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ABSTRACT

Heterogeneity in transcription initiation has im-
portant consequences for transcript stability and
translation, and shifts in transcription start site
(TSS) usage are prevalent in various developmen-
tal, metabolic, and disease contexts. Accordingly, nu-
merous methods for global TSS profiling have been
developed, including most recently Survey of TRan-
scription Initiation at Promoter Elements with high-
throughput sequencing (STRIPE-seq), a method to
profile transcription start sites (TSSs) on a genome-
wide scale with significant cost and time savings
compared to previous methods. In anticipation of
more widespread adoption of STRIPE-seq and re-
lated methods for construction of promoter atlases
and studies of differential gene expression, we built
TSRexploreR, an R package for end-to-end analysis
of TSS mapping data. TSRexploreR provides func-
tions for TSS and transcription start region (TSR)
detection, normalization, correlation, visualization,
and differential TSS/TSR analyses. TSRexploreR is
highly interoperable, accepting the data structures of
TSS and TSR sets generated by several existing tools
for processing and alignment of TSS mapping data,
such as CAGEr for Cap Analysis of Gene Expres-
sion (CAGE) data. Lastly, TSRexploreR implements
a novel approach for the detection of shifts in TSS
distribution.

INTRODUCTION

Genome-wide mapping of transcription start sites (TSSs) is
crucial to understanding gene regulation. Clusters of TSSs,
referred to as transcription start regions (TSRs), are asso-
ciated with promoter elements and represent genomic po-
sitions at which RNA polymerase has initiated synthesis

of new RNA molecules. Variation in TSS usage alters the
length of 5′ untranslated regions (5′ UTRs), which has been
shown to influence transcript stability and translation (1–3)
and is recognized as a major contributor to transcript iso-
form diversity in mammalian cells and tissues (4–6). Alter-
native initiation has also been described in human cancers
(7) and inflammatory bowel diseases (8) as well as during de-
velopment, particularly in zebrafish (9). Thus, understand-
ing gene regulation under physiologic and pathologic con-
ditions on a global scale requires accurate profiling of TSSs.
To this end, numerous techniques have been developed, in-
cluding Cap Analysis of Gene Expression (CAGE) (10),
RNA Annotation and Mapping of Promoters for Analysis
of Gene Expression (RAMPAGE) (11), and 5′ global run-
on sequencing (GRO-cap) (12).

The recently introduced Survey of TRanscription Initia-
tion at Promoter Elements with high-throughput sequenc-
ing (STRIPE-seq) (13) method provides a rapid, efficient,
simple, and cost-effective TSS profiling approach, applica-
ble to both genome-wide promoter atlas construction and
expression profiling in samples with limited RNA input
amounts. Here, we describe the product of synchronous
code development to streamline analysis of STRIPE-seq
data, as well as data resulting from other popular TSS de-
tection methods. TSRexploreR is distributed as an R pack-
age for comprehensive and flexible exploration of TSS map-
ping data. TSRexploreR accepts pre-processed TSS and
TSR data in a variety of common formats, including tab-
delimited text files summarizing prior read mapping re-
sults or raw mapping data in BAM alignment format. TSR-
exploreR performs normalization for library size differ-
ences and implements a wide array of functions for sub-
sequent derivation of summary and correlation statistics,
visualization, and differential TSS/TSR analysis. Further-
more, TSRexploreR implements a novel approach to detect
shifts in TSS distributions within TSRs. In sum, TSRex-
ploreR is a feature-rich, interoperable, and easy-to-use soft-
ware package for comprehensive analysis of TSS mapping
data.
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MATERIALS AND METHODS

TSRexploreR implementation

TSRexploreR is fully implemented in R (with the excep-
tion of TSS shifting analysis, described below) and makes
use of numerous Bioconductor (https://bioconductor.org/)
packages and CRAN (https://cran.r-project.org/) libraries
such as tidyverse (https://cran.r-project.org/web/packages/
tidyverse/index.html) and data.table (https://cran.r-project.
org/web/packages/data.table/index.html). Data is stored in
a TSRexploreR S4 object in common Bioconductor for-
mats such as GenomicRanges (GRanges) (14) or as a
data.table for rapid, memory-efficient manipulation. TSR-
exploreR accepts bedGraph, bigWig, CTSS, and tab-
delimited table files for TSSs and BED and tab-delimited
table files for TSRs. Alignment BAM files can also be
processed by TSRexploreR, as described below. A full
list of TSRexploreR functions, with accompanying doc-
umentation, can be found at https://zentnerlab.github.io/
TSRexploreR/reference/index.html. TSRexploreR is pack-
aged with STRIPE-seq-detected TSSs along budding
yeast chromosome IV alongside the Ensembl release 99
budding yeast V64-1-1 genome sequence and annota-
tion GTF. TSRexploreR is available at https://github.
com/zentnerlab/TSRexploreR/releases/tag/v0.2.0 and as a
Singularity container from Singularity Library (https://
cloud.sylabs.io/library; download command: singularity
pull library://zentlab/default/tsrexplorer:main), ensuring
prolonged compatibility and reproducibility. We also pro-
vide a feature comparison of TSRexploreR with CAGEr
(15), the most full-featured TSS analysis software published
to this point (Supplementary Table S1).

BAM processing

Alignments in BAM format are loaded into TSRexploreR
using the GenomicAlignments package (14) and can be
processed as needed during import. GenomicAlignments
considers the 5′-most non-soft-clipped base as the start
position of the R1 read (and thus the TSS), but 5′ soft-
clipped base information is retained in the cigar string
(from the BAM file) and thus further exploration is pos-
sible. Taking advantage of this fact, an analysis of soft-
clipping is performed, where reads having more than a user-
specified number of soft-clipped bases are removed. Filter-
ing based on BAM flags is also performed, enabling re-
moval of secondary alignments and, for paired-end reads,
removal of unpaired or improperly paired reads and read
pairs flagged as duplicates based on identical start and end
positions. It has been frequently observed in both CAGE
and template-switching reverse transcription (TSRT)-based
methods such as nanoCAGE and STRIPE-seq that a non-
specific G (corresponding to C on the first-strand cDNA) is
often present at the 5′-most position of the R1 read (16,17).
This is most likely due to reverse transcription of the cap
(18). To correct for this artifact, we determine the frequency
of reads with soft-clipped 5′ G bases (that is, cap-templated
Gs that do not fortuitously map to the genome). We illus-
trate the detection of soft-clipped bases by TSRexploreR
using nanoCAGE, nAnT-iCAGE, SLIC-CAGE (19), and

TSS-seq (1) data from the BY4741 yeast strain. As all of
the CAGE-based methods rely on reverse transcription of
capped RNA, they are susceptible to the artifact, while TSS-
seq, which involves cap removal prior to reverse transcrip-
tion, is presumably not. We found that ∼41.6–44.4% of
reads from each CAGE experiment had soft-clipped bases,
the majority of which were single Gs, while <2% of reads
from each TSS-seq experiment had soft-clipped bases (Sup-
plementary Figure S1). We assume that the frequency of
soft-clipped Gs is similar to that of cap-templated, genome-
matching G addition and therefore this frequency to deter-
mine if the non-soft-clipped-G should be removed. For each
read with a 5′ G following removal of soft-clipped bases, a
Bernoulli trial is conducted using the aforementioned soft-
clipped G frequency as the ‘success’ probability to decide
if the G should be removed, which is similar in principle
to the approach used with CAGE data (16). For methods
not subject to this artifact, such as TSS-seq, this step can be
skipped. Following the optional G correction, overlapping
5′ read ends are aggregated into TSSs.

TSRexplorer vignettes

Step-by-step vignettes for performing common tasks in
TSRexploreR are available at the following URLs:

BAM import and processing:
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.

0/documentation/BAM PROCESSING.pdf
Standard TSS/TSR exploration:
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.

0/documentation/STANDARD ANALYSIS.pdf
Differential feature analysis:
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.

0/documentation/DIFF FEATURES.pdf
TSS shifting analysis:
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.

0/documentation/FEATURE SHIFT.pdf
Data conditioning:
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.

0/documentation/DATA CONDITIONING.pdf

TSS and TSR analysis

Yeast nAnT-iCAGE CTSSs (20) were obtained from www.
yeastss.org (21) and imported into TSRexploreR. The nine
growth conditions analyzed were: log-phase growth in rich
yeast-peptone-dextrose medium (YPD, the control con-
dition), cell cycle arrest with �-factor, DNA damage in-
duced by methyl methanesulfonate (DD), diauxic shift
(DSA), YP medium with 16% glucose to induce fermen-
tation (Glc), log-phase growth in yeast-peptone-galactose
medium (Gal), oxidative stress induced by H2O2, 37◦C
heat shock (HS), and osmotic stress induced by NaCl. For
genome assembly and annotation we used the R pack-
ages ‘BSgenome.Scerevisiae.UCSC.sacCer3’ v1.4.0 (22) and
‘TxDb.Scerevisiae.UCSC.sacCer3.sgdGene’ v3.2.2 (23), re-
spectively. Code used for yeast CAGE analysis is avail-
able at https://github.com/zentnerlab/Policastro etal 2021/
tree/v0.1.1.

https://bioconductor.org/
https://cran.r-project.org/
https://cran.r-project.org/web/packages/tidyverse/index.html
https://cran.r-project.org/web/packages/data.table/index.html
https://zentnerlab.github.io/TSRexploreR/reference/index.html
https://github.com/zentnerlab/TSRexploreR/releases/tag/v0.2.0
https://cloud.sylabs.io/library
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.0/documentation/BAM_PROCESSING.pdf
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.0/documentation/STANDARD_ANALYSIS.pdf
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.0/documentation/DIFF_FEATURES.pdf
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.0/documentation/FEATURE_SHIFT.pdf
https://github.com/zentnerlab/TSRexploreR/blob/v0.2.0/documentation/DATA_CONDITIONING.pdf
http://www.yeastss.org
https://github.com/zentnerlab/Policastro_etal_2021/tree/v0.1.1
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Zebrafish TSS shifting analysis

For TSRexploreR analysis, zebrafish developmental CAGE
data (24) were obtained as TPM-normalized bigWig files
from http://promshift.genereg.net/zebrafish/CAGE/
and imported into TSRexploreR. Scores for negative-
strand TSSs were multiplied by -1 to yield pos-
itive values. For CAGEr analysis, datasets were
imported into CAGEr v1.30.3 from the R pack-
age ‘ZebrafishDevelopmentalCAGE’ v0.99.0 (http:
//promshift.genereg.net/CAGEr/PackageSource/) and
TPM normalized using the power-law approach. For
both methods, TSSs supported by ≥3 TPM in one of the
two samples were clustered into TSRs with a maximum
clustering distance of 25 bp and a maximum TSR width
of 250 bp. TSRs supported by at least 10 TPM in both
samples were merged if they were within 100 bp of one
another. An FDR threshold of 0.05 was used to assess
the significance of shifting results from both approaches.
Code used for shifting analysis is available at https:
//github.com/zentnerlab/Policastro etal 2021/tree/v0.1.1.

RESULTS AND DISCUSSION

Analysis of yeast CAGE data with TSRexploreR

To demonstrate the features of TSRexploreR, we analyzed
CAGE CTSSs from yeast cells grown under a variety of con-
ditions (20). In cases where a single plot is shown, this indi-
cates a result from one YPD control replicate.

Genomic annotation and threshold exploration. Using an-
notations provided in GTF or TxDb format, TSRexploreR
links TSSs to known genomic features (25). Assignment
of TSSs to such features, particularly promoters, is use-
ful in establishing a read threshold for downstream anal-
yses. TSRexploreR threshold analysis determines the frac-
tion of TSSs that is promoter-proximal and the num-
ber of transcripts or genes with at least one unique TSS
across a range of raw read count thresholds. This analy-
sis allows selection of a threshold that balances removal
of likely artifacts (in particular, weak TSS signals within
gene bodies) with detection of authentic lowly abundant
promoter-proximal TSSs. Using a promoter definition of
-250 to +100 bp relative to annotated gene starts (start
codons for mRNA genes and TSSs for ncRNA genes from
the TxDb.Scerevisiae.UCSC.sacCer3.sgdGene Bioconduc-
tor package (23)), we selected a threshold of 10 counts/TSS,
yielding promoter-proximal TSS fractions of 0.603–0.750
(Figure 1B, Supplementary Figure S2). Following anno-
tation and thresholding, the distribution of TSSs relative
to known genomic features can be visualized as stacked
barplots (Figure 1C). A feature detection plot, wherein the
number of genes or transcripts with at least one unique TSS
position meeting the specified threshold is displayed, can
also be generated (Figure 1D). The functions used to gener-
ate the plots described in this section, and many other TSR-
exploreR plotting functions, return ggplot objects that can
be customized according to standard ggplot2 syntax (26).
The ‘Value’ section of each function’s documentation indi-
cates what is returned, including whether it returns a ggplot
object in the case of plotting functions.

Normalization. TSRexploreR includes three options for
normalization. The first, counts per million (CPM), is a
simple read number-based normalization approach com-
monly used for data visualization and is particularly ap-
propriate for replicate comparison. However, CPM normal-
ization is considered simplistic when comparing samples
from distinct biological conditions (27) and we thus im-
plemented two additional normalization approaches con-
sidered more appropriate for such cases: trimmed mean of
M-values (TMM) (27), used in edgeR (28), and median-of-
ratios (MOR), used in DESeq2 (29). For this example, data
were normalized using the MOR approach. Normalized
samples can be compared via a principal component analy-
sis (PCA) plot (30) (Figure 1E) or correlation heatmaps (31)
(Supplementary Figure S3).

Visualization of TSS data. TSSs can be exported in bed-
Graph, bigWig, or tab-delimited table format. TSSs and/or
TSRs at a specific gene or its promoter can also be di-
rectly visualized using Gviz (32). To demonstrate this fea-
ture, we plotted MOR-normalized TSS counts from one
replicate each of the YPD and Gal conditions at the pro-
moter of the GAL2 gene, which encodes a permease re-
quired for galactose utilization (Figure 1F). TSS signal
around gene starts (start codons for mRNA genes, TSSs
for ncRNA genes) can also be displayed as a heatmap (Fig-
ure 1G), and the distribution of TSS positions relative to
annotated gene starts can be visualized as a density plot
(Figure 1H).

TSS sequence analysis. TSRexploreR includes several
functions for analyzing the sequence context of TSSs. Fur-
thermore, as it is often desirable to assess specific subsets
of TSSs or TSRs, TSRexploreR includes a number of con-
ditioning functions for grouping, ordering, quantiling, and
filtering data. Here, we demonstrate these features for the
purpose of TSS sequence analysis. We determined the dom-
inant TSS associated with each analyzed transcript, split
them into quintiles by score (that is, the total sum of read
5′ end counts at the TSS position), and plotted sequence lo-
gos (36) (Figure 2A). This analysis indicates a pyrimidine
(Y = C or T) preference at the -1 position and a purine
(R = A or G) preference at the +1 position (the TSS it-
self), as well as an A base in the -8 position (Figure 2A),
consistent with previous studies (20,37,38). It is seen that
these preferences decrease in terms of information content
with decreasing TSS score (that is, the number of 5′ read
ends supporting the TSS). Sequences surrounding TSSs can
also be visualized as color plots (Figure 2B). Lastly, the fre-
quencies of all observed –1/+1 dinucleotides can be plotted
(Figure 2C).

TSR detection and analysis. TSRexploreR uses a simple
distance-based clustering approach to aggregate TSSs into
TSRs based on a user-specified TSS count threshold that
must be met in a specified number of samples and maxi-
mum inter-TSS distance. For this analysis, we used a raw
count threshold of 10 in at least one sample, a maximum dis-
tance of 25 bp, and a maximum TSR width of 250. Many
of the analyses described above for TSSs can also be ap-
plied to TSRs: correlation, analysis of genomic distribution,

http://promshift.genereg.net/zebrafish/CAGE/
http://promshift.genereg.net/CAGEr/PackageSource/
https://github.com/zentnerlab/Policastro_etal_2021/tree/v0.1.1
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Figure 1. TSS analysis with TSRexploreR. (A) Schematic depicting input formats accepted by TSRexploreR and creation of the TSRexploreR object. (B)
Threshold plot showing the fraction of TSSs that is promoter-proximal (-250 to +100 relative to annotated gene starts (start codons for mRNA genes,
TSSs for ncRNA genes)) and the number of features (in this case, transcripts) with at least one unique TSS position at each threshold in YPD replicate 1.
(C) Barplot of the genomic distribution of TSSs in each sample. (D) Barplot of the number of transcripts with a unique TSS position in each sample, and
whether that TSS is promoter-proximal or not. (E) PCA plot of TSSs detected in each CAGE sample. (F) Signal tracks of normalized signal (YPD and
Gal replicate 1) at the GAL2 locus. (G) Heatmap of normalized signal from YPD replicate 1 relative to annotated gene starts, sorted descending by total
signal. (H) Density plot of unique TSS positions relative to annotated gene starts for YPD replicate 1.



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 5

Figure 2. Sequence analysis and differential TSR detection. (A) Sequence logos (quintiled in descending order by TSS score (the total sum of read 5′ end
counts at the TSS position), (B) base color plot (in descending order by TSS score) and (C) barplot of dinucleotide frequencies at the dominant TSS of
each transcript in YPD replicate 1. (D) Barplot of the number of differentially expressed TSRs for comparison of each indicated condition to the YPD
control. (E) MA plot of differential TSR results for the Gal versus YPD comparison. (F) Difference heatmap of log2(Gal replicate 1) – log2(YPD replicate
1) CAGE signal relative to annotated gene starts (start codons for mRNA genes, TSSs for ncRNA genes), sorted descending by magnitude of the difference.

feature detection(iand density/signal relative to annotated
gene starts (start codons for mRNA genes, TSSs for ncRNA
genes).

Characterization of TSR features. It has been well estab-
lished that there is a continuum of TSR shapes ranging from
sharp or peaked, wherein transcription initiates at one or a
few strong TSSs, to broad or dispersed, wherein there are
several TSSs of similar strength (33,34). TSRexploreR cal-
culates three metrics relating to TSR shape: (i) shape index

(SI), which assesses the shape of TSRs via analysis of the
position of each constituent TSS and its strength relative to
the overall score of the TSR (33); (ii) inter-quantile range
(IQR), which measures the distance between the base po-
sitions of the user-specified TSS signal quantiles, providing
information on the width of a TSR without being affected
by weak TSSs on its edges (15) and (iii) peak balance, which
assesses the skew of TSSs around the TSR center, analogous
to the torque metric calculated by TSRchitect (35) (Supple-
mentary Figure S4).
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Analysis of differential TSR usage. Transcription is highly
dynamic and plastic, able to respond quickly to various
stimuli. To enable analysis of differential TSS and TSR us-
age across distinct conditions, TSRexploreR generates ma-
trices of counts within merged regions that are used as
input to edgeR (28) or DESeq2 (29). We used DESeq2
to build a statistical model and then performed contrasts
of treated samples versus the control YPD condition (see
Supplementary Table S2 for full differential TSR analy-
sis results). As an overview of differential feature analy-
sis, a stacked barplot of the number of changed features
in each contrast can be generated (Figure 2D). The re-
sults of individual comparisons (for this example, Gal ver-
sus YPD) can also be visualized as an MA plot, displaying
log2(fold change) versus mean expression (Figure 2E), and
as a volcano plot, displaying –log10(adjusted P-value) ver-
sus log2(fold change) (Supplementary Figure S5). We also
demonstrate visualization of differential TSR signal with a
differential heatmap. In this example, log2(YPD signal) is
subtracted from log2(Gal signal) at all annotated gene starts
(start codons for mRNA genes, TSSs for ncRNA genes)
with an associated TSR in one or both samples (Figure
2F). To facilitate interpretation of differential feature analy-
sis results, TSRexploreR annotates differential features and
exports a list of gene names compatible with clusterPro-
filer, a robust R package for gene ontology (GO) analysis
(39). Genes associated with upregulated promoter-proximal
TSRs were enriched for GO biological process terms in-
cluding ‘carbohydrate metabolic process’ and ‘generation
of precursor metabolites and energy’ (Supplementary Fig-
ure S6, Supplementary Table S3). Genes with downregu-
lated promoter-proximal TSRs were enriched for processes
related to ribosome biogenesis (Supplementary Figure S6,
Supplementary Table S3), consistent with previous work
showing reduced levels of ribosomal protein gene tran-
scripts in cells grown continuously in galactose (40).

Detection of TSS shifts with TSRexploreR

Numerous studies indicate that large-scale shifts in TSS dis-
tribution are prevalent in various developmental settings (9)
and are induced in response to environmental stimuli (41)
and mutations in general transcription factors (38). Com-
putational detection of TSS shifts may be approached as
testing for differences between two discrete probability dis-
tributions. The CAGEr package (15) assesses spatial shifts
in TSS usage by generating aggregate TSRs from TSRs
identified in all samples and comparing empirical cumula-
tive distribution functions (ECDFs), where the sample with
larger total signal has its ECDF rescaled by the ratio of to-
tal signal. This results in a score between negative infinity
and 1, with larger positive values posited to indicate that a
given proportion of signal in the second sample is outside of
the TSS-containing region in the first sample. For instance,
a CAGEr shift score of 0.4 would indicate that at least 40%
of the transcription initiation in the second sample is inde-
pendent of that in the first sample. This approach only as-
sesses spatial separation between two distributions and thus
does not address shifts in signal distribution at largely over-
lapping positions. Furthermore, it produces a substantial
number of negative shift scores, the interpretation of which

can be unclear. Lastly, it does not indicate shift direction. In
addition to calculating the shifting score, CAGEr also per-
forms a Kolmogorov–Smirnov (K–S) test on the ECDFs,
identifying the point of maximal distance between them.
The stated purpose of the K–S test is 2-fold: (i) to assess
significance of the observed difference in TSS distribution
between the two samples and (ii) to capture changes in TSS
distributions within mostly overlapping positions that are
not captured by the shift score. However, calculation of the
K–S statistic is unrelated to the shift score, and its P-value
therefore does not indicate the score’s significance. Further-
more, the derivation of the P-value formula for the K–S test
assumes the data come from a continuous distribution, an
assumption not met by TSS distributions, which are com-
posed of observations at discrete locations.

Given these limitations, we implement an alternative ap-
proach to detecting TSS shifts using a more intuitive metric.
We use a signed version of earth mover’s distance (EMD)
(42), which we refer to as earth mover’s score (EMS), to
characterize between-sample differences in TSS distribu-
tions within merged TSRs. For this approach, we imagine
that the two TSS distributions in question are piles of dirt
and ask how much dirt from one pile we would need to
move, how far, and in which direction, to recreate the distri-
bution of the other sample. The computed EMS thus rep-
resents the minimum ‘cost’ of converting one distribution
into the other. The resulting score is between –1 and 1, with
larger magnitudes indicating larger shifts and the sign in-
dicating direction (negative values indicate upstream shifts
and positive values indicate downstream shifts). Figure 3A–
C illustrates the intuition for calculation of the EMS. We
note that the EMS is calculated by summing the overall pos-
itive (downstream) and negative (upstream) differences be-
tween the two TSS distributions. Thus, EMS indicates the
overall direction of the shift, even if a notable amount of
shifting occurs in the opposite direction. To allow indepen-
dent assessment of the degree of upstream and downstream
shifting within a given TSR, TSRexploreR also reports the
positive and negative components of the EMS alongside the
final shift score. We also considered the possibility that rel-
atively balanced upstream and downstream shifting could
be obscured by the signed nature of the EMS. Possible ex-
amples of balanced shifting include TSR splitting or merg-
ing as well as an overall change in the shape of a TSR (e.g.,
peaked to broad). In order to capture such shifts, we also
report the unsigned EMD, which indicates how much to-
tal TSS ‘mass’ has been shifted between two samples with-
out regard to direction. TSRexploreR calculates EMS and
EMD as well as a P-value and FDR threshold for both
based on permutation tests. TSS shifting analysis is imple-
mented in C++ to enhance execution speed.

To demonstrate the capacity of our EMS/EMD-based
approach to detect TSS shifts, we turned to a set of CAGE
experiments performed throughout zebrafish embryonic de-
velopment. Detailed analysis of this dataset revealed dis-
tinct distributions of TSSs for the maternally-deposited and
zygotic forms of several hundred transcripts (9), and so it
provides an appealing test case. We compared the earliest
and latest time points assayed (unfertilized egg and Prim-
20, respectively) using both the established CAGEr ap-
proach and our EMS/EMD-based method. Using CAGEr
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Figure 3. Detection of TSS shifts using earth mover’s score. (A) Stylized TSS distributions for two samples at a hypothetical region of interest. (B) Illustra-
tion of how Sample One would need to be ‘moved’ in order to match Sample Two. Material (or ‘earth’) must be moved from the empty bars into the shaded
bars while the solid bars remain unchanged. Some material has to be shifted in both directions, but more is moved upstream than downstream. Calculating
how much, how far, and which ‘piles” to move is a standard constrained optimization problem known by the name ‘optimal transport’, but here it reduces
to a simple integral. (C) Calculation of the EMS for the hypothetical example illustrated in (B). The upstream (green, negative) and downstream (purple,
positive) areas between the ECDFs are simply integrated and then subtracted from each other. The result is normalized to the number of locations with
expression in either sample. This example has an EMS of 0.243 with a P-value of 0 based on an approximate permutation test using 1000 resamples. (D)
Tracks of zebrafish CAGE signal from the unfertilized egg (UF) and Prim-20 stages at four promoters displaying significant shifts in TSS distribution by
the EMS-based shift score method implemented in TSRexploreR. Note that only the strand from which the TSS signal originates is shown. (E) Same as
(D) but at four promoters with significant shifts in TSS distribution by EMD only.
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with no shift score threshold, we detected 3,950 signifi-
cantly shifted TSRs, while applying a shift score threshold
of 0.4 yielded 1,314 significant shifts (Supplementary Table
S4). EMS/EMD-based analysis yielded 3,782 significantly
shifted TSRs (Supplementary Table S5); we note that this
number is slightly variable due to the use of a permutation
test for determining significance.

To illustrate the relationship between our EMS-based
shift score and TSS redistribution, we visualized data at
several loci displaying various degrees of shifting (Figure
3D). At kdm7ab, CAGE signal was markedly shifted down-
stream in the Prim-20 sample, yielding an EMS of 0.885
(P = 0; all reported P-values reflect a false discovery rate
(FDR) correction by the Benjamini–Hochberg procedure)
and an equivalent EMD; this shift was not detected by
CAGEr. A more modest downstream shift was observed at
pif1 (shift score = 0.376, P = 0; EMD = 0.382, P = 0). The
pif1 shift was detected as highly significant by CAGEr (P =
0), though the shift score was negative (-0.406). At epcam,
we detected a robust upstream shift (shift score = -0.594,
P = 0; EMD = 0.594, P = 0); this shift was also detected
by CAGEr, though with a very small shift score (0.069).
Lastly, at tcf25, we observed a highly significant upstream
shift (EMS = -0.695, P = 0; EMD = 0.695, P = 0). The tcf25
shift was also marked as highly significant by CAGEr (P =
0), but the sign of the robust shift score (0.742) does not re-
late to the direction of the shift. Overall, 2913/3782 (77%)
of the detected shifts had a significant shift score, while the
remaining 869 regions were significant only by EMD (Sup-
plementary Table S5).

The detection of a large number of shifts with a signifi-
cant EMD but not shift score suggests the detection of bal-
anced shifts, wherein there are similar degrees of positive
and negative shifting that would be effectively cancelled out
by the signed nature of the shift score. To explore this, we
examined a number of these regions. At mxi1, we observed
expansion of the TSR in both directions in the Prim-20 sam-
ple, leading to a small, insignificant shift score (–0.024, P =
0.581) (Figure 3E). However, this region was highly signif-
icantly shifted by EMD (EMD = 0.131, P = 0). The mxi1
shift was detected by CAGEr, though its reported magni-
tude was low (shift score = 0.005, P = 1.98 × 10−15). At
the homeza promoter TSR, we observed markedly increased
usage of two TSSs on its edges in the Prim-20 sample, lead-
ing to an overall broadening of its TSS signal (shift score
= 0.079, P = 0.177; EMD = 0.252, P = 0; CAGEr shift
score = 0.310, p = 2.16 × 10−14). At polr2j, we observed the
opposite trend, wherein CAGE signal is broad in the unfer-
tilized egg and narrower in Prim-20 (shift score = 0.058, P
= 0.234; EMD = 0.130, P = 0.006; CAGEr shift score = –
0.170, P = 0.001). At med7, there are two strong TSS peaks
in the unfertilized egg, while Prim-20 transcription primar-
ily initiates from a position between these peaks (shift score
= 0.045, P = 0.582; EMD = 0.306, P = 0; CAGEr shift
score = –0.324, P = 0). We conclude that EMD can be used
to detect balanced shifts not considered by EMS due to can-
cellation of upstream and downstream components of the
shift.

CONCLUDING REMARKS

TSRexploreR leverages the extensive Bioconductor and
tidyverse programming environments to provide a feature-

rich and straightforward tool for TSS mapping analysis
and also incorporates a novel approach to detecting TSS
shifts. While TSRexploreR was originally developed to han-
dle STRIPE-seq data, it has been made highly interoperable
and can thus be readily incorporated into workflows using
existing TSS analysis software such as CAGEr (15), TSR-
chitect (35), and CAGEfightR (43). Global TSS profiling
methods are currently being used to explore shifts in TSS
usage in many biological contexts. In yeast, TSS mapping
has been used to explore alternative initiation in many con-
texts, including the response to external stimuli (20), chro-
matin remodeler depletion (44,45), transitions between mi-
totic and meiotic growth (46), promoter evolution (47), and
mutation of general transcription factors and RNA poly-
merase II subunits (38). TSS mapping has also recently been
used to assess alternative initiation in mouse germline devel-
opment (48,49) and sex-specific enhancer and promoter use
in Drosophila (50). We thus envision that TSRexploreR will
be a broadly useful tool for the analysis of data generated
by TSS mapping studies in many areas of biological inquiry.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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