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Single-cell sequencing technology provides insights into the pathology of complex
diseases like cancer. Here, we proposed a novel computational framework to explore
the molecular mechanisms of cancer called melanoma. We first constructed a disease-
specific cell–cell interaction network after data preprocessing and dimensionality
reduction. Second, the features of cells in the cell–cell interaction network were
learned by node2vec which is a graph embedding technology proposed previously.
Then, consensus clusters were identified by considering different clustering algorithms.
Finally, cell markers and cancer-related genes were further analyzed by integrating
gene regulation pairs. We exploited our model on two independent datasets, which
showed interesting results that the differences between clusters obtained by consensus
clustering based on network embedding (CCNE) were observed obviously through
visualization. For the KEGG pathway analysis of clusters, we found that all clusters are
extremely related to MicroRNAs in cancer and HTLV-I infection, and the hub genes
in cluster specific regulatory networks, i.e., ETS1, TP53, E2F1, and GATA3 are highly
associated with melanoma. Furthermore, our method can also be extended to other
scRNA-seq data.
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INTRODUCTION

Melanoma is a malignant tumor that develops from melanocytes and is a complex multifactorial
disease caused by the interaction between genetic susceptibility factors and environmental exposure
(Rastrelli et al., 2014; Situm et al., 2014). In the past, many studies have been focused on the
molecular mechanisms of melanoma, demonstrating that PI3K-Akt and MEK-ERK signaling
pathways’ hyperactivation is highly correlated with the malignant transformation and progression
of melanoma (Wei et al., 2019). Significant progress has been made in targeted therapies which
aim to dampen these two signaling pathways, but melanoma is becoming increasingly resistant to
these therapies (Johnson and Sosman, 2015; Luke et al., 2017). Understanding the pathogenesis of
melanoma may overcome this obstacle.

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 700036

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.700036
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.700036
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.700036&domain=pdf&date_stamp=2021-07-05
https://www.frontiersin.org/articles/10.3389/fgene.2021.700036/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-700036 June 29, 2021 Time: 18:23 # 2

Wang et al. Single-Cell Transcriptome Analysis

There have been many significant studies based on bulk
RNA-seq data of melanoma. Kunz et al. (2018) analyzed
two transcriptomic types of melanocytic nevi and primary
melanomas, and identified genetic characteristics and
mechanisms of early and late stages of melanoma. By integrating
transcriptomic and structural genomic data, Berger et al.
(2010) identified 11 novel melanoma gene fusions and 12
novel readthrough transcripts resulting from basic genome
rearrangements. But some limitations exist when only bulk
RNA-seq data are available for the molecular expression level.
The single-cell sequencing technology has brought new insights
into complex biological phenomena. In particular, genome-wide
single-cell measurements such as transcriptome sequencing
can characterize cell composition and functional variation in
homogeneous cell populations (Tang et al., 2009; Kolodziejczyk
et al., 2015; Jaakkola et al., 2017). However, it is challenging
to explore single-cell sequencing data effectively because of
noise and dropout (Brennecke et al., 2013; Horvath et al.,
2019; Bai et al., 2020). Researchers have begun to interpret the
functional status of cancer cells at the single-cell level. Various
computational methods have been used in cancer research and
have helped the discovery of cancer development, metastasis,
treatment resistance, and tumor microenvironment (Ren et al.,
2018; Zhang et al., 2020). However, as far as we know, few
studies focusing on molecular mechanisms of melanoma at the
single-cell level (Fattore et al., 2019; Durante et al., 2020).

On the other hand, network embedding is becoming a
powerful way of representing the features of nodes in complex
networks, and is widely used in various fields, including medicine,
biology, sociology, and finance. Several state-of-art network
embedding algorithms are proposed to help accomplish analysis
tasks of complex networks, e.g., DeepWalk (Perozzi et al.,
2014) and node2vec (Grover and Leskovec, 2016). Network
embedding is extremely useful for highly sparse single-cell
sequencing data.

In this study, we applied network embedding to represent cell
features, identified consensus clusters by consensus clustering,
and investigated gene markers for melanoma. In the following
section, we introduced the materials and methods in our model
and then showed and analyzed the results. Finally, we made
conclusions for our study.

MATERIALS AND METHODS

Data Sources and Preprocessing
GSE72056 is an scRNA-seq data from Gene Expression Omnibus1

(Tirosh et al., 2016), which involves 19 melanoma patients, 23,686
genes, and 4,645 cells. After QC with Scater (McCarthy et al.,
2017) and the batch effects elimination with Limma (Ritchie et al.,
2015), we obtained 4,630 cells and 22,105 genes, respectively.
Among the 4,630 cells, there are 1,346 malignant cells and 3,284
non-malignant cells. In our study, we only selected the malignant
cells for further study. Then we performed feature selection

1http://www.ncbi.nlm.nih.gov/geo/

with M3drop (Andrews and Hemberg, 2019) and obtained 6,786
genes eventually.

Another scRNA-seq data EXP0072 related to melanoma
were downloaded from CancerSEA2 (Yuan et al., 2019), which
was originally from GSE81383 (Gerber et al., 2017). EXP0072
contains the gene expression level of 307 cells and 18,938 genes.
After QC, the batch effects elimination, and feature selection,
there are 297 cells and 4,566 genes, respectively.

Gene regulation pairs were collected from the HTRIdb
(Bovolenta et al., 2012) and TRRUST v2 (Han et al., 2018)
databases. HTRIdb is an open-access TF-target gene interaction
database that can be downloaded via a user-friendly web interface
(Bovolenta et al., 2012). TRRUST is a TF-target interaction
database for humans, and TRRUST v2 has a significant
improvement from the first version of TRRUST, including a
significantly increased size and a web interface (Han et al., 2018).
There are 51,871 and 8,427 regulation pairs we collected from
HTRIdb and TRRUST v2, respectively. The integrated regulation
pairs are used as the source of regulation pairs.

Consensus Clustering Based on Network
Embedding (CCNE)
After preprocessing scRNA-seq data, we analyzed the data based
on a network embedding model according to the following
steps. It is worth noting that we log-transformed the data in
QC of preprocess.

Step 1: Cell–cell interaction network construction

We used Euclidean distance to measure the interaction
between cells because it treats the differences in different
dimensions equally, and chose the average distance as the
threshold to construct the cell–cell interaction network.
Euclidean distance between two cells c1 and c2 is defined as
follows:

dist (X,Y) =

√√√√ n∑
i = 1

(Xi − Yi)
2 (1)

where X and Y are gene expression level vectors of c1 and c2,
respectively, and n is the number of genes.

Step 2: Network embedding

Network embedding is a powerful measure in representing
complex networks. Among these state-of-art network embedding
algorithms, node2vec has been successfully used in many
applications. Given any graph, it can learn the feature
representation of nodes, which can then be used in various
downstream machine learning tasks. In this algorithm, the
parameters p and q can be flexibly changed to adjust the random
walk strategy, which is helpful for the biased collection of node
information (Grover and Leskovec, 2016).

Step 3: Consensus clustering

As there are various clustering algorithms, in this study, we
tried to apply K-means (Macqueen, 1967), Gaussian mixture

2http://biocc.hrbmu.edu.cn/CancerSEA/goDownload
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FIGURE 1 | The pipeline of the study.

TABLE 1 | The number of cells in each cluster by different algorithms.

The number of cells of cluster 1 2 3 4 5 6

Spectral clustering 183 6 216 110 4 793

Hierarchical clustering 12 209 272 305 352 162

Gaussian mixture 111 240 238 287 178 258

Birch 554 11 223 127 220 177

K-means 246 258 238 298 94 178

model (GMM) (Guorong et al., 2001), spectral clustering (Bach
and Jordan, 2003), hierarchical clustering (Johnson, 1967), and
Birch algorithm (Peng et al., 2018) to cluster the embedding
vectors, and used the Silhouette Coefficients (Zhou and Gao,
2014) and Caliński–Harabaz score (Caliński and Harabasz et al.,
1974) to evaluate the identified clusters. We determined the
number of clusters k when the Silhouette Coefficient is optimal.
The Silhouette Coefficients is a value from −1 to 1, and
the larger the value, the better the result. So we selected the
maximum Silhouette Coefficients value. Eventually, we chose
three best algorithms for our data and constructed consensus
clusters. Consensus clustering is defined as follows: we took the
intersection of the clusters obtained from the three algorithms,
and selected the result with the largest number of cells as the
consensus clusters.

Gene Regulatory Analysis
We selected the genes from each consensus clusters that
expressed in more than 70% of cells; 70% of the gene expression
is more representative, and the number of genes obtained by 70%
is more appropriate, which is conducive to obtaining significant
regulation pairs. Then we constructed the cluster specific
regulatory networks according to the following procedure. First,
we retained the regulation pairs in which the targets belong to
the gene sets. Second, for each regulation pair, we calculated
the similarity of the TF and its target. The similarity of gene
regulation pair is defined as:

sim(g1, g2) = 1−
dist(g1, g2)−min(dist)
max(dist)−min(dist)

(2)

FIGURE 2 | Clusters evaluation by Silhouette Coefficient (left) and
Caliński–Harabaz score (right).

where dist(g1, g2) represents the Euclidean distance of the
regulation pair (g1, g2), and max(dist) and min(dist) represent
the maximum distance and the minimum distance in all
regulation pairs, respectively. The larger the value, the stronger
the correlation between the genes.

Then we identified the feed-forward loops (FFLs) (Jin,
2013) from these gene regulation pairs and constructed
cluster specific gene regulatory networks by Cytoscape_v3.6.1
(Shannon et al., 2003). We took the top three genes
with the highest degree from the specific gene regulatory
network as hub genes.
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FIGURE 3 | Visualization of clusters using T-SNE.

TABLE 2 | The number of regulation pairs in the cluster specific gene regulatory networks.

Clusters 1 2 3 4 5 6

TF-target 1,183 1,313 1,056 1,308 1,088 1170

Filtered TF-target 715 841 623 838 687 716

FFL 41 47 31 46 33 40

RESULTS

We analyzed scRNA-seq data according to the pipeline
shown in Figure 1. We used existing methods to explore
the molecular mechanisms of melanoma by this novel
pipeline. We first preprocessed the scRNA-seq data and
constructed a cell–cell interaction network based on Euclidean
distance. And then we represented the cells using the network
embedding algorithm node2vec and identified consensus
clusters by consensus clustering. Finally, we constructed
and analyzed cluster specific gene regulatory networks
by integrating the expressed genes in scRNA-seq data and
regulation pairs.

Cell–Cell Interaction Network
Construction and Network Embedding
We calculated the Euclidean distance between every pair of
cells in GSE72056 and filtered the pairs with the distance less

than the mean distance. As a result, we obtained a cell–cell
interaction network with 1,312 nodes (cells) and 444,382 edges
after discarding 34 isolated cells.

Then we applied node2vec to represent each cell as a vector
in low-dimensional space. We selected the Silhouette Coefficients
as the evaluation index and performed different hyperparameters
from the set {0.25, 0.5, 1, 2, 4}. The hyperparameter with
the maximum Silhouette Coefficients value is chosen. Finally,
we chose p = 4 and q = 0.5 (Grover and Leskovec, 2016).
As a result, we obtained the embedding vectors of the cells
with 128 dimensions.

Consensus Clustering and Clusters
Identification
We applied the five clustering algorithms mentioned in Section
“Materials and Methods” to cluster the embedding vectors
(Table 1) and used the Silhouette Coefficient and Caliński–
Harabaz score to evaluate the results (Figure 2). Among the
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FIGURE 4 | Cluster specific gene regulatory networks of (A–F) 6 clusters.

five algorithms, Hierarchical clustering, GMM and K-means are
significantly better than the other two methods according to
the evaluation criteria, so we selected these three algorithms to
obtain the consensus clusters. Finally, we obtained six clusters
with 82, 120, 238, 222, 162, and 239 cells, respectively. It is
worth noting that in the process of consensus clustering the cells
belonging to different clusters resulted from different algorithms
were discarded. We visualized the clusters using t-SNE (van der
Maaten and Hinton, 2008), as shown in Figure 3.

Gene Regulatory Network Construction
and Analysis
We filtered the genes that expressed in less than 70% of the cells
in clusters, and identified 601, 729, 480, 744, 527, and 597 for
the six clusters, respectively. Then for each cluster, we built a

cluster specific regulatory network with the genes and discovered
the FFLs. The information about the gene regulatory networks is
shown in Table 2 and Figure 4.

We further analyzed the cluster specific gene regulatory
networks. We found that at least three genes existed in each
cluster are known melanoma-related genes. Among them, ATM,
TP53, and FOXO3 belonged to each cluster. ATM serves as
a regulator of a variety of downstream proteins, including
tumor suppressor proteins (Sanders et al., 2020). FOXO3 may
well induce apoptosis in melanoma cells by the expression
of requisite genes (Segura et al., 2009). We examined the
degree distributions of both TF and genes in the six networks,
which indicated that all of the gene regulatory networks
were scale-free. Generally, TFs had significantly higher degrees
than target genes in each network, indicated that there is
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FIGURE 5 | Kaplan–Meier survival curves of (A) TP53, (B) ETS1, (C) GATA3, and (D) E2F1.

a complex combination of TF coordinated regulation and
gene multiplicity. There is a negative correlation between the
topological coefficients and degrees of TF and genes, which
shows that hub genes are the only shared neighbor of nodes
with fewer links. ETS1 and GATA3 are hub genes in all of
the six clusters, and E2F1 in five of the six clusters, and
TP53 in one cluster.

These hub genes are closely related to cancer, and are
candidate biomarkers for melanoma. TP53 is a known tumor
suppressor and relates to melanoma (Shain et al., 2015).
ETS1 encodes a member of the ETS transcription factor
family, and these proteins act as transcriptional activators or
repressors of many genes which are involved in stem cell
development, cell senescence and death, and tumorigenesis
(Gluck et al., 2019). GATA3 belongs to the GATA family
of transcription factors and is an important regulator of
T cell development. It also plays an important role in
endothelial cell biology (Terra et al., 2021). E2F1 is a member
of the E2F transcription factor family. The E2F family is

very important for controlling the cell cycle and inhibiting
tumor proteins, and it is also the target of small DNA
tumor virus transforming proteins (Murphy et al., 2021;
Rocca et al., 2019).

We performed Kaplan–Meier survival analysis (Goldman
et al., 2020) to analyze the expression level of these genes in
melanoma. Figure 5 shows that melanoma patients with lower
gene expression levels of ETS1, TP53, and E2F1, and higher gene
expression level of GATA3 have a higher survival probability.

We performed gene sets GO and pathway enrichment analysis
using DAVID (DAVID Functional Annotation Bioinformatics
Microarray Analysis3) (Huang et al., 2008; Huang da et al., 2009).

For GO enrichment analysis, we selected the top 10
items (PValue < 0.05) (Guo et al., 2020) for each cluster,
and found that all clusters were associated with protein
binding, nuclear chromatin, nucleoplasm and regulation of the
apoptotic process. Cluster 1 and cluster 2 are more related

3ncifcrf.gov
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FIGURE 6 | KEGG pathway analysis for (A–F) six clusters.

to sequence-specific DNA binding and chromatin binding.
Cluster 4 and cluster 6 are more associated with DNA
binding, and cluster 5 and cluster 6 are relevant nuclear
chromosome, telomeric region, and transcription factor binding.
Also, cluster 2 is related to heart development, and cluster
3 is related to negative transcription regulation and DNA-
templated.

As shown in Figure 6, for KEGG pathway analysis, we chose
all results with PValue < 0.05. From that, we got that all clusters
are associated with MicroRNAs in cancer and HTLV-I infection.
Cluster 1 and cluster 2 are more related to pathways in cancer,
basal cell carcinoma and apoptosis, cluster 3 and cluster 5 are
more related to FoxO signaling pathway, and cluster 6 is strongly
associated with neurotrophic signaling pathway.

Experiments on an Independent Dataset
We analyzed an independent dataset EXP0072 to verify our
approach. We expressed the embedding vectors of 307 cells with
128 dimensions, which is the same as our previous experiment.
The identified three clusters are shown in Supplementary Table 1
and Supplementary Figure 1. By consensus clustering, the
numbers of cells were 71, 174, and 52 of the consensus clusters.

The numbers of genes that expressed in less than 70%
of the cells in clusters were 220, 255, and 176, respectively.
Then we built cluster specific gene regulatory networks
accordingly. The information of cluster specific gene
regulatory networks is shown in Supplementary Table 2
and Supplementary Figure 2.

Finally, we selected the top three genes with higher degrees
(hub genes) for Kaplan–Meier survival analysis (Goldman et al.,
2020) to test their functions in melanoma, which are shown in
Supplementary Figure 3. These genes have a greater impact
on the survival rate of melanoma. E2F1 was the hub gene in
both datasets. ESR1 encodes an estrogen receptor and ligand-
activated transcription factor. The protein encoded by this
gene regulates the transcription of many estrogen-inducible
genes and is expressed in many non-reproductive tissues. NF-
kappa-B is a transcription factor formed by the combination
of NFKB1 and RELA, which participates in many biological
processes. E2F4 encoded by this gene is a member of the
E2F family of transcription factors. The E2F family plays a
crucial role in the control of cell cycle and action of tumor
suppressor proteins and is also a target of the transforming
proteins of small DNA tumor viruses. MYC is a proto-oncogene
and encodes a nuclear phosphoprotein that plays a role in
cell cycle progression, apoptosis, and cellular transformation.
Amplification of this gene is frequently observed in numerous
human cancers (Murphy et al., 2021).

From the experiments, we found that the size of the dataset
has impact on the computational cost, but not affects the network
embedding, clustering, or quality of the reconstructed GRNs.

CONCLUSION

We investigated the pathology of melanoma via scRNA-
seq, which revealed the significant impact of hub genes in
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the development of melanoma. By constructing the cell–cell
interaction network and obtaining the consensus clusters, we
found that the differences between clusters are obvious. Through
our further analysis of each cluster, we found the hub genes ETS1,
TP53, E2F1, and GATA3 are related to melanoma. At the same
time, in order to verify the scalability of the method, we analyzed
an independent melanoma dataset that the clusters were highly
consistent, and hub genes have a great impact on melanoma.
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