9). Peaks can
be seen at respective Tc.
doi:10.1371/journal.pone.0099462.g007

Figure 8. Covariance C(A,G) on the amended Ising model of
lengths L=10,25,50,100 obtained using equation (10). Peaks can
be seen at respective Tc, similar to Figure (2) of the Ising model.
doi:10.1371/journal.pone.0099462.g008
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get the probability values for each site, we utilise temporal average.

All the numerical probabilities obtained for the Ising model in this

paper have been obtained by averaging over simulations with

S~100000 unless stated otherwise.

Measures on Ising model
In an infinite two dimensional lattice, the phase transition of the

Ising model with J~1 and KB~1 is known to occur at the critical

temperature Tc~
2

log (1z
ffiffiffi
2
p

)
&2:269185 [2]. In a finite system,

due to finite size effects, the critical values will not be quite as

exact, we will call the temperature where the transition effectively

occurs in the simulation as the crossover temperature Tc.

Susceptibility x is an observable that is normally used to identify

Tc for the Ising model as seen in Figure (1). In order to define x, let

m(n)~
PN

i~1 (si)n be the sum of spins on a lattice of size N at time

steps n~1, � � � ,S. The susceptibility [2] is given by

x~
1

TN
E½m(n)2�{E½m(n)�2
� �

ð9Þ

where E½:� is the expectation in terms of temporal average and T is

temperature. The covariance on the Ising model can be defined as

C(X ,Y )~C(sX ,sY )~E ½sX sY �{E½sX �E½sY � ð10Þ

where X ,Y[N .

To display measures applied on individual sites, let sites

A,B,G[N represent coordinates ½1,1�, ½2,2� and ½3,3� respectively.

The values of the covariance C(A,G) and I(A,G)~I(sA,sG) is

displayed in Figure (2) and Figure (3). It can be seen that for the

Ising model, Mutual Information gives no more information than

covariance. From this figure, one can see that the values are system

size dependent up to system size L~50 or N~2500. We conclude

from this, that up to this length scale, correlations are detectable

across the entire lattice [2]. Thus we shall frequently utilize L~50
when illustration is required.

Using time shifted variables we obtained the Transfer Entropy

T
(t)
YX ~T (t)

sY sX
in Figures (4–6). By looking at Figure (4) and then

contrasting Figures (5) and (6), one can see that there is no clear

difference between T
(t)
GA and T

(t)
AG in the figures thus no direction of

‘causality’ can be established between A and G. This is expected

due to the symmetry of the lattice. More interestingly, the fact that

Transfer Entropy peaks near Tc can be due to the fact that at Tc

the correlations span across the entire lattice. Therefore, one may

say that the critical transition and collective behaviour in the Ising

model is detected by Transfer Entropy as a type of ‘causality’ that

is symmetric in both directions. It is logical to interpret collective

behaviour as a type of ‘causality’ in all directions since information

is disseminated throughout the whole lattice when it is fully

connected. This is an important fact to take into account when

estimating Transfer Entropy on complex systems.

Amended Ising Model

In the amended Ising model we introduce an explicit directed

dependence between the sites A, B and G in order to study how

well Transfer Entropy is able to detect this causality. We will

Figure 9. Mutual Information I(A,G) on the amended Ising
model with lengths L=10,25,50,100 obtained using equation
(4). Not much different from results on the Ising model in Figure 3.
doi:10.1371/journal.pone.0099462.g009

Figure 10. Transfer Entropy T (10)
AG and T (10)

GA on the amended
Ising model of lengths L~50 and tG~10, obtained using
equation (5). Direction G?A at time lag 10 is indicated. Very
different from result on Ising model in Figure 4.
doi:10.1371/journal.pone.0099462.g010

Figure 11. Transfer Entropy T(10)
GA on the Ising model of lengths

L=10,25,50,100 obtained using equation (5). Values continue to
increase after Tc which is very different from Figure (5).
doi:10.1371/journal.pone.0099462.g011
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define the amended Ising model using the algorithm outlined as

follows. At each step in the algorithm a site chosen at random will

be considered for flipping with a certain probability cB except

when A or B is selected where an extra condition needs to be

fulfilled first before it can be allowed to change (flip). If

(sG)n{tG
~1, A (or B) can be considered for flipping with

probability cB as usual, however if (sG)n{tG
~{1, no change is

allowed. Thus only one state of G (sG~1 in this case) allows sites A
and B to be considered for flipping. Therefore, although A and B
have their own dynamics, their changes still depend on G.

We simulated the amended Ising model with tG~10 for

different lattice lengths L. Figures (7) display the values of

susceptibility x on the model and the peaks clearly show the

presence of Tc in our model just like Figure (1) of the Ising model.

Figures (8) and (9) display the values of the covariance C(A,G) and

the Mutual Information I(A,G) respectively. We reiterate that our

correlations reach across the system for Lƒ50 [2,31]. While

covariance and Mutual Information gives similar results to those of

the standard Ising model as in Figures (2) and (3), a difference is

clearly seen in Transfer Entropy values. Figure (10–12) displays

the contrasts of T
(10)
AG and T

(10)
GA on the amended Ising model which

explicitly indicates the direction of ‘causality’ G?A. While

Figure (12) is not very different from Figure (6), Figures (10) and

(11) are clearly different from their counterparts in the Ising

model, Figures (4) and (5). Transfer Entropy captures the effect of

the amendment.

Furthermore with this amendment, one can utilize Transfer

Entropy to illustrate the effect of separation in time. The effect of

deviation from the predetermined causal lag tG~10, can be

clearly seen in Figure (13), where the values of T
(t)
GA,t=10 reduces

to 0 but at different rates depending on the deviation of t from tG.

The further away from tG, the faster the decrease to 0. Figure (14)

is simply Figure (13) plotted over different time lags t to illustrate

how Transfer Entropy correctly and distinctly identified causal lag

tG~10.

That temperature is a main factor in influencing the strength of

Transfer Entropy values is apparent in all the figures in this

section. One can observe, especially in Figure (13), that the

Transfer Entropy values approaches 0 as they get further away

from Tc except when the time lag t matches the delay induced

(t~tG ), in which case the Transfer Entropy value stabilizes to a

certain fixed value as seen in Figure (15). In the vicinity of Tc, the

lattice is highly correlated thus subsequently leading to higher

values of Transfer Entropy. The increase and value stabilization

after Tc is due to the fact that, as temperature increases, the

probability for all ‘flipping considerations’ approaches a uniform

distribution. This leads to transfer of information between site G
and sites A and B occurring much more frequently at elevated

temperature.

Figure (16) and (17) display Transfer Entropy values for the

Ising model and amended Ising model with tG~1 respectively.

The figures illustrate the mechanism in which Transfer Entropy

detects the predefined causal delay. Consider the following

question: which site ‘causes’ site A? Firstly we see that T
(1)
AA is

zero in both figures due to the definition in equation (5). Note that

by our definition this is only for t~1, if t=1 the Transfer Entropy

value will be nonzero and also peak at Tc. More importantly we

Figure 12. Transfer Entropy T (10)
AG on the Ising model of lengths

L=10,25,50,100 obtained using equation (5). Peaks can be seen at
respective Tc, similar to Ising model results in Figure (6).
doi:10.1371/journal.pone.0099462.g012

Figure 13. T (t)
GA versus T for different time lags t in amended

Ising model with tG~10 and L~50 using equation (5). The figure
shows the effect of separation in time.
doi:10.1371/journal.pone.0099462.g013

Figure 14. A different view of Figure (13) where T (t)
GA versus t for

different temperatures T is plotted instead. Tc&2:3. Figure
highlights time lag detection.
doi:10.1371/journal.pone.0099462.g014
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see that T
(1)
GA is different from T

(1)
BA. In Figure (16) of the Ising

model, the difference is due to separation (distance) in space and

nearest neighbour interaction in the model, thus T
(1)
GAvT

(1)
BA since

G is further away from A than B. But in Figure (17) of the

amended Ising model, the opposite is true and separation in space

does not dominate the Transfer Entropy value in this interaction.

The figure very clearly indicates that G ‘causes’ A at t~1 and B

does not. In other words, in the amended Ising model Transfer

Entropy identifies G as a source in which one of the target is A,

whereas in the Ising model the expected nearest neighbour

dynamics presides. This result is only obtained for measures

sensitive to transition probabilities. Measures that depend only on

static probabilities such as covariance, Mutual Information and

conditional Mutual Information will only give values in accor-

dance to the underlying nearest neighbour dynamics in both the

Ising model and the amended Ising model [32].

Transfer Entropy, directionality and change
In order to understand the dynamics of of each site we calculate

the effective rate of change (ERC) in relation to the transition

probabilities. Let ERCX ~P(Xn=Xn{1) for any site X on the

lattice. Figure (18) illustrates how ERCA and ERCB are equal, as

Figure 15. T(1)
GA in Figure 17 up to T~15. Transfer Entropy stabilizes due to Boltzmann distribution that approaches uniform distribution at higher

temperatures.
doi:10.1371/journal.pone.0099462.g015

Figure 16. T (1)
AA, T (1)

BA and T(1)
GA in the Ising model with L~50.

T
(1)
BAwT

(1)
GA due to distance (separation) in space where B is closer to A

than G. The nearest neighbour effect is observed.
doi:10.1371/journal.pone.0099462.g016

Figure 17. T(1)
AA, T (1)

BA and T (1)
GA in the amended Ising model with

L~50 and tG~1. T
(1)
BAvT

(1)
GA due to implanted ‘causal’ lag. The effect

of separation in space is no longer visible.
doi:10.1371/journal.pone.0099462.g017
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expected, and significantly different from ERCG . In Figure (10),

the corresponding Transfer Entropy in both directions are

displayed. At higher temperatures, it can be clearly seen that

T
(tG )
GA is larger than T

(tG )
AG . However for temperatures near Tc it is

not as clear and therefore to highlight the relative values we

calculate
T

(tG )
GA {T

(tG )
AG

ERCA

in Figure (19) and Figure (20) where

T
(tG )
GA {T

(tG )
AG

ERCA

~0 if ERCA~0. We see that this value actually

gives a clear jump at Tc and remains more or less a constant after

Tc. Therefore even though Transfer Entropy in neither direction is

zero, a clear indication of directionality can be obtained.

Interestingly, the division with ERC brought out the clear phase

transition-like behaviour that seems to distinguish the situation

below and above Tc. Referring back to Figure (4) of the

unamended Ising model we can clearly see that
T

(tG )
GA {T

(tG )
AG

ERCA

&0

for any direction in the unamended Ising model. We have

demonstrated that
T

(tG )
GA {T

(tG )
AG

ERCA

is able to cancel out the symmetric

contribution from the collective behaviour and only captures the

imposed directed interdependence.

In his introductory paper [16], Schreiber warns that in certain

situations due to different information content as well as different

information rates, the difference in magnitude should not be relied

on to imply directionality unless Transfer Entropy in one direction

is 0. We have shown that when collective behaviour is present on

the Ising model, the value of Transfer Entropy cannot possibly be

0. We suggest that this is due to fact that collective behaviour is as

a type of ‘causality’ (disseminating information in all directions)

and thus the Transfer Entropy is correctly indicating ‘cause’ in all

directions. The clear difference in Transfer Entropy magnitude

(even at Tc) observed when the model is amended indicates that

the difference in Transfer Entropy can indeed serve as an indicator

of directionality in systems with emergent cooperative behaviour.

We have seen that Transfer Entropy is influenced by the nearest

neighbour interactions, collective behaviour and the ERC. In the

next section we use the Random Transition model to further

investigate how the ERC influences the Transfer Entropy.

Random Transition Model

In the amended Ising model we implemented a causal lag as a

restriction of one variable on another, in a way that a value of the

source variable will affect the possible changes of the target

variable. It is this novel concept of implementing ‘causality’ that

we will analyze and expand in the Random Transition model. Let

mX , mY and mZ, be the independent probabilities for the stochastic

swaps of the variables X , Y and Z at every time step respectively.

In addition to that, a restriction is placed on X and Y such that

they are only allowed to do the stochastic swaps with probability

mX and mY if the state of Zn{tZ
fulfills a certain condition. This

restriction means that X and Y can only change states if Z is in

the conditioned state at time step n{tZ thus creating a

‘dependence’ on Z, analogous to the dependence of A and B on

G in the amended Ising model.

However in this model we allow the number of states ns to be

more than just two. The purpose of this is twofold, on one hand it

Figure 18. ERC (Expected rate of change) of sites A, B and G on
amended Ising model with tG~10 and L~50.
doi:10.1371/journal.pone.0099462.g018

Figure 19.
T(tG )

GA {T (tG )
AG

ERCA
on amended Ising model with tG~10 and

L~50 displaying phase-transition like behaviour.
doi:10.1371/journal.pone.0099462.g019

Figure 20.
T(tG )

GA {T (tG )
AG

ERCA
on amended Ising model with tG~10 and

L~25,50,100. All with phase-transition like jump.
doi:10.1371/journal.pone.0099462.g020
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contributes towards verifying that the behaviours of Transfer

Entropy observed on the amended Ising model does extend to

cases where nsw2. On the other hand, the model also serves to

highlight different properties of Transfer Entropy as well as the

very crucial issue of probability estimation that may lead to

misleading results. The processes are initialized randomly and

independently. The swapping probabilities are taken to be

mX ~mY ~mZ~
1

ns

, thus enabling Transfer Entropy values to be

calculated analytically. The transition probability of the Random

Transition model is as follows. We assume that if a process chooses

to change it must choose one of the other states equally, thus we

have that P(X2~aDX1~b,a=b)~
1

ns{1
P(X2=X1), so that the

marginal and joint probabilities remain uniform but the transition

probabilities are

P(Xn~aDXn{1~b)~

1{mXV if a~b

1

ns{1
mXV if a=b

8<
:

P(Yn~aDYn{1~b)~

1{mYV if a~b

1

ns{1
mYV if a=b:

8<
:

and

P(Zn~aDZn{1~b)~

1{mZ if a~b

1

ns{1
mZ if a=b

8<
:

where V~P(condition fulfilled) such that one can control

‘dependence’ on Z by altering V.

The relationship between V and Q

To understand how the values of mZ affects the value of T
(t)
ZX we

need a different variable. Let Q be the probability that the

condition is fulfilled given current knowledge at time t such that

Q
(t)
sgn(c)~P(condition fulfilledDknowledge at time t). The value

of Q
(t)
sgn(c) will depend on c, and in our model here, particularly on

whether or not Zn{tz
~c satisfies the condition. One can divide

the possible states c of all the processes into two sets such that

GU~fc[A,Zn{tZ
~c fulfills the conditiong and

GD~fc[A,Zn{tZ
~c does not fulfill the conditiong:

Note that DGU D~nsV and DGDD~ns(1{V) since

V~P(condition fulfilled) such that V can be interpreted as the

proportion of states of Z that fulfill the condition. Due to

equiprobability of spins and uniform initial distribution, for any t

there are only two possible values of Q
(T )
sgn(c), one for c[GU and one

for c[GD. Therefore define sgn(c) such that

sgn(c)~
z if c[GU

{ if c[GD

�
ð11Þ

to get

Q
(t)
sgn(c)~

Q
(t)
z if c[GU

Q(t)
{ if c[GD:

(
ð12Þ

Thus Q
(t)
sgn(c)~P(condition fulfilledDZn{t~c) with the sgn(c) as

in equation (11).

The relationship between Q
(tc)
sgn(c) and V can be defined using the

formula for total probability P(B)~
P

c P(BDZ~c)P(Z~c): Let

B~fcondition fulfilledg and using the fact that

P(Zn{t~c)~
1

ns

, we get that

V~P(B)~
X

c

P(BDZn{t~c)P(Zn{t~c)~
1

ns

X
c

Q
(t)
sgn(c): ð13Þ

Due to the sole dependence of Z on mZ , mZ~
ns{1

ns

will make the

transition probability of Z uniform such that

P(Zn~aDZn{1~b)~
1

ns

for any n since we have that

P(Zn~aDZn{1~b)~

1{mZ~1{
ns{1

ns

~
1

ns

if a~b

1

ns{1
mZ~

1

ns{1

ns{1

ns

~
1

ns

if a=b

8>><
>>:

for any a,b[A~f1, � � � ,nsg. Consequently, mZ~
ns{1

ns

also makes

all values of Q
(t)
sgn(c) uniform so that equation (13) becomes

V~
1

ns

X
c

Q
(t)
sgn(c)~

1

ns

nsQ
(t)
sgn(c)~Q

(t)
sgn(c): ð14Þ

Therefore on the model when the mZ~
ns{1

ns

, we have that

V~Q
(t)
sgn(c) for any t~tZ . And this is why we get Figure (21),

Figure 21. Analytical Transfer Entropy T (t)
ZX versus time lags t of

the Random Transition model with ns~2 (hence V~
1

2
) and

tZ~5 in equation (16) where mX is varied but mZ~
1

2
fixed. T

(tZ )
ZX is

monotonically increasing with respect to mX . T
(tZ )
ZX is affected by mX .

Figure illustrates how the internal dynamics of X influences T
(t)
ZX when

X is the target variable. Transfer Entropy changes even though external
influence V is constant.
doi:10.1371/journal.pone.0099462.g021
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where T
(t)
ZX=0 only if t~tZ since V~Q

(t)
sgn(c) in equation (16)

cancels out.

For any mZ , the relationship between Q
(t)
z and Q(t)

{ can be

derived from equation (13) where

nsV~
X

c

Q
(t)
sgn(c)~

X
c[GU

Q
(t)
sgn(c)z

X
c[GD

Q
(t)
sgn(c)~DGU DQ(t)

zzDGDDQ(t)
{ ð15Þ

nsV~nsV Q
(t)
zzns(1{V)Q(t)

{

V(1{Q
(t)
z )~(1{V)Q(t)

{

Note that when ns~2 (hence V~
1

2
) this simplifies to

Q
(t)
zzQ(t)

{~1.

Transfer Entropy formula on the Random Transition
model

Using Q
(t)
sgn(c) as in equation (12) we have that

P(Xn~aDXn{1~b,Zn{t~c)

P(Xn~aDXn{t~b)

~

1{mX Q
(t)
sgn(c)

1{mXV
if a~b

1
ns{1

mX Q
(t)
sgn(c)

1
ns{1

mXV
~

Q
(t)
sgn(c)

V
if a=b,

8>>>>><
>>>>>:

which gives us

T
(t)
ZX ~

X
a

X
b

X
c

P(Xn~a,Xn{1~b,Zn{t

~c)log
P(Xn~aDXn{1~b,Zn{t~c)

P(Xn~aDXn{1~b)

~DfXn~Xn{1gD
X

c

1{mX Q
(t)
sgn(c)

n2
s

log
1{mX Q

(t)
sgn(c)

1{mXV

" #

zDfXn=Xn{1gD
X

c

1

ns{1
mX Q

(t)
sgn(c)

n2
s

log
Q

(t)
sgn(c)

V

2
664

3
775

~ns

X
c

1{mX Q
(t)
sgn(c)

n2
s

log
1{mX Q

(t)
sgn(c)

1{mXV

" #

zns(ns{1)
X

c

1

ns{1
mX Q

(t)
sgn(c)

n2
s

log
Q

(t)
sgn(c)

V

2
664

3
775

~
1

ns

X
c[GU

(1{mX Q
(t)
sgn(c)) log

1{mX Q
(t)
sgn(c)

1{mXV

"

zmX Q
(t)
sgn(c) log

Q
(t)
sgn(c)

V

#

z
1

ns

X
c[GD

(1{mX Q
(t)
sgn(c)) log

1{mX Q
(t)
sgn(c)

1{mXV

"

zmX Q
(t)
sgn(c) log

Q
(t)
sgn(c)

V

#

~
1

ns

(nsV) (1{mX Q
(t)
z ) log

1{mX Q
(t)
z

1{mXV

"

zmX Q
(t)
z log

Q
(t)
z

V

#

z
1

ns

ns(1{V) (1{mX Q(t)
{ ) log

1{mX Q(t)
{

1{mXV

�

zmX Q(t)
{ log

Q(t)
{

V

�

~V (1{mX Q
(t)
z ) log

1{mX Q
(t)
z

1{mXV

"

zmX Q
(t)
z log

Q
(t)
z

V

#

z(1{V) (1{mX Q(t)
{ ) log

1{mX Q(t)
{

1{mXV

�

zmX Q(t)
{ log

Q(t)
{

V

�

ð16Þ

where we used the Bayes theorem i.e

Figure 22. Analytical Transfer Entropy T(t)
ZX versus time lags t of

the Random Transition model with ns~2 (hence V~
1

2
) and

tZ~5 in equation (16) where mX~
1

2
fixed and mZ is varied. Only

at tZ~5, mZ does not effect T
(tZ )
ZX and values remain constant. For

T
(t)
ZX=0 at t=tZ , Transfer Entropy is affected by mZ . mZ~0:25 and

mZ~0:75 coincides. Figure shows how the internal dynamics of Z

influences T
(t)
ZX when Z is the source variable.

doi:10.1371/journal.pone.0099462.g022
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P(Xn~a,Zn{1~c,Xn{1~b)~
1

n2
s

P(Xn~aDZn{1~c,Xn{1~b):

Due to independence, if Y were to be conditioned on X we would

have that

P(Yn~aDYn{1~b,Xn{t~c)

P(Yn~aDYn{1~b)
~

P(Yn~aDYn{1~b)

P(Yn~aDYn{1~b)
~1:

Therefore for values other than when X and Y conditioned on Z,

this ratio will yield 1. This renders T
(t)
XZ~T

(t)
YZ~T

(t)
YX ~T

(t)
XY ~0.

And if we get that T
(t)
ZX=0, we can say that Transfer Entropy

indicates ‘causality’ or some form of directionality from Z to X

and Z to Y , at time lag t. In a similar manner for a,b,c[A we have

that

P(Yn~ajYn{1~b,Zn{t~c)

P(Yn~ajYn{1~b)
~

1{mY Q
(t)
sgn(c)

1{mYV
if a~b

1

ns{1
mY Q

(t)
sgn(c)

1

ns{1
mYV

~
Q

(t)
sgn(c)

V
if a=b

8>>>>>>><
>>>>>>>:

such that T
(t)
ZY in exactly like equation (16) except that mX is

replaced with mY .

When t~tZ we have that Q
(tZ )
sgn(c) is either 0 or 1 since the

condition was placed at n{tZ . More specifically we will have that

Q
(tZ )
z ~1 and that Q(tZ )

{ ~0. Putting these two values in equation

(16) we obtain

T
(tZ )

ZX ~V (1{mX Q
(tZ )
z ) log

1{mX Q
(tZ )
z

1{mXV
zmX Q

(tZ )
z log

Q
(tZ )
z

V

" #

z(1{V) (1{mX Q(tZ )
{ ) log

1{mX Q(tZ )
{

1{mXV
zmX Q(tZ )

{ log
Q(tZ )

{

V

� �

~V(1{mX ) log
1{mX

1{mXV
zVmX log

1

V
z(1{V) log

1

1{mXV
:

ð17Þ

A more thorough treatment of the Random Transition model and

other methods of Transfer Entropy estimations is given in [32].

Understanding ‘causality’ on the Random Transition
model

The unclear meaning of the magnitude of Transfer Entropy is

one of its main criticism [6,18]. This is partly due to the ERC

which incorporates both external and internal influences, the

separation of which is rather unclear. The advantage of

investigating Transfer Entropy on the Random Transition model

is that the ERC can be defined in terms of internal and external

elements i.e. for any variable X we have that

ERCX ~P(Xn=Xn{1)~
X
b=a

P(Xn~aDXn{1~b)~mXV,

where mX is the internal transition probability of X and V
represents the external influence applied on X . If the condition

in our model is that Zn{1~1 for Xn and Yn to change

values then, V~P(condition fulfilled)~P(Zn{1~1) so that

ERCX ~mX P(Zn{1~1) and ERCY ~mY P(Zn{1~1). However,

for the source Z which has no external influence, V~1 and

consequently ERCZ~P(Zn=Zn{1)~mZ:
When ns~2, the model essentially replicates the Ising model

without the collective behaviour effect i.e. far above the Tc where

the Boltzmann distribution approaches a uniform distribution.

Consequently, at these temperatures the influence of collective

behaviour is close to none. One can see in Figure (21) and

Figure (22) that the m (hence the ERC) values are indeed key in

determining the strength of Transfer Entropy. In Figure (21), mX

influences T
(tZ )
ZX monotonically when every other value is fixed,

therefore in this case the Transfer Entropy reflects the internal

dynamics mX rather than the external influence V. If ‘causality’ is

the aim, surely V is the very thing that makes the relationship

‘causal’ and should be the main focus. This is a factor that needs to

be taken into account when comparing the magnitudes of Transfer

Entropy. Figure (21) also shows that when mZ is uniform (since

ns~2) hence mZ~
1

ns

~
1

2
, one gets that T

(t)
ZX=0 only if t~tZ

which makes causal lag detection fairly straight forward. However,

Figure 23. Transfer Entropy T (tZ )
ZX versus number of state ns (number of chosen bins) for Cases 1,2 and 3. mX ~mZ~

ns{1

ns

are uniformly

distributed. Analytical values obtained from substituting respective V values in equation (17). Simulated values are acquired using equation (5) on
simulated data of varying sample size S (length of time series) where 1K~1000. Error bars are displaying two standard deviation values above and
two standard deviation below (some bars are very small, it can barely be seen). The aim is primarily to display how choosing ns has to be made
according to length, S, of available time series. For large S the error bar becomes smaller than the width of the curve.
doi:10.1371/journal.pone.0099462.g023
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in Figure (22) the effect of varying mZ can be clearly seen in the

nonzero values T
(t)
ZX=0 when t=tZ. Nevertheless, the value at

t~tZ seems to be fully determined by mX regardless of mZ value.

The mechanism in which mZ effects T
(t)
ZX is sketched in the

appendix.

Therefore one can conclude that when Z is the source (‘causal’

variable) and X is the target (the variable being affected by the

‘causal’ link), the value of the Transfer Entropy T
(t)
ZX at t~tZ is

influenced only by mX but for t=tZ, T
(t)
ZX is determined by both

mX and mZ . We have verified that this is indeed the case even when

nsw2 in this model. This should apply to all variables in the model

and much more generally to any kind of source-target ‘causal’

relationship in this sense. We suspect that this also extends to cases

when there is more than one source and this will be a subject of

future research. Thus for causal lag detection purposes, it is clear

that theoretically Transfer Entropy will attain maximum value at

the exact causal lag. It is also clear that Transfer Entropy at nearby

lags can be nonzero due to this single ‘causal’ relationship. Thus,

on data sets it is strongly recommended to test for relative lag

values.

Transfer Entropy estimations of the Random Transition
model

For a classical histogram estimation of Transfer Entropy on real

data sets [17], one can say that the number of states ns corresponds

to the number of bins chosen for estimation. The estimations of

Transfer Entropy for larger ns requires sufficient sample size

(sufficient length of time series). To illustrate this finite sampling

effect we set the value V to three different values; V~
1

ns

for Case

1, V~
ns{1

ns

for Case 2 and V~
1

2
for Case 3. We plot the

analytical Transfer Entropy T
(tZ )
ZX , and its estimations on simulated

values of varying time series length, S, for all three cases in

Figure (23). The exact ns is known and incorporated in the

estimations.

The observed existence of spurious detection or overestimation

(finite sampling effects) as in Figure (23), is not uncommon and has

been reported in relation to causality measures [15,20,33,34]. This

situation would be even more confusing in situations where ns is

not known (unfortunately, this is more often than not the case).

The significant testing (or lack of it) of Transfer Entropy is

admittedly one of its main criticism. Initially, we have sidestepped

this issue by implementing Transfer Entropy on relatively small ns

to easily get statistically significant estimations. In fact of the main

motivation for the use of the Ising model in the testing of Transfer

Entropy is to exactly sidestep this issue since no binning is required

and one can focus on the issue of what exactly does the Transfer

Entropy measures. However Figure (23) clearly shows that for

larger ns, some form of validation is required to avoid false

directionality conclusion. Surrogates have been suggested as a

form of significant testing for Transfer Entropy [13,20,26,35].

Surrogate data sets are synthetically generated data which should

ideally preserve all properties of the underlying system except the

one being tested [20]. There are many different types of surrogates

to serve different purposes[13,14,16,20,26,35]. The idea is to

break the coupling (causal link) but maintain dynamics in hope

that one can differentiate cause and effect from any other

dynamics.

One way to attain surrogates is by generating a null model (in

the case of the Random Transition model this is simply three

randomly generated time series) and test the values of Transfer

Entropy as in Figure (24). Subtracting the null model from the

values on the Random Transition model is equal to subtracting the

Transfer Entropy values of both directions as one direction is

theoretically zero. This is the idea behind the effective and

corrected Transfer Entropy [15,18]. However this does not quite

solve the problem as the values may still be negative if the sample

size is small. There are many other types of corrections [6,13]

proposed to address this issue involving substraction of the null

model in some various forms. Nevertheless, as we have seen in

Figure (19) of the amended Ising model, only by subtracting the

two directions of Transfer Entropy did we obtain the clear

Figure 24. Transfer Entropy using equation (17) on simulated null model with varying sample size or length of time series, S where
1K~1000. Analytical values are all 0. Error bars in the first figure are displaying two standard deviation values above and two standard deviation
below. For large S the error bar becomes smaller than the width of the curve. In order to use the null model as surrogates, ns still has to be chosen in
accordance to S.
doi:10.1371/journal.pone.0099462.g024
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direction as this cancelled out the underlying collective behaviour.

We suspect that this will work as well for cancelling out other types

of background effects and succeed in revealing directionality.

Discussion

This paper highlights the question of distinguishing interdepen-

dencies induced by collective behaviour and individual (coupled)

interactions, in order to understand the inner workings of complex

systems derived from data sets. These data sets are usually in the

form of time series that seem to behave essentially as stochastic

series. It is hence of great interest to understand measures

proposed to be able to probe ‘causality’ in view of complex

systems. Transfer Entropy has been suggested as a good probe on

the basis of its nonlinearities, exploratory approach and informa-

tion transfer related interpretation.

To investigate the behaviour of Transfer Entropy, we studied

two simplistic models. From results of applying Transfer Entropy

on the Ising model, we proposed that the collective behaviour is

also a type of ‘causality’ in the Wiener-Granger framework but

highlighted that it should be identified differently from individual

interactions by illustrating this issue on an amended Ising model.

The collective behaviour that emerges near criticality may

overshadow the intrinsic directionality in the system as it is not

detected by measures such as covariance (correlation) and Mutual

Information. We showed that by taking into account both

directions of Transfer Entropy on the amended Ising model, a

clear direction can be identified. In addition to that, we verified

that the Transfer Entropy is indeed maximum at the exact causal

lag by utilizing the amended Ising model.

By obtaining the phase transition-like difference measure, we have

shown that the Transfer Entropy is highly dependent on the

effective rate of change (ERC) and therefore likely to be dependent

on the overall activity level given by, say, the temperature in

thermal systems as we demonstrated in the amended Ising model.

Using the Random Transition model we have illustrated that the

ERC is essentially comprised of internal as well as external

influences and this is why Transfer Entropy depicts both. This also

explains why collective behaviour on the Ising model is detected as

type of ‘causality’. In complex systems where there is bound to be

various interactions on top of the emergent collective behaviour,

the situation can be difficult to disentangle and caution is needed.

Moreover we pointed out the danger of spurious values in the

estimation of the Transfer Entropy due to finite statistics which

can be circumvented to a certain extend by a comparison of the

amplitude of the causality measure in both directions and also by

use of null models.

We believe that identifying these influences is important for our

understanding of Transfer Entropy with the aim of utilising its full

potential in uncovering the dynamics of complex systems. The

mechanism of replicating ‘causality’ in the amended Ising model

and the Random Transition model may be used to investigate

these ‘causality’ measures even further. Plans for future investiga-

tions involve indirect ‘causality’, multiple sources and multiple

targets. It would also be interesting to understand these measures

in terms of local and global dynamics in dynamical systems. It is

our hope that these investigations will help establish these

‘causality’ measures as a repertoire of measures for complex

systems.
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