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Abstract: Modern agriculture contributes significantly to greenhouse gas emissions, and agriculture
has become the second biggest source of carbon emissions in China. In this context, it is necessary
for China to study the nexus of agricultural economic growth and carbon emissions. Taking Jilin
province as an example, this paper applied the environmental Kuznets curve (EKC) hypothesis and a
decoupling analysis to examine the relationship between crop production and agricultural carbon
emissions during 2000–2018, and it further provided a decomposition analysis of the changes in
agricultural carbon emissions using the log mean Divisia index (LMDI) method. The results were as
follows: (1) Based on the results of CO2 EKC estimation, an N-shaped EKC was found; in particular,
the upward trend in agricultural carbon emissions has not changed recently. (2) According to the
results of the decoupling analysis, expansive coupling occurred for 9 years, which was followed
by weak decoupling for 5 years, and strong decoupling and strong coupling occurred for 2 years
each. There was no stable evolutionary path from coupling to decoupling, and this has remained
true recently. (3) We used the LMDI method to decompose the driving factors of agricultural carbon
emissions into four factors: the agricultural carbon emission intensity effect, structure effect, economic
effect, and labor force effect. From a policymaking perspective, we integrated the results of both
the EKC and the decoupling analysis and conducted a detailed decomposition analysis, focusing
on several key time points. Agricultural economic growth was found to have played a significant
role on many occasions in the increase in agricultural carbon emissions, while agricultural carbon
emission intensity was important to the decline in agricultural carbon emissions. Specifically, the
four factors’ driving direction in the context of agricultural carbon emissions was not stable. We also
found that the change in agricultural carbon emissions was affected more by economic policy than
by environmental policy. Finally, we put forward policy suggestions for low-carbon agricultural
development in Jilin province.

Keywords: crop production; agricultural carbon emissions; EKC; decoupling; LMDI

1. Introduction

Modern agricultural activities play an important role in greenhouse gas emissions
due to their high material input, energy consumption, and pollutant discharge levels [1,2].
Globally, ensuring food security and coping with climate change caused by greenhouse gas
emissions are the most common challenges today. In the past two decades, greenhouse gas
emissions from agricultural activities have accounted for 10–14% of total global greenhouse
gas emissions (in CO2 equivalents) [3]. According to the 2019 Intergovernmental Panel
on Climate Change (IPCC) special report on climate change and land [4], greenhouse gas
emissions derived from agricultural activities reached 108–191 hundred million tons of
CO2 equivalents during 2007–2016, and they accounted for 21–37% of global greenhouse
gas emissions. Being an agriculture-centered country, China’s sown area has decreased
from 117 million hectares to 116 million hectares over the last four decades, while the grain
yield has increased from 321 million tons to 664 million tons, which is an increase of 107%.
Along with the grain yield per unit area increasing, the amount of chemical fertilizer used
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increased from 12.69 million tons in 1980 to 52.04 million tons in 2019, and agriculture was
the second biggest source of carbon emissions [5]. In this regard, it is necessary for China
to study the nexus of agricultural economic growth and carbon emissions.

Considering the ever-increasing speed in crop production, the relationship between
agricultural activities and environmental degradation has been intensively studied in re-
cent years, focusing on such areas as the environmental stress on the ecosystem caused
by highly specialized crop production [6] and excessive fertilizer application due to the
increasing numbers of part-time and aging farmers involved in the process of rural trans-
formation [7–10]. Meanwhile, different methods have been applied in agri-environmental
impact assessment. As is well known, the environmental Kuznets curve (EKC) describes an
inverted-U relationship between environmental degradation and income [11]. Up to now, a
large body of theoretical and empirical literature has dealt with EKC studies [12–15]. EKC
studies have tested most of the primary pollutants and relevant indicators, including SO2,
NOx, carbon emissions, ecological footprint, etc. [16–18], and both emissions per capita
and total emissions [19]; furthermore, these studies have been developed from the earliest
simple quadratic functions of the levels of income to multivariate and multi-mediation
models, intending to indicate underlying factors, such as globalization, trade openness,
human capital, etc. [20–23]. In particular, many studies have tested the existence of the
EKC hypothesis by considering CO2 emissions with time-series or panel data; some results
support the existence of an inverted U-shape [24,25], some support an N-shape [19], some
support an inverted N-shape [21], and some support a linear shape without a turning
point [26,27].

In scientific discussions on economic growth versus environmental degradation, EKC
deals with the concept of decoupling [28,29]. The Organization for Economic Co-operation
and Development (OECD) has described the synchronous changes taking place within
economic growth and pollution emissions as different degrees of decoupling/coupling
states [30], and the idea of decoupling environmental bads from economic goods has gar-
nered policymakers’ attention, with many scholars assessing the progress in the environ-
mental-degradation–economic-growth relationship. In addition to the decoupling index
proposed by the OECD [30], Tapio’s elasticity coefficient has commonly been used and ex-
tended as a decoupling index that overcomes the shortcoming of selecting a base period [31].
In terms of empirical studies dealing with decoupling analysis in China, Tian et al. [32]
used Tapio’s model to analyze the relationship between agricultural activities and carbon
emissions at the national level, and we found that weak decoupling and strong decoupling
occurred most during the years 2001–2010, while Yang et al. [33] and Chen et al. [34]
conducted further in-depth case studies of China’s main grain-producing areas.

In policy terms, decomposition analysis is increasingly used in environmental policy-
making, while the log mean Divisia index (LMDI) method is recommended for general use
in the study of CO2 emission changes as it meets all constraints, such as complete decompo-
sition, consistency in aggregation, and satisfying the factor reversal test [35–39]. In China,
many scholars have used the LMDI method to analyze the drivers of carbon emissions
related to crop production on a national or regional basis. For instance, Li et al. [40] pointed
out that agricultural economic growth in China had a strong driving effect on carbon
emissions, while agricultural production efficiency, agricultural structure, and labor force
had certain inhibiting effects on carbon emissions during 1993–2008; Li et al. [2] quantified
the contributions of factors influencing agricultural carbon emissions in China from 1991
to 2015 and found that the driving factors varied significantly by region. In fact, in terms of
empirical findings, Wei et al. [41] indicated that the state of the agricultural economy was
the decisive factor in the increase in crop production carbon footprint, while agricultural
investment, urbanization, and technological progress were important factors for reducing
the crop production carbon footprint in Guangdong province. Zhao et al. [42] confirmed
that the agricultural economic level and industrial structure were the main drivers promot-
ing the increase in agricultural carbon emissions, while agricultural production efficiency
and agricultural labor force had inhibitory effects on the increase in carbon emissions in
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Hunan province. As for Heilongjiang province, Chen et al. [34] showed that agricultural
output value was the key driving force of agricultural carbon emission increases, while
agricultural production efficiency was the primary driving force for agricultural carbon
emission reduction.

The Chinese government has pledged to peak carbon emissions by 2030 and achieve
carbon neutrality by 2060. In principle, measures to reduce carbon emissions in man-
ufacturing include technological innovation, environmental regulation, and the market
mechanism of carbon trading; however, this is more difficult for the agricultural sector due
to its multiple carbon sources, strong randomness and dispersed process, and the limited
effects of its market mechanisms. Li et al. [2] indicated that northeast China was the largest
contributor to agricultural carbon emissions in the country, and economic factors were the
main driving forces of the increase in carbon emissions. Jilin province is a major agricul-
tural province, whose corn yield per unit area ranked first in China for many consecutive
years, and it has made great contributions to ensuring national food security. Nevertheless,
the agri-environment has been deteriorating daily, and a question in the context of this
high yield arises as to the relationship between crop production and agricultural carbon
emissions, which seriously affects sustainable agricultural development [43,44]. This paper
takes Jilin province as the study area and tests the relationship between crop production
and agricultural carbon emissions using EKC and decoupling analysis; then, it decomposes
the driving factors of agricultural carbon emissions during 2000–2018, and finally, it puts
forward suggestions for agricultural carbon emission mitigation.

The structure of this article is organized as follows. Section 2 explains the methodology
and data. Section 3 presents the empirical results, using EKC and decoupling analysis to
examine the relationship between crop production and agricultural carbon emissions, and
then further decomposes the influencing factors of agricultural carbon emissions. Section 4
contains the discussion and policy implications. Section 5 concludes the study.

2. Methods and Data
2.1. CO2 EKC Model

Based on the analysis framework of EKC proposed by Friedl and Getzner [19],
Zhang et al. [45], and Lv et al. [46], considering the simulation accuracy of the CO2 EKC
model, this paper first describes the general functional form as a cubic polynomial and
builds a cubic curve equation on the basis of two indicators: crop production (expressed
as agricultural output value) and agricultural carbon emissions. In view of the target of
carbon emission reduction in agriculture, the total values of agricultural carbon emissions
and agricultural output value are chosen instead of the per capita index. Then, the existence
of a cubic curve-fitting equation is examined according to stationarity and cointegration
tests; if the cubic term is not statistically significant, it will be eliminated. Subsequently, the
form of the quadratic polynomial will be re-estimated, etc. The CO2 EKC may be U-shaped,
inverted-U-shaped, N-shaped, inverted-N-shaped, or another shape, depending on the
coefficients of the explanatory variable, and the CO2 EKC equation is quantified as follows:

Ct = β0 + β1Gt + β2G2
t + β3G3

t + εt (1)

where Ct denotes the agricultural carbon emissions in year t; Gt represents the agricultural
output value in year t; βi is the coefficient of the explanatory variable, and εt illustrates the
random error term. According to Ekins [47] and Friedl and Getzner [19], if β1 > 0, β2 < 0,
and β3 > 0, an N-shaped relationship between crop production and agricultural carbon
emissions can arise; if β1 > 0, β2 < 0, and β3 = 0, the inverted-U EKC hypothesis stands,
and so on.
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2.2. Decoupling Index

In this paper, the decoupling index (DI) is constructed following Tapio’s elasticity
coefficient [31], and it is computed using the following expression:

DIt =
∆C
∆G

=
(Ct − C0)/C0

(Gt − G0)/G0
(2)

where DIt is defined to explore the relationship between crop production and agricultural
carbon emissions at two time points, t and 0 represent the last period and the base period,
respectively, and the time interval is one year in this study; Ct and C0 indicate agricultural
carbon emissions in the last period and the base period, respectively; ∆C represents the
change rate in agricultural carbon emissions from the last period to the base period; Gt and
G0 indicate the agricultural output value in the last period and the base period, respectively;
and ∆G represents the change rate in agricultural output value from the last period to the
base period.

According to the different decoupling elasticity values, six degrees of decoupling/
coupling states were divided, including recessive decoupling, weak decoupling, strong
decoupling, expansive coupling, weak coupling, and strong coupling. The specific grading
standards and decoupling elasticity values are shown in Table 1.

Table 1. Degrees of decoupling agricultural carbon emissions from crop production.

Decoupling Degree
Change Rate in

Agricultural Carbon
Emissions (∆C)

Change Rate in
Agricultural Output

Value (∆G)
DI Connotation

Expansive coupling >0 >0 DI > 1
Agricultural economic growth
occurs at the cost of accelerated
agricultural carbon emissions.

Strong coupling >0 <0 DI < 0

The worst state when the
agricultural economy is in

recession, while agricultural
carbon emissions increase.

Weak coupling <0 <0 1 > DI > 0
Agricultural carbon emission
reduction rate is slower than

agricultural economic recession.

Weak decoupling >0 >0 1 > DI > 0
Agricultural carbon emission

growth rate is slower than
agricultural economic growth rate.

Strong decoupling <0 >0 DI < 0

The ideal state in which
agricultural economy grows, while

agricultural carbon emissions
decrease.

Recessive decoupling <0 <0 DI > 1
Agricultural carbon emission
reduction rate is faster than

agricultural economic recession.

2.3. LMDI Method

Based on the research of Li et al. [2], Wu and Zhang [48], and Li et al. [22], an extended
Kaya identity for agricultural carbon emissions in Jilin province can be expressed as
Equation (3):

C =
C
G

× G
TG

× TG
AL

× AL = CI × SI × EI × AL (3)

where C represents agricultural emissions; G represents the agricultural output value;
TG represents the gross output value of agriculture, forestry, animal husbandry, and
fishery; AL represents the agricultural labor force scale; CI is defined as agricultural carbon
emission intensity and is represented as the agricultural carbon emissions per unit of
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agricultural output value. This last is also an agricultural production efficiency factor—a
decline in CI means agricultural production efficiency increases in a specific region, which
directly or indirectly reveals a change in the relationship between crop production and
agricultural carbon emissions; SI refers to the agricultural structure, which reflects the
share of the agricultural output value in the gross agricultural output value; and EI reflects
the agricultural economic development level, considering the agricultural labor force.
Table 2 shows the meanings of all the symbols in Equation (3).

Table 2. Definition of variables in the LMDI method.

Variable Symbol Definition Unit

Agricultural carbon emissions C Carbon emissions derived from crop production tons
Agricultural output value G Value added of agriculture 100 million yuan

Gross agricultural output value TG Total value added of agriculture, forestry, animal
husbandry, and fishery 100 million yuan

Agricultural carbon emission intensity CI Carbon emissions per unit of agricultural
output value tons/yuan

Agricultural structure effect SI The share of the agricultural output value in the
gross agricultural output value %

Agricultural labor force AL Rural population engaged in agricultural
activities person

Agricultural economic effect EI Gross agricultural output value divided by
agricultural labor force yuan per capita

We used the LMDI method to decompose the drivers of agricultural carbon emissions
in Jilin province into four factors: agricultural carbon emission intensity effect (∆CI),
agricultural structure effect (∆SI), agricultural economic effect (∆EI), and agricultural
labor force effect (∆AL). ∆CI reflects the change in agricultural carbon emissions intensity,
∆SI reflects the change in the share of the agricultural output value out of the gross
agricultural output value, ∆EI reflects the change in agricultural economic growth caused
by the agricultural labor force, and ∆AL reflects the change in the scale of the agricultural
labor force.

Based on plus decomposition, the total effects of agricultural CO2 emissions are
expressed as Equation (4):

∆Ctot = Ct − C0 = ∆CI + ∆SI + ∆EI + ∆AL. (4)

Each effect in Equation (4) is expressed as follows:

∆CI = ∑
Ct − C0

ln Ct − ln C0
· ln (

CIt

CI0
) (5)

∆SI = ∑
Ct − C0

ln Ct − ln C0
· ln (

SIt

SI0
) (6)

∆EI = ∑
Ct − C0

ln Ct − ln C0
· ln (

EIt

EI0
) (7)

∆AL = ∑
Ct − C0

ln Ct − ln C0
·ln( ALt

AL0
). (8)

2.4. Data Sources and Processing

In this study, we used time series data from 2000 to 2018 to model the EKC, build a
decoupling index, and analyze influence factors using the LMDI method.

The data for quantifying agricultural carbon emissions and the following decomposi-
tion analysis were collected from the Jilin Province Statistical Yearbook (2001–2019) and
the China Rural Statistical Yearbook (2001–2019). Both the agricultural output value and
the gross agricultural output value were deflated to represent a constant 2000 price.
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The formula for calculating agricultural carbon emissions is as follows:

C =
6

∑
i=1

Ei × fi (9)

where C denotes agricultural carbon emissions derived from crop production activities; i
represents the type of agricultural carbon sources, including 6 types of agricultural carbon
sources (chemical fertilizers, pesticides, plastic films, agricultural machinery, agricultural
plowing, and agricultural irrigation); Ei represents the amount of agricultural carbon source
i; fi is the i-type carbon emission coefficient of agricultural carbon sources (derived from
Li et al. [2], Tian et al. [32], and Guo et al. [39]), and C, CH4, and NO2 are converted into
CO2 equivalents with reference to the IPCC [49].

Table 3 reports the descriptive statistical results of the main variables in this paper.

Table 3. Summary statistics of main variables.

Variable Observations Mean Standard
Deviation Minimum Maximum

Agricultural carbon emissions (104 tons) 19 488.93 119.02 308.96 683.04
Agricultural output value (106 yuan) 19 61,499.98 18,592.87 32,027.00 92,833.79

Gross agriculture output value (106 yuan) 19 12,000.00 33,873.04 60,940.00 17,100.00
Agricultural labor force (104 persons) 19 516.13 24.21 478.24 573.90

Agricultural economic effect (yuan per capita) 19 23,213.92 6665.63 11,791.80 35,696.27
Agricultural carbon emission intensity

(tons/104 yuan) 19 0.82 0.16 0.65 1.15

Agricultural structure (%) 19 0.51 0.02 0.48 0.54

3. Results
3.1. Estimating a CO2 EKC

Based on time series data from 2000 to 2018, we estimated the CO2 emissions derived
from crop production in Jilin province (Figure 1). Agricultural CO2 emissions reached
3.09 million tons in the first year (2000); after a transitory upward trend, there was a slight
decline in 2003, where the annual decline rate slid to −15.3% owing to the fact that farmers’
willingness to grow food hit a low. The Chinese issued a series of policies of agricultural
tax reduction and exemption in 2004, and then, the farmers recovered their confidence in
agriculture and increased inputs in crop production, leading to agricultural CO2 emissions
increasing with a growth rate of 36.2% and reaching a phase peak of 5.91 million tons in 2007.
Subsequently, there was a clear break in the increase in agricultural CO2 emissions due to
the global financial crisis in 2008, which then plunged to a new low (annual decline rate of
−31.9%), which was even lower than in 2004. Under the stimulus of beneficial farming
policies in 2009, agricultural CO2 emissions climbed steadily and reached 6.83 million tons
in 2018. The Chinese government put forward a policy of building a resource-conserving
and environmentally friendly society in 2012, under its influence, the growth rates of
agricultural CO2 emissions declined in a fluctuating pattern during 2012–2018, while
agricultural CO2 emissions still showed a rising trend.

Figure 2 shows a scatter plot of agricultural CO2 emissions and agricultural output
value at a constant 2000-level price in Jilin province. An N-shaped relationship between
crop production and agricultural carbon emissions can be seen. There were three obvious
turning points in agricultural CO2 emission levels during 2000–2018 in Jilin province,
including a slight decline in 2003 (3.13 million tons of agricultural CO2 emissions and
425.27 hundred million yuan of value added in agriculture), one phase peak in 2007
(5.91 million tons of agricultural CO2 emissions and 516.51 hundred million yuan of
value added in agriculture), and then a low in 2008 (4.02 million tons of agricultural CO2
emissions and 594.51 hundred million yuan of value added in agriculture). This pattern
can be explained by the agricultural policies and macroeconomic factors. Agricultural CO2
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emissions bottomed out in 2003 and rose after a series of agricultural policies issued in
2004, until being pushed back down again due to the global financial crisis in 2008; they
increased sharply thereafter from 2009 to 2018, which was accompanied by the improving
agricultural economy. From Figure 2 alone, we cannot infer the future relationship between
agricultural CO2 emissions and agricultural economic growth in Jilin province, that is,
there is no indication of when another turning point will occur in the upcoming period.
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Importantly, the scatter plot presents only the correlation between crop production and
agricultural CO2 emissions during 2000–2018—a causal relationship cannot be identified
without undertaking a statistical test, so an additional theoretical analysis is required.
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The next analysis framework in this study, following Friedl and Getzner [19] and
Zhang et al. [45], was as follows: (1) testing for stationarity of both dependent and inde-
pendent variables in the time series; (2) examining whether both variables (agricultural
CO2 emissions and agricultural output value) are cointegrated; (3) further testing the most
suitable functional form for depicting the development of agricultural CO2 emissions in
Jilin province.

Firstly, we conducted a unit root test. In order to overcome the defects of the small
samples and prevent sequence spurious regression, we applied the ADF test to examine the
stationarity of the dependent variable (CO2 emissions, expressed as C) and the independent
variable (agricultural output value, expressed as G) for 2000–2018. Table 4 shows the results
of the unit root test, showing that both variables chosen in this paper have a significance
level of 5% and are stationary series, which can be further tested to determine the long-term
equilibrium relationship.

Table 4. Unit root test results.

Variable
Test Type ADF Test Critical Values at Significance Level

p-Value Test Results
(c, t, q) Statistics 1% 5% 10%

lnC (c,t,3) −3.833 −4.728 −3.760 −3.325 0.044 Stationary
lnG (c,t,0) −3.879 −4.572 −3.691 −3.287 0.036 Stationary

Note: In the test type (c, t, q), c, t, and q represent the constant, time trend, and lag order, respectively. The lag order is obtained based on
the SIC criterion.

Secondly, as a preliminary step for testing the EKC hypothesis, we conducted a
Granger causality test to examine the correlation between the selected variables. Table 5
shows the results of the Granger causality test; the agricultural output value is the Granger
cause of agricultural CO2 emissions at a significance level of 1% (not vice versa).

Table 5. Granger causality test results.

Null Hypothesis F Statistics p-Value Test Results

lnG is not the Granger reason for lnC 14.655 0.003 Reject
lnC is not the Granger reason for lnG 0.835 0.550 Do not reject

Finally, we constructed an empirical EKC model for Jilin’s agricultural CO2 emissions.
Based on the above test results, the regression model of agricultural CO2 emissions and
agricultural output value adopted the cubic functional form shown in Formula (10) and
Table 6.

lnC = −501.44 + 245.34lnG − 38.87(lnG)2 + 2.05(lnG)3 (10)

Table 6. Estimation of agricultural CO2 EKC for Jilin province.

Explanatory Variables Coefficient of Explanatory Variables

Constant −501.44 *
lnG 245.34 *

(lnG)2 −38.87 *
(lnG)3 2.05 *

Adjusted R2 0.71
F statistic 60.99

Note: * is at the significance level of 10%.

According to the analysis framework of CO2 EKC (in Section 2.1), along with the
research of Ekins [47] and Friedl and Getzner [19] and the statistical quality of the estimated
CO2 EKC (Table 6), we found that the coefficient of the explanatory variable lnG, β1, is
245.34 > 0; the coefficient of the explanatory variable (lnG)2, β2, is –38.87 < 0; and the
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coefficient of the explanatory variable (lnG)3, β3, is 2.05 > 0, which validates the cubic
functional form. In addition, the statistical quality of the estimation and the scatter plot
(Figure 2) confirm one another, and an N-shaped relationship between crop production
and agricultural carbon emissions results—that is, increasing agricultural CO2 emissions in
the beginning, a decline in agricultural CO2 emissions in the middle, and an upward trend
in agricultural CO2 emissions at the end. In this model, no possible turning point toward
a decline in agricultural CO2 emissions appears after 2010, which shows the challenges
faced by Jilin province to reduce agricultural carbon emissions.

3.2. Decoupling Analysis

As regards the criteria for decoupling/coupling degrees (Table 1), the results of the
decoupling of agricultural carbon emissions from crop production are shown in Table 7.

Table 7. Decoupling states in agricultural carbon emissions in Jilin province during 2000–2018.

Year
Change Rate in

Agricultural Carbon
Emissions (∆C)

Change Rate in
Agricultural

Output Value (∆G)
DI Decoupling States

2000–2001 0.103 0.116 0.886 Weak decoupling
2001–2002 0.086 0.133 0.643 Weak decoupling
2002–2003 −0.153 0.050 −3.075 Strong decoupling
2003–2004 0.362 0.084 4.300 Expansive coupling
2004–2005 0.241 0.062 3.909 Expansive coupling
2005–2006 0.080 0.077 1.040 Expansive coupling
2006–2007 0.034 −0.020 −1.664 Strong coupling
2007–2008 −0.319 0.152 −2.105 Strong decoupling
2008–2009 0.003 −0.019 −0.155 Strong coupling
2009–2010 0.070 0.063 1.109 Expansive coupling
2010–2011 0.034 0.073 0.473 Weak decoupling
2011–2012 0.074 0.046 1.597 Expansive coupling
2012–2013 0.125 0.060 2.078 Expansive coupling
2013–2014 0.024 0.066 0.360 Weak decoupling
2014–2015 0.102 0.047 2.143 Expansive coupling
2015–2016 0.062 0.026 2.408 Expansive coupling
2016–2017 0.017 0.070 0.247 Weak decoupling
2017–2018 0.039 0.028 1.432 Expansive coupling

There were four types of decoupling/coupling states between crop production and
agricultural CO2 emissions during 2000–2018: expansive coupling state occurred for 9 years,
followed by a weak decoupling state, which occurred for 5 years, and strong decoupling
and strong coupling occurred for 2 years each.

Generally, strong decoupling means a positive change rate in agricultural output value,
a negative change rate in agricultural CO2 emissions, and negative DI. It indicates that the
development model of high inputs and high emissions in exchange for rapid agricultural
economic growth is gradually shifting to a development model of low inputs and low
emissions, and that the pressure on the rural ecological environment has been alleviated.
Table 7 shows that the trend of strong decoupling only occurred in 2003 and 2008, wherein
agricultural CO2 emissions decreased by −15.3% and −31.9%, respectively, while the
agricultural output value increased by 5% and 15.2%, respectively. To some extent, special
events contributed to the strong decoupling taking place at these two time points. For
instance, farmers’ willingness to grow food had been in decline since 1998 and hit a low in
2003, which decreased inputs into agricultural production and agricultural CO2 emissions,
resulting in the strong decoupling state in 2003; additionally, in 2008, a similar decoupling
state appeared in Jilin province, which was affected by the global financial crisis.

Strong coupling indicates the worst situation, with a negative change rate for agri-
cultural output value, a positive change rate for agricultural CO2 emissions, and negative
DI. In terms of the occurrence of strong coupling in Jilin province from 2000 to 2018, the



Int. J. Environ. Res. Public Health 2021, 18, 8219 10 of 18

agricultural output value declined severely due to severe drought and the aftermath of the
global financial crisis in 2007 and 2009, respectively, while change rates in agricultural CO2
emissions were positive, which gave rise to strong coupling states in these two years.

Weak decoupling indicates a state with positive change rates in both agricultural
output value and carbon emissions, and a value of DI ranging from 0 to 1. Table 7 shows
that weak decoupling occurred for 5 years, although not consistently in the time series, as
it occurred in the years 2001, 2002, 2011, 2014, and 2017. This indicates that agricultural
carbon emission growth is somewhat restrained by the execution of various existing policies
and measures; however, the absolute carbon emission reduction is smaller in this period
than the agricultural economic growth, so agricultural carbon emissions are still rising, and
carbon emission reduction measures should be further implemented.

According to the criteria of the expansive coupling state (Table 1), the change rates of
both agricultural output value and agricultural carbon emissions in this period are positive,
and thus, agricultural carbon emissions rise rapidly. As the most common outcome for Jilin
province, the expansive coupling state accounted for 50% of the whole study period. For
example, in 2018, the change rate of agricultural carbon emissions was 0.039, while that
of agricultural output value was 0.028, and the DI was 1.432, which indicates agricultural
economic growth occurred at the cost of accelerated agricultural carbon emissions in 2018.

Figures 3 and 4 show the variation in the values of decoupling elasticity. The DI
clearly presents a fluctuating state, along with the different variation characteristics of
both agricultural carbon emissions and agricultural output value. Notably, decoupling
occurred only at specific time points, i.e., before the implementation of policies to strengthen
agriculture and benefit farmers in 2003, or the global financial crisis in 2008. During 2009–
2018, an expansive coupling state appeared for 6 years, inlaid and alternating with weak
decoupling states.
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In light of the above, there was no stable decoupling between crop production and
agricultural CO2 emissions in Jilin province during 2000–2018, and it is common that carbon
emissions increase when the agricultural economic value grows. Expansive coupling
has appeared frequently in recent years, which indicates that the target of decoupling
agricultural CO2 emissions from crop production remains elusive in the coming years.

3.3. Results of LMDI Decomposition

According to the definition of CI in this paper, agricultural carbon emission intensity
is calculated, and Figure 5 shows changes in agricultural carbon emission intensity in Jilin
province during 2000–2018.
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Based on the LMDI model and Equations (4)–(8), the decomposition results of carbon
emission changes in agriculture in Jilin during 2000–2018 are illustrated in Table 8, and
Figure 6 shows the contribution of four factors to agricultural carbon emissions. The
total change in agricultural carbon emissions was 3.74 million tons between 2000 and
2018. Generally, the positive driving factors of agricultural carbon emissions included
agricultural economic growth and agricultural structure, with contributions of 5.14 million
tons and 0.35 million tons, respectively; agricultural economic growth played an especially
significant role in the increase in agricultural carbon emissions in Jilin province, with a
contribution of 93.56%. These decomposition results are consistent with those of Li et al. [40]
and Guo et al. [39]. Agricultural carbon emission intensity and agricultural labor force were
negative driving factors of agricultural carbon emissions, with cumulative contributions
of –1.18 million tons and –0.58 million tons, respectively; notably, agricultural carbon
emission intensity had the most important inhibitory impact on the change in agricultural
carbon emissions, with a contribution rate of 66.99%, and agricultural labor force was also
a negative factor that cannot be ignored, with a contribution rate of 33.01%.

From the perspective of policymaking, we focused on several key time points in our
detailed decomposition analysis aimed at reducing agricultural carbon emissions. Accord-
ing to the above results of the CO2 EKC model and decoupling analysis, turning points
arose in the years 2003 and 2008, with consequential downward trends in agricultural car-
bon emissions, and strong decoupling states appeared; meanwhile, the only two negative
decomposition effects (−56.6 million tons and −188.7 million tons, respectively) appeared.
In 2003, except for the agricultural economic effect, which was a positive driving factor of
agricultural carbon emissions, agricultural carbon emission intensity, agricultural structure,
and agricultural labor force were all negative driving factors, especially agricultural carbon
emission intensity, the contribution rate of which was 89.36%, reflecting its significant
inhibitory effect.

Table 8. Decomposition results of agriculture carbon emission changes in Jilin province (104 t).

Year
Agricultural Carbon

Emission Intensity Effect
(∆CI)

Agricultural
Structure Effect

(∆SI)

Agricultural
Economic Effect

(∆EI)

Agricultural
Labor Force Effect

(∆AL)

Total Effects
(∆Ctot)

2000–2001 −3.89 −9.81 47.04 −1.57 31.78
2001–2002 −15.22 0.59 47.45 −3.61 29.21
2002–2003 −73.17 −4.26 25.27 −4.45 −56.62
2003–2004 83.81 1.79 32.18 −4.26 113.51
2004–2005 74.25 −24.24 47.55 5.15 102.71
2005–2006 1.58 32.16 11.26 −2.53 42.47
2006–2007 32.00 −19.04 −8.51 15.60 19.35
2007–2008 −258.01 22.39 68.73 −21.82 −188.72
2008–2009 9.00 −28.54 −0.01 20.75 1.20
2009–2010 2.69 10.74 8.36 6.42 28.20
2010−2011 −15.98 8.74 −17.06 39.13 14.83
2011–2012 12.03 −5.59 40.30 −13.84 32.89
2012–2013 30.17 12.08 22.75 −5.14 59.86
2013–2014 −21.97 12.66 39.97 −17.92 12.74
2014–2015 29.23 2.44 33.60 −9.20 56.07
2015–2016 21.65 −3.73 40.45 −20.88 37.50
2016–2017 −32.88 23.33 42.38 −21.65 11.19
2017–2018 7.71 3.68 32.72 −18.19 25.92
2000–2018 −117.72 35.40 514.42 −58.01 374.09
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In 2008, affected by the global financial crisis, on the one hand, agricultural product
prices dramatically declined, and farmers’ engagement in agriculture and their inputs
into crop production thus greatly decreased. This led to agricultural carbon emission
intensity and agricultural labor force both reaching a low, which resulted in agricultural
carbon emissions dropping to −258 million tons and −21.8 million tons, respectively, and
the contribution rate of agricultural carbon emission intensity reached 92.2%. On the
other hand, considering the sharp decrease in agricultural labor force, the agricultural
economic effect—namely, the gross agricultural output value divided by agricultural labor
force—reached a peak, although it was far less strong than that of agricultural carbon
emission intensity.

Another two important points appeared in 2007 and 2009, with a clear peak in 2007 in
the N-shaped CO2 EKC, and the beginning of the increase in agricultural carbon emissions
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after the global financial crisis in 2009; these were the only strong coupling states. Further
decomposition analysis indicated that both agricultural carbon emission intensity and
agricultural labor force acted as positive driving factors of agricultural carbon emissions,
while agricultural structure and agricultural economic effect (a decrease in crop production
due to drought or financial crisis) acted as inhibitory driving factors. Contrary to the de-
coupling states, the increases in both the population working in agriculture and the inputs
into agricultural production counteracted the inhibitory effects of agricultural structure
and the agricultural economic factor, which brought about the increase in agricultural
carbon emissions.

Apart from the above four specific time points, most of the study period showed
either an upward trend in agricultural carbon emissions, as seen from the N-shaped EKC,
or expansive coupling alternating with weak decoupling according to the results of the
decoupling analysis, with various decompositions and combinations. In terms of the varied
trends after 2012 when industrial overcapacity was exacerbated, the agricultural economic
effect still acted as the major driving factor of increase in agricultural carbon emissions;
agricultural structure acted mostly as a positive driving factor; the agricultural labor force
became an inhibitory factor, reducing agricultural carbon emissions with the promulgation
of agricultural policy and market-oriented reforms in the process of rural transformation;
the effect of agricultural carbon emission intensity presented no stable inhibitory trend,
and it is important for Jilin province to further pursue its key role in agricultural carbon
emission reductions.

4. Discussion and Policy Implications

(1) From a policy perspective, according to the requirements for a low-carbon economy,
when the economy grows, carbon emissions should increase with either a steady or a
negative growth trend. However, it is difficult to achieve this goal in the process of
transformation in China. What we can do is to guide the transformation to a low-carbon
economy in order to achieve a growth rate of carbon emission intensity that is relatively
slower than the economic growth rate. Therefore, it is necessary to evaluate the economy–
environment relationship with scientific methods and further conduct decomposition
analyses of the influencing factors so as to provide policy suggestions.

Both the EKC hypothesis and decoupling analysis describe the dynamic relationship
between economic development and environmental pollution, which have both internal
connections and obvious differences. The EKC hypothesis expounds the nonlinear re-
lationship of environmental pollution with the level of economic development, while a
decoupling analysis reveals whether the relationship between economic development
and environmental pressure changes synchronously. The EKC describes the long-term
relationship between CO2 emissions and economic growth, but it does not capture the
short-term change in a particular year or phase. In contrast, a decoupling analysis measures
the extent to which CO2 emissions decouple from economic growth in the short term, and
its indicators provide real-time data but do not identify long-term trends—i.e., the elastic
index of decoupling describes the change rates of economic growth and pollution emissions
but ignores the absolute changes in both [50]. In light of the work of Vehmas et al. [28], not
only the shape of the EKC but also the decoupling results can stem from economic growth,
environmental policy, or some other factors. In fact, the agricultural economic development
level, industrial structure, rural labor force scale, and crop production inputs (including
pesticides, chemical fertilizer, etc.) all have an influence on agricultural carbon emissions,
but the EKC hypothesis and decoupling analysis only explain the nonlinear relationship
between economic development and environmental pollution, and the effects of economic
growth on environmental pollution cannot be expounded by means of the above methods.
With this in mind, the latter method is the most important for policymaking.

In view of this, this paper first employed the EKC hypothesis and decoupling analysis
to examine the relationship between agricultural carbon emissions and crop production in
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Jilin province, a major grain-producing area, and then analyzed the influencing factors via
LMDI decomposition, so as to provide a scientific basis for subsequent policymaking.

(2) The major findings in this paper indicate some special relationships among the
results of the CO2 EKC estimation, the decoupling analysis, and the decomposition analysis
for Jilin province. Firstly, in terms of time points, strong decoupling coincided with
declines in agricultural carbon emissions and the negative total decomposition effects
of LMDI in 2003 and 2008 (as shown in Figure 2, Tables 7 and 8); additionally, strong
coupling was partially connected with the peak in the increase in agricultural carbon
emissions (such as in 2007, as shown in Figure 2 and Table 7). Secondly, on the whole,
the agricultural economic effect played a significant role in the increase in agricultural
carbon emissions in Jilin province, while agricultural carbon emission intensity had the
most important inhibitory impact on agricultural carbon emissions (Figure 6), similarly
to existing conclusions [32,39]. We also found that the positive or negative effects (or
driving directions) of the four factors in agricultural carbon emissions were not stable, and
macroeconomic changes and the implementation of related policies can be considered to
have had an impact on agricultural carbon emissions in Jilin province during 2000–2018.
Third, in terms of the policy effect, we found that agricultural carbon emissions were
affected more by economic than environmental policy, based on integrating various time
points at which economic policies or environmental policies were issued, such as the years
2004, 2008, 2012, and so on (Figures 1 and 7). The empirical results show that agricultural
policies or macroeconomic changes affected farmers’ willingness to grow food and increase
production inputs, thus having a direct or indirect influence on the change in agricultural
carbon emissions. Therefore, policy implications can be inferred from both agricultural
and environmental policy.

(3) In terms of policy implications, there is no doubt that Jilin province will pursue
agricultural economic growth, given that it is one of China’s main grain-producing areas;
however, it is limited by the pattern of the agricultural economic growth. The existing
agricultural carbon emission reduction policies have not been effectively implemented in
practice, and the efficiency of agricultural carbon emission reduction needs to be improved.
On the one hand, the rapid improvement in rural living standards is an indisputable fact,
which will have a reducing effect on total agricultural carbon emissions. On the other hand,
agricultural carbon emission intensity, agricultural technology progress, and urbanization
each play a role in reducing agricultural carbon emissions by developing energy-saving
technology, improving agricultural productivity, adjusting the structure of urban and rural
regions, etc.; however, at present, China’s agricultural low-carbon technology is in the
initial stage, and control over the overall change in agricultural carbon emissions needs to
be further improved.

We should actively promote clean energy in rural areas and improve low-carbon agri-
cultural technologies. Clean energy includes both natural and biomass energy. Advanced
equipment and technologies producing low-emission clean energy should be actively
introduced, and farmers should be encouraged to use clean energy to replace traditional
high-emission energy.

We should increase the investment in science and technology and improve the effi-
ciency of agricultural production through agricultural technology. High-yield and efficient
agricultural production technology will provide important support for the development of
modern agriculture, as well as being a reliable basic means to achieve the goal of low-carbon
agriculture. Government departments should provide special funds for the development of
low-carbon agricultural technologies and improve the approach to technology research [48].

We should establish a set of low-carbon agricultural ecological compensation tech-
nology systems, increase compensation intensity, and encourage farmers to participate
actively in fallow and no-till, so as to reduce carbon sources and increase carbon sinks.

5. Conclusions

The following are the conclusions of the paper:
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(1) Based on the results of the CO2 EKC estimation, a long-term N-shaped EKC was found,
which reflects that Jilin province is facing a dilemma between agricultural economic
growth and agricultural carbon emissions, and the upward trend in agricultural
carbon emissions has not changed with the development of the agricultural economy.

(2) In the short term, according to the results of the decoupling analysis, weak decoupling,
strong decoupling, expansive coupling, and strong coupling occurred in alteration.
Among them, expansive coupling occurred for 9 years in total, followed by weak
decoupling, which occurred for 5 years, and then strong decoupling and strong
coupling occurred for 2 years each. Strong decoupling occurred in 2003 and 2008,
which was related to the macroeconomics and policies at these time points; strong
coupling appeared due to a severe drought in 2007 and due to the aftermath of the
global financial crisis in 2009. There was no stable evolutionary path from coupling to
decoupling during the years 2000–2018, which currently remains true.

(3) Based on previous research, we used the LMDI method to decompose the driving
factors of agricultural carbon emissions in Jilin province into four factors: agricultural
carbon emission intensity effect, agricultural structure effect, agricultural economic
effect, and agricultural labor force effect. From a policy-making perspective, we
integrated the results of both the EKC and the decoupling analysis, and we conducted
a detailed decomposition analysis, focusing on several key time points.

Overall, agricultural economic growth played a significant role in the increase in
agricultural carbon emissions, while agricultural carbon emission intensity was the main
factor behind the decline in agricultural carbon emissions in Jilin province, especially in the
years 2003 and 2008, when turning points toward a downward trend in agricultural carbon
emissions and strong decoupling states appeared. Another two important time points in
the N-shaped CO2 EKC included a clear peak that appeared in 2007 and the start of the
increase in agricultural carbon emissions after the global financial crisis in 2009; these were
the only two strong coupling states. Different from strong decoupling, both agricultural
carbon emission intensity and agricultural labor force acted as positive driving factors
of agricultural carbon emissions, while agricultural structure and agricultural economic
growth acted as inhibitory driving factors of agricultural carbon emissions.

Most of the study period showed an upward trend for agricultural carbon emissions,
as seen from the N-shaped EKC, and expansive coupling states alternated with weak
decoupling states, especially after 2010, according to the results of the decoupling analysis,
with various decompositions and combinations of driving factors. The efforts toward
agricultural carbon emission reduction in Jilin province are clearly still ineffective.
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