
Repetitive N-WASP–Binding Elements of the
Enterohemorrhagic Escherichia coli Effector EspFU

Synergistically Activate Actin Assembly
Kenneth G. Campellone1, Hui-Chun Cheng2, Douglas Robbins3, Anosha D. Siripala1, Emma J. McGhie4,

Richard D. Hayward4, Matthew D. Welch1, Michael K. Rosen2, Vassilis Koronakis4, John M. Leong3*

1 Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California United States of America, 2 Department of Biochemistry and Howard

Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America, 3 Department of Molecular Genetics and Microbiology,

University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 4 Department of Pathology, University of Cambridge, Cambridge, United

Kingdom

Abstract

Enterohemorrhagic Escherichia coli (EHEC) generate F-actin–rich adhesion pedestals by delivering effector proteins into
mammalian cells. These effectors include the translocated receptor Tir, along with EspFU, a protein that associates indirectly
with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspFU repeat region is
capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of
the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently
exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspFU are sufficient
for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspFU fusion proteins indicates that the central
role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspFU. Whereas clustering of a single
EspFU repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspFU derivatives promote
actin assembly more efficiently. Moreover, the EspFU repeats activate a protein complex containing N-WASP and the actin-
binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin
polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules
can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of
bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly
via N-WASP-Arp2/3–mediated signaling pathways.
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Introduction

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonize the

intestinal tract of cattle and other reservoir hosts without inducing

disease, but cause severe diarrheal illness in humans that ingest

contaminated materials [reviewed in 1–3]. The mode of epithelial

colonization by EHEC reflects its membership in the attaching and

effacing (AE) family of pathogens. These bacteria, which include

enteropathogenic E. coli (EPEC) and Citrobacter rodentium, attach

tightly to the intestinal epithelium, efface microvilli, and generate

filamentous (F-)actin pedestals beneath sites of adherence. The

formation of AE lesions is critical for pathogenesis, because

mutations that abolish their biogenesis severely impair colonization

[4–7]. Moreover, an EHEC mutant that forms AE lesions but

possesses a diminished capacity to stimulate actin assembly is

defective at expanding the initial infectious niche [8].

During infection, EHEC expresses a type III secretion system

capable of translocating more than 30 effector proteins from the

bacterium into the mammalian cell [9]. This delivery system is

encoded by the locus of enterocyte effacement (LEE), which also

contains several of the substrates for injection [reviewed in 10–11].

Among these LEE-encoded effectors is the translocated intimin

receptor (Tir), which is essential for AE lesion formation. Tir is

delivered into the host cell, where it localizes to the plasma

membrane in a hairpin conformation that includes a central

extracellular region that binds to intimin, a LEE-encoded adhesin.

Intimin-Tir interaction promotes intimate attachment to the host

cell, and also results in clustering of the N- and C-terminal

cytoplasmic domains of Tir [12], which are capable of interacting

with host proteins.

The Tir molecules from EHEC and EPEC both trigger actin

assembly pathways that involve N-WASP, an actin nucleation-

promoting factor [13–15]. N-WASP utilizes a C-terminal WH2/

verprolin-connector-acidic (VCA) segment to activate the Arp2/3

complex, a major actin nucleator in cells [reviewed in 16–17].

Normally, N-WASP adopts an autoinhibited conformation in
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which its VCA domain is sequestered by an intramolecular

interaction with a central GTPase binding domain (GBD). It can

be activated by several stimuli, including Nck, an adaptor protein

that binds to its proline-rich domain (PRD), and Cdc42, a small

GTPase that binds the Cdc42-Rac binding (CRIB) sequence

within the GBD [18–19]. When assayed using purified proteins in

vitro, either Cdc42 or Nck is sufficient to stimulate N-WASP-

Arp2/3–mediated actin assembly. However, under physiological

conditions, N-WASP regulation is significantly more complex,

since several proteins including WIP (WASP-interacting protein),

bind to its N-terminal WH1 domain and influence its activation

[20]. In fact, Cdc42 is insufficient to stimulate the native N-

WASP/WIP complex [21].

EPEC pedestal formation involves activation of N-WASP by

signaling initiated from the C-terminal cytoplasmic domain of its

Tir protein, which is phosphorylated by host tyrosine kinases [22–

24]. In fact, Tir is the only EPEC effector required for pedestal

formation, since clustering of its ectopically expressed C-terminus

in mammalian cells is sufficient to generate pedestals with high

efficiency [25]. The dominant pathway for N-WASP stimulation

by EPEC involves recruitment of Nck to one site of Tir tyrosine

phosphorylation [reviewed in 26–27].

In contrast to EPEC, EHEC requires a second effector to trigger

pedestal formation. This protein, EspFU (also known as TccP),

localizes beneath bound bacteria after delivery into host cells, co-

precipitates with Tir, and promotes phosphotyrosine- and Nck-

independent actin assembly [28–29]. Residues 456 to 458 in the

cytoplasmic C-terminus of Tir are required for EspFU recruitment

and efficient pedestal formation [30–31], but because direct

interactions between Tir and EspFU have not been detected,

additional factors are assumed to mediate their association.

EspFU contains an N-terminal secretion signal followed by a C-

terminus consisting of multiple nearly-identical 47-residue proline-

rich peptide repeats [32]. EspFU derivatives containing these

repeats bind to a segment of N-WASP encompassing the GBD

[27–28,32]. Mutants containing the EspFU N-terminus and as few

as two repeats were shown to be capable of stimulating actin

assembly using purified N-WASP and Arp2/3 in vitro and also

could promote some degree of pedestal formation during infection

of cultured cells, whereas derivatives containing only a single

repeat did not [32].

These observations provide a framework for understanding the

mechanisms by which EHEC triggers actin pedestal formation:

Tir and EspFU are central to actin assembly, the Tir C-terminus is

critical for recruitment of EspFU and other putative factors that

may contribute to actin nucleation, and multiple proline-rich

repeats of EspFU are required for maximal signaling. However,

important questions remain unanswered. For example, the

potential roles for EHEC effectors other than Tir and EspFU

during actin assembly have not been defined, nor have the precise

roles of the Tir C-terminus and/or the putative factors that

mediate Tir-EspFU interactions. In addition, whereas EspFU can

bind and activate purified recombinant N-WASP derivatives in

vitro, it is unknown how accurately these assays might reflect N-

WASP-stimulating activities in the context of the complex

intracellular milieu, where other N-WASP binding partners like

WIP likely modulate its autoinhibited state.

In the current study, we show that Tir and EspFU are sufficient

to trigger pedestal formation in the absence of any other EHEC

factors. By analyzing EspFU derivatives for the ability to bind

native and recombinant N-WASP and stimulate N-WASP/WIP-

mediated actin assembly in vitro and pedestal formation in cells,

we arrive at a model in which the critical function of Tir is to

promote clustering of the C-terminal repeats of EspFU. These

repeats, in turn, activate N-WASP synergistically and lead to the

formation of an Arp2/3-containing multi-protein complex that

promotes robust actin polymerization.

Results

Intimin-mediated clustering of Tir and EspFU is sufficient
to promote actin pedestal formation

During infection, EHEC is capable of translocating more than

30 effector proteins into the host cell [9]. At least two of these

effectors, EspFU and EspF, are known to directly activate N-

WASP [28–29,33], while additional proteins stimulate signaling

pathways that may also lead to N-WASP-mediated actin

polymerization [34]. However, only two effectors, Tir and EspFU,

have been shown to be crucial for EHEC pedestal formation in

genetic deletion studies. Moreover, KC12, an EPEC strain in

which EPEC tir has been replaced by EHEC tir, is defective at

actin pedestal formation, whereas expression of EspFU by KC12

allows pedestal formation at high efficiency in manner indistin-

guishable from that of EHEC [28]. These results are consistent

with the possibility that Tir and EspFU are the only effectors

essential for EHEC-mediated actin pedestal formation. To

definitively test whether EspFU is the only effector in addition to

Tir that is required for actin pedestal assembly, mammalian cells

were transfected with plasmids encoding derivatives of EHEC Tir

and EspFU in the absence of all other bacterial factors. Tir was N-

terminally tagged with an HA epitope, and its first transmembrane

domain replaced with the transmembrane segment of the New-

castle Disease Virus HN surface protein to promote efficient

plasma membrane localization [31]. EspFU was fused to GFP at its

N-terminus and a 5myc tag at its C-terminus to allow detection by

fluorescence microscopy and immunoblotting, respectively

(Figure 1A). In addition to full-length EspFU, we also generated

GFP-fusions carrying only its N-terminal 88 residues (EspFU-N) or

its C-terminal repeats (EspFU-R1-6) (Figure 1B). To cluster Tir in

the plasma membrane, transfected cells were treated with a non-

Author Summary

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a
food-borne pathogen that causes diarrhea and life-
threatening systemic illnesses. EHEC colonizes the intestine
by adhering tightly to host cells and injecting bacterial
molecules that trigger the formation of a ‘‘pedestal’’ below
bound bacteria. These pedestals are generated by
reorganizing the actin cytoskeleton into densely packed
filaments beneath the plasma membrane. Pedestal forma-
tion is therefore not only important for EHEC disease, it
provides a means to study how mammalian cells control
their shape. We show here that two EHEC proteins, Tir and
EspFU, are sufficient to trigger pedestal formation. Tir
localizes to the mammalian plasma membrane, and its
central function is to promote clustering of EspFU. EspFU

contains multiple repeat sequences that stimulate actin
polymerization by binding N-WASP, a host protein that
initiates actin assembly. Although a single repeat of EspFU

can generate pedestals, multi-repeat variants promote
actin assembly cooperatively. One explanation for this
synergy is that tandem repeats can potently trigger the
formation of a complex of mammalian proteins that
modulate the actin cytoskeleton. These findings define the
minimal set of EHEC effectors required for pedestal
formation and the elements within those effectors that
confer their ability to alter cell shape.

EspFU, N-WASP, and Actin Assembly
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pathogenic strain of E. coli that was engineered to express intimin

(Figure 1A), and binds selectively to Tir-expressing cells [31].

To evaluate actin pedestal formation on cells additionally co-

expressing EspFU, only those cells exhibiting GFP fluorescence were

examined. Adherent bacteria were identified by DAPI-staining and

F-actin was visualized using fluorescent phalloidin. Bacteria that

bound to cells co-expressing Tir and full-length EspFU were

associated with robust localized actin assembly, indicating that

clustering of Tir in the presence of EspFU is sufficient to trigger

pedestal formation (Figure 1C). In addition, pedestals were formed

on cells expressing the C-terminus of EspFU, but not cells expressing

the N-terminus, indicating that the activity of EspFU in pedestal

formation resides entirely within the repeat region.

Experimental clustering of a single EspFU repeat
bypasses the requirement for the Tir C-terminus during
actin pedestal formation

While deletion of the N-terminal cytoplasmic domain of Tir has

a modest effect on actin assembly [31], the C-terminus of EHEC

Tir contains a tripeptide sequence that is critical for both

recruitment of EspFU and pedestal formation [30]. Given that

Tir and EspFU do not appear to bind one another directly [28–

32], and that EspFU can activate N-WASP, the simplest model for

pedestal formation is that the C-terminus of Tir serves to recruit a

host factor that mediates the Tir-EspFU interaction, thereby

indirectly clustering EspFU beneath the plasma membrane. If the

major role of such a host protein is to act as an adaptor between

Tir and EspFU, then artificial clustering of EspFU at the plasma

membrane should bypass the requirement for the C-terminus of

Tir during pedestal formation. To test this possibility, we replaced

the C-terminal cytoplasmic domain of HN-Tir with the C-

terminal repeats of EspFU, expressed this Tir-EspFU fusion in

mammalian cells, and clustered it at the plasma membrane using

antibodies directed against the extracellular region of Tir and

formalin-fixed Staphylococcus aureus particles to engage Tir-bound

antibodies (Figure 2A). We found that clustering of HN-Tir-

EspFU-R1-6, which encompasses all 6 repeats, resulted in high

levels of actin pedestal formation. Measurement of the fraction of

cells harboring five or more pedestals yielded a pedestal ‘‘index’’ of

Figure 1. Clustering of Tir and EspFU is sufficient to promote actin pedestal formation. (A) A full-length derivative of EHEC Tir (HN-TirFL) is
depicted, featuring an HA-tag, N- and C-terminal cytoplasmic regions, an extracellular intimin-binding domain, and two transmembrane segments,
including one derived from the Newcastle Disease Virus HN surface protein. A derivative of EspFU tagged with GFP at its N-terminus and 5myc at its
C-terminus (GFP-EspFU) is also shown. Treatment of transfected cells with a non-pathogenic strain of E. coli expressing EHEC intimin can promote
clustering of membrane-localized HN-TirFL. (B) An alignment of EspFU and the EHEC pseudogene EspFM is shown, featuring an N-terminal EspFU

secretion signal and six nearly identical proline-rich peptide repeats plus one partial repeat at its C-terminus. The N-terminal boundary of the EspFU

repeats was assigned based upon alignment with the sequence of EspFM, which is missing the N-terminal translocation signal. (C) HeLa cells co-
transfected with plasmids encoding HN-TirFL and GFP-EspFU derivatives were treated with intimin-expressing E. coli, fixed, and stained with DAPI to
identify bacteria and phalloidin to detect F-actin. All scalebars are 1 mm in length.
doi:10.1371/journal.ppat.1000191.g001

EspFU, N-WASP, and Actin Assembly
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nearly 90% (Figure 2B and 2C). As expected, the control HN-Tir-

EspFU-N fusion did not trigger significant actin assembly.

The number of repeats present in the C-terminus of EspFU

from different EHEC isolates varies from two to eight, and an

espFU mutant of the prototype strain EDL933 could not be

complemented for pedestal formation by a plasmid encoding a

truncation with only one repeat [32,35]. To determine whether

the quantity of repeats affects the efficiency of pedestal

formation, we assessed actin assembly upon clustering of Tir-

EspFU chimeras containing variable numbers of EspFu repeats.

All of the derivatives, including HN-Tir-EspFU-R1, a fusion

containing only a single repeat, were capable of stimulating actin

assembly (Figure 2B and 2C). Quantitation of the pedestal index

revealed that HN-Tir-EspFU-R1 was roughly half as efficient at

generating pedestals as the fusions containing multiple repeats

(Figure 2C). These results suggest a remarkably simple model in

which the central function of Tir is to promote clustering of the

peptide repeats of EspFU beneath the plasma membrane. In fact,

clustering of a single repeat is sufficient to trigger actin pedestal

formation.

Multiple EspFU repeats are required for full pedestal
formation activity when expressed in the presence of
full-length Tir

We next sought to further investigate the activity of EspFU

derivatives harboring varying numbers of repeats in experimental

systems involving full-length Tir instead of Tir-EspFU chimeras.

To avoid potential variability in the efficiency of type III

translocation of different EspFU derivatives, we expressed GFP-

EspFU truncations in mammalian cells, and tested their ability

to complement KC12, the equivalent of an EHECDespFU

mutant [28], for actin pedestal formation. As expected [36],

KC12 generated pedestals on cells expressing GFP-EspFU-R1-6,

which carries the entire repeat region (Figure 3A). Moreover, all

of the EspFU derivatives that contained at least two repeats were

also capable of complementing KC12 for pedestal formation.

However, KC12 did not generate pedestals efficiently on GFP-

EspFU-R1-expressing cells. Only 1–4 pedestals were occasionally

observed on cells transfected with this variant (data not shown).

This discrepancy in actin assembly cannot be attributed to

differences in protein levels, because immunoblotting revealed that

Figure 2. Experimental clustering of the EspFU repeats bypasses the requirement for the Tir C-terminus during actin pedestal
formation. (A) A fusion of membrane-targeted HN-TirFL to EspFU-myc is shown. Treatment of transfected cells with Tir antibodies and S. aureus
particles can promote clustering of membrane-localized Tir-EspFU fusions. (B) Murine fibroblast-like cells (FLCs) transfected with plasmids encoding
Tir-EspFU fusion constructs comprising the N-terminal domain or truncations of the C-terminal repeats were treated with Tir antibodies and S. aureus,
fixed, and stained with HA antibodies to identify both transfected cells and S. aureus (which binds the fluorescent antibodies) and with phalloidin to
detect F-actin. (C) Pedestal formation indices were determined by calculating the percentage of transfected cells harboring five or more S. aureus
particles generating actin pedestals. Data represent the mean+/2SD from three experiments. The Tir-EspFU R1 construct triggered actin assembly
significantly less efficiently than the other truncations (p,0.05).
doi:10.1371/journal.ppat.1000191.g002

EspFU, N-WASP, and Actin Assembly

PLoS Pathogens | www.plospathogens.org 4 October 2008 | Volume 4 | Issue 10 | e1000191



GFP-EspFU-R1 was well expressed in mammalian cells (data not

shown).

To independently assess pedestal formation in the absence of

other E. coli effectors that might compete with Tir or EspFU for host

target proteins, we also utilized the co-transfection approach

described in Figure 1. HN-Tir along with GFP-EspFU fusions

carrying different numbers of repeats were expressed in mammalian

cells and clustered by treating cells with intimin-expressing bacteria.

When Tir was co-expressed with EspFU constructs harboring

multiple repeats, intensely staining F-actin pedestals were formed

in high numbers (Figure 3B). On cells expressing HN-Tir and GFP-

EspFU-R1, few bacteria were associated with intense pedestals,

whereas most were associated with weakly staining F-actin

(arrowheads). These results indicate that although EspFU derivatives

containing a single repeat can function for pedestal formation after

clustering of full-length Tir in mammalian cells, the presence of 2–6

repeats is required for robust actin assembly.

Multiple EspFU repeats are required for efficient binding
of native N-WASP in mammalian brain extract

Since actin pedestal formation varied depending on the number of

EspFU repeats, we next examined whether the efficiency of pedestal

formation correlates with the ability of the different EspFU trunca-

tions to interact with N-WASP. To characterize the interaction

between N-WASP and derivatives of EspFU harboring different

numbers of repeats in a complex environment reflective of the

mammalian cytosol, we generated protein extracts from pig brains,

which are rich in actin cytoskeleton-associated factors, including N-

WASP, WIP, and the Arp2/3 complex (data not shown). We also

purified recombinant N-terminally His10- and C-terminally 5myc-

tagged EspFU derivatives consisting of 1 to 6 repeats, or as a negative

control, an N-terminal fragment of EspFU (Figure 4A). Magnetic

beads saturated with these EspFU truncations were then incubated

with brain extracts, and N-WASP that bound to the beads was

detected by immunoblotting. EspFU-R1-6, the derivative containing

the entire C-terminus of EspFU, pulled down N-WASP, whereas the

EspFU-N control fragment did not (Figure 4B). The efficiency of N-

WASP pulldown appeared to be slightly lower for variants

containing fewer than four repeats, whereas mutants containing

only a single repeat bound N-WASP at substantially decreased levels

(R1-6 = R1-4.R1-3 = R1-2&R1 = R6).

Since it is possible that saturating beads with a single EspFU

repeat may artificially mimic derivatives with multiple repeats due

to the density of protein clustered on the beads, we also assessed

the interaction between EspFU and native N-WASP under

conditions where EspFU concentrations could be more stringently

controlled. Therefore, His-EspFU derivatives were first added to

extract at a defined concentration (1 mM), and then collected using

cobalt-chelated magnetic particles. Immunoblotting revealed that

N-WASP interacted efficiently with EspFU derivatives containing

6 or 4 repeats (Figure 4C). Slightly lower levels of N-WASP bound

to EspFU proteins harboring 3 or 2 repeats, and constructs

containing a single repeat unit pulled-down N-WASP at barely-

detectable levels (R1-6 = R1-4.R1-3.R1-2...R1 = R6). In-

terestingly, increasing the concentration of EspFU truncations had

little effect on the quantity of N-WASP pulled-down by those

proteins. Thus, although one repeat is capable of binding N-

WASP in brain extracts, stepwise increases in binding are

associated with the presence of additional EspFU repeats within

the same molecule, with an apparent plateau at 4–6 repeats.

EspFU repeats cause titratable increases in actin assembly
in brain extract

EspFU derivatives containing the N-terminal secretion domain

and two or more repeats have been shown to stimulate N-WASP-

Arp2/3–mediated actin assembly using purified proteins in vitro,

while a truncation containing a single repeat barely triggered

assembly [32]. To similarly assess the ability of EspFU to promote

actin polymerization, but in the presence of native components,

we examined the ability of recombinant EspFU variants to

stimulate actin polymerization in brain extract. Purified EspFU

derivatives were added to extract supplemented with pyrene-

labeled actin, and polymerization kinetics were measured

fluorometrically [37]. Consistent with analyses of pedestal

formation in cells, EspFU-R1-6 accelerated actin assembly in

extract, while EspFU-N did not (Figure 5A). The degree of

stimulation by EspFU-R1-6 was dose dependent, and peaked at

20 nM (Figure 5B), although polymerization rates were slower

than those typically observed in a completely purified experimen-

tal system, presumably due to the presence of inhibitory factors in

the extract. Concentrations above 20 nM did not increase the rate

of assembly, and levels greater than 50 nM actually resulted in

Figure 3. Multiple EspFU repeats are required for full activity when expressed in the presence of full-length Tir. (A) FLCs transfected
with plasmids encoding GFP-EspFU truncations containing either the N-terminal domain or the C-terminal repeats were infected with EPEC KC12,
fixed, and treated with DAPI to identify bacteria and phalloidin to detect F-actin. Pedestal indices were determined by calculating the % of GFP-
EspFU-expressing cells harboring five or more actin pedestals. Data represent the mean+/2SD of three experiments. (B) HeLa cells co-transfected with
plasmids encoding HN-TirFL and GFP-EspFU truncations were infected with intimin-expressing E. coli, fixed, and treated with DAPI to identify bacteria
and phalloidin to detect F-actin. Arrowheads indicate sites of less-intense F-actin assembly.
doi:10.1371/journal.ppat.1000191.g003

EspFU, N-WASP, and Actin Assembly
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slower kinetics (not shown), implying that polymerization in

extract is refractory in the presence of high levels of EspFU.

To characterize the relationship between the number of EspFU

repeats and the ability to stimulate actin assembly, pyrene-actin

polymerization was also measured when the recombinant EspFU

truncations were added to extract. When tested at 20 nM, the

optimal concentration for actin assembly mediated by the EspFU

derivative containing all 6 repeats, EspFU variants containing 2, 3,

or 4 repeats accelerated actin assembly, and the rate of

polymerization positively correlated with the number of repeats

that were present (Figure 5C). In contrast, neither EspFU-R1 nor

EspFU-R6, the truncations containing a single repeat, caused a

significant acceleration of actin assembly in this assay system.

Notably, the kinetics of actin assembly in these studies correlated

with the ability of the EspFU constructs to interact with N-WASP

in the extract (Figure 4). Consistent with such results, increasing

the concentration of EspFU variants harboring less than 3 repeats

did not enhance actin assembly (data not shown). Collectively,

these data indicate that the presence of multiple repeats within the

same polypeptide is important for triggering actin polymerization

in an extract system designed to mimic a complex native

environment.

Figure 4. Multiple EspFU repeats are required for efficient
binding of N-WASP in brain extract. (A) N-terminally His10-tagged
and C-terminally 5myc-tagged EspFU derivatives were expressed in E.
coli, purified, resolved by SDS-PAGE, and stained with Coomassie blue.
(B) Cobalt-chelated magnetic particles were coated with saturating
concentrations of EspFU derivatives and subsequently incubated with
porcine brain extract. The association of native N-WASP with EspFU-
coated beads was assessed by SDS-PAGE followed by immunoblotting
of bead eluates with antibodies to N-WASP and staining EspFU with
Ponceau S. (C) His-EspFU-myc constructs were added to brain extract at
the indicated concentrations and collected using cobalt-chelated
magnetic particles. The association of native N-WASP and EspFU with
the beads was assessed by immunoblotting of bead eluates with
antibodies to N-WASP and staining EspFU with Ponceau S.
doi:10.1371/journal.ppat.1000191.g004 Figure 5. EspFU repeats cause titratable increases in actin

assembly in brain extract. (A) His-EspFU-myc constructs (20 nM each)
were added to Arp2/3-enriched brain extract supplemented with 2.5 mM
G-actin (10% pyrene labeled), and fluorescent actin polymerization, in
arbitrary units (AU), was measured over time. EspFU did not trigger actin
assembly in the absence of extract (data not shown). (B) Pyrene-actin
polymerization in the presence of brain extract and various concentra-
tions of EspFU-R1-6 was measured over time. (C) Pyrene-actin polymer-
ization in the presence of brain extract and EspFU truncations containing
different repeat segments (20 nM each) was measured over time.
doi:10.1371/journal.ppat.1000191.g005

EspFU, N-WASP, and Actin Assembly
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EspFU repeats synergistically activate N-WASP/WIP–
mediated actin assembly in vitro

Under physiological conditions, N-WASP stably associates with

WIP or it homologs CR16 and WIRE/WICH [21,38]. In addition,

WIP is capable of inhibiting Cdc42-mediated activation of N-WASP

[20] and, unlike recombinant N-WASP, the native N-WASP/WIP

complex is insensitive to Cdc42 treatment [21], suggesting that

regulation of N-WASP in isolation may not accurately reflect

physiological N-WASP regulation in vivo. We therefore examined

whether EspFU can trigger Arp2/3-mediated actin assembly in the

presence of an N-WASP/WIP complex. We purified a recombinant

complex containing N-WASP and WIP at 1:1 stoichiometry and also

contained a trace amount of insect cell actin (see Materials and

Methods; Figure 6A). We also purified recombinant Arp2/3

complex [39], and examined the basal activity of the N-WASP/

WIP complex using the pyrene-actin polymerization assay. Consis-

tent with the predicted autoregulation of N-WASP, the recombinant

N-WASP/WIP complex caused only a small increase in actin

assembly kinetics when compared to Arp2/3 alone (Figure 6B).

To determine if EspFU could trigger actin assembly in this

purified system, pyrene-actin polymerization was measured in the

presence of recombinant EspFU-R1-6, N-WASP/WIP, and Arp2/

3 complex. Consistent with analyses of pedestal formation in cells

and actin assembly in extracts, EspFU-R1-6 accelerated actin

assembly in this reconstituted system (Figure 6B). In the presence

of 20 nM N-WASP/WIP and 20 nM Arp2/3, activation ap-

peared to saturate at approximately 35 nM EspFU-R1-6.

We next examined the abilities of the EspFU truncations to

stimulate actin assembly. By identifying the length of time each

reaction took to reach half of the maximal F-actin concentration

and measuring the rates of actin polymerization at these times, we

directly compared the activity of each construct (Figure 6C). These

experiments revealed that EspFU-R1-6 and EspFU-R1-4 were

nearly indistinguishable at stimulating actin assembly, as the

concentrations of these proteins that were required for reaching

half of the maximal polymerization rate were approximately

4.0 nM and 5.7 nM, respectively. EspFU-R1-3 was less active than

either the 6- or 4-repeat constructs at all concentrations tested, and

Figure 6. EspFU repeats synergistically activate actin assembly mediated by recombinant N-WASP/WIP complex in vitro. (A) N-
terminally His6-Flag-tagged N-WASP and His6-Myc-tagged WIP were co-expressed in insect cells, purified as a stoichiometric complex, resolved by
SDS-PAGE, and stained with Coomassie blue. (B) Actin (2 mM) was polymerized in the presence of Arp2/3 complex, N-WASP/WIP complex, and the
indicated concentrations of EspFU. F-actin fluorescence was measured in arbitrary units (AU). (C) Actin polymerization was examined in the presence
of 20 nM Arp2/3 complex, 20 nM N-WASP/WIP complex, and the indicated concentrations of EspFU derivatives. Polymerization rates at half-maximal
F-actin concentrations were measured relative to the rate of polymerization in control Arp2/3+N-WASP/WIP samples lacking EspFU. Curves were fit
using Prism software. (D) Actin polymerization was measured as in (C), except that EspFU concentrations have been scaled to the number of repeats
in each protein.
doi:10.1371/journal.ppat.1000191.g006
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it stimulated half-maximal assembly at a concentration of

19.4 nM. EspFU-R1-2 was substantially less active than the 3-repeat

derivative (half-maximal at 78 nM), while the single repeat

constructs EspFU-R1 and EspFU-R6 were even less active (half-

maximal at 99–117 nM). Even when present at very high

concentrations (.500 nM), the EspFU derivatives harboring 1–2

repeats could not accelerate polymerization to rates comparable to

those elicited by 35 nM EspFU-R1-6 (data not shown). Thus, in the

presence of purified N-WASP/WIP and Arp2/3, the number of

EspFU repeats positively correlates with the rate of actin assembly.

To compare the activity of the EspFU derivatives on the basis of

repeat numbers, we normalized protein concentrations to the

quantity of repeat units within each polypeptide. For example,

4.17 nM of the 6-repeat construct was considered equivalent to

8.33 nM of a 3-repeat truncation and 25 nM of a single repeat.

Scaling of the data in this manner revealed that EspFU derivatives

containing greater numbers of repeats within the same protein had

substantially higher activity than smaller constructs (Figure 6D).

For example, when protein concentrations were normalized to

25 nM of repeats, the 6-repeat protein was actually twice as active

as the 3-repeat protein, which was more than twice as active as the

2-repeat protein, which was roughly twice as active a 1-repeat

protein. A similar trend was apparent at higher concentrations

(50–200 nM), as longer EspFU constructs always had greater levels

of activity than smaller derivatives containing equimolar amounts

of repeats. Hence, EspFU repeats cooperate when present within

the same protein to promote synergistic activation of N-WASP/

WIP and Arp2/3-mediated actin assembly.

The GBD of N-WASP is a dominant negative inhibitor of
EHEC pedestal formation and binds with high efficiency
to a single EspFU repeat in yeast two-hybrid assays

Insight into the ability of multi-repeat EspFU derivatives to

pulldown N-WASP from brain extracts and stimulate N-WASP/

WIP-mediated actin assembly in vitro would be enhanced by a

better understanding of EspFU binding by N-WASP, which is

mediated by the GBD [28–29]. To further test the functional

significance of this interaction during pedestal formation, we

transfected mammalian cells with constructs expressing Flag-

tagged N-WASP variants, each encompassing a different combi-

nation of N-WASP domains (Figure 7A), and then examined

pedestal formation upon infection with EHEC. Consistent with

previous observations showing that N-WASP residues 226–274

within the GBD mediate recruitment of N-WASP to sites of

EHEC attachment [14], all tagged N-WASP derivatives contain-

ing the GBD (residues 151–273) were recruited to sites of bacterial

adherence (Figure 7B, top row). In addition, quantitation of

pedestal formation on transfected cells revealed that neither the N-

terminal WH1 domain nor full-length N-WASP had a substantial

effect on actin polymerization, whereas overexpression of each of

the 4 GBD-containing derivatives that lacked the VCA domain,

which is necessary for Arp2/3 activation, effectively abolished

pedestal formation (Figure 7B, bottom row). This inhibition was

specific, because overexpression of the GBD did not affect actin

assembly triggered by an EPEC strain that generates pedestals

independently of EspFU (Figure 7C). As predicted by mapping of

requirements for N-WASP recruitment to EHEC [14], an H208D

point mutation that abrogates N-WASP binding by the GTPase

Cdc42 had no effect on the inhibitory activity of the GBD. These

results indicate that the interaction between EspFU and the C-

terminal portion of the N-WASP GBD is important for pedestal

formation in mammalian cells.

Next, to begin to assess whether the positive correlation between

the number of repeats within an EspFU derivative and its ability to

activate actin assembly is reflected in binding to the N-WASP GBD,

we examined this interaction in yeast two-hybrid assays. As

demonstrated previously [28], the N-WASP GBD interacted with

the C-terminus of EspFU that contains the repeat sequences, but not

the EspFU N-terminus (Figure 7D). In addition, all of the C-terminal

subfragments of EspFU, even those containing only a single repeat,

interacted with the GBD in these assays. However, the degree of

interaction did not positively correlate with increasing numbers of

repeats. Rather, the number of repeats in EspFU inversely correlated

with the degree of expression of the lacZ reporter. Although reporter

activity in the yeast two-hybrid assay reflects a number of

parameters, including levels of expression and nuclear import of

the binding partners, these results provide no evidence that the more

efficient activation by multi-repeat EspFU derivatives is a conse-

quence of cooperativity in GBD binding.

Increasing the number of EspFU repeats does not alter
affinity for the GBD, but promotes the formation of an
Arp2/3-containing complex

To further assess potential cooperativity in GBD binding by

EspFU, we examined the interactions of EspFU derivatives with the

GBD of WASP, the hematopoetic-specific homologue of N-WASP

that has been shown to also promote actin pedestal formation in

cells [14]. Recombinant EspFU proteins containing 5, 2, or 1

repeats (R91-5, R94-5, and R95, respectively) were generated with

N- and C-terminal repeat boundaries based on recent structural

studies that defined the GBD-binding sequences of EspFU [40–

42]. The affinity of the WASP GBD for these EspFU constructs

was determined using isothermal titration calorimetry and yielded

predicted differences in stoichiometry (i.e., 5.7, 1.8, and 1.0 for the

5, 2, and 1 repeat derivatives, respectively) but similar dissociation

constants (i.e., 83 nM, 95 nM, and 89 nM, respectively)

(Figure 8A). Thus, variation in the number of EspFU repeats is

not associated with differences in affinity for the GBD.

We next tested whether oligomerization of N-WASP by

adjacent EspFU repeats instead might promote binding of the

Arp2/3 complex. N-WASPC, a C-terminal fragment of N-WASP

that contains the GBD, PRD, and VCA domain, is a fragment

previously shown to function in pedestal formation [14]. To

determine whether EspFU derivatives differing in repeat number

also differed in their ability to form a complex containing N-

WASPC and Arp2/3, EspFU variants containing 1 or 2 repeats,

fluorescently labeled at their N-termini with AlexaFluor647, were

incubated with equivalent molar concentrations of N-WASPC in

the absence or presence of the Arp2/3 complex. The relative size

of EspFU-containing complexes, detected by absorbance at

650 nM, was then determined by gel filtration chromatography.

The single EspFU repeat bound N-WASP at essentially stoichio-

metric levels when mixed in equimolar (2 mM) quantities, as

determined by an increase in the apparent size (i.e., earlier elution

profile) of EspFU (Figure 8B left, red vs. blue peaks). The addition

of 2 mM (i.e., a two-fold higher molar concentration) Arp2/3

caused ,60% of the EspFU to shift to an even more rapidly eluting

fraction indicative of an EspFU-N-WASP-Arp2/3 complex

(Figure 8B, yellow profile). Very little of this complex was detected

using 1 mM Arp2/3 (Figure 8B left, small shoulder in gray profile).

When 1 mM N-WASPC was incubated with 0.5 mM of the 2-

repeat EspFU derivative (i.e., containing a normalized repeat

concentration), the two proteins bound one another at essentially

stoichiometric levels (Figure 8B, right, compare light blue and

green profiles). However, in contrast to the requirement for 2 mM

Arp2/3 to observe appreciable complex formation with a single

repeat, the addition of as little as 0.5 mM Arp2/3 to N-WASPC

and the two repeat derivative resulted in the formation of an

EspFU, N-WASP, and Actin Assembly
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Arp2/3-containing complex (Figure 8B right, blue or pink profiles,

respectively). The greater complex formation even at lower Arp2/

3 concentration indicates that the ability of tandem EspFU repeats

to assemble N-WASP dimers (or by implication higher order

multimers) may facilitate binding of the Arp2/3 complex,

providing a likely source of inter-repeat cooperativity.

Since the assay demonstrating inter-repeat cooperation of EspFU

for the formation of an Arp2/3-containing complex described above

involved the addition of only EspFU, N-WASPC, and Arp2/3, N-

WASP-associated proteins such as WIP should not be required for

cooperativity between the EspFU repeats in actin assembly.

Furthermore, domains of WASP (or N-WASP) other than the

GBD (which binds EspFU) and VCA (which binds Arp2/3) should

also be dispensable. We therefore tested whether the EspFU repeats

were capable of synergistically activating a minimized (and normally

autoinhibited [40]) derivative of WASP containing only the GBD

Figure 7. The GTPase-binding domain (GBD) of N-WASP is a dominant negative inhibitor of EHEC pedestal formation and binds
with high efficiency to a single EspFU repeat in yeast two-hybrid assays. (A) The modular structure of N-WASP is depicted, featuring WASP
homology-1 (WH1), GTPase-binding (GBD), proline-rich (PRD), and WH2/verprolin-connector-acidic (VCA) domains. Several N-WASP-binding partners
are shown above their interacting domains. (B) HeLa cells transfected with plasmids encoding Flag-N-WASP constructs were infected with EHECDdam
(a mutant that binds to mammalian cells and generates pedestals with considerably higher efficiency than wild type EHEC [44]), fixed, and treated
with DAPI to identify bacteria, a Flag antibody to visualize tagged N-WASP (top panels), and phalloidin to detect F-actin (bottom panels). Flag-N-
WASP recruitment was only evaluated in cells expressing low levels of these tagged proteins (top panels), while effects on actin pedestal formation
were only assessed in cells expressing high levels of Flag-N-WASP (bottom panels). Pedestal formation indices were determined by calculating the
percentage of mock-transfected or Flag-N-WASP overexpressing cells harboring five or more actin pedestals. Data represent the mean+/2SD of three
experiments. (C) HeLa cells expressing GFP alone, a GFP-tagged GBD, or a GFP-tagged GBD H208D point mutant were infected with EHECDdam or
EPEC and treated with DAPI to identify bacteria and phalloidin to detect F-actin. Pedestal formation indices were determined as in (B). (D) Plasmids
encoding the N-WASP GBD fused to the LexA DNA-binding domain and EspFU fragments fused to the Gal4 transcriptional activation domain were co-
transformed into a yeast two-hybrid reporter strain. Data represent the mean+/2SD of b-galactosidase activity for three co-transformants for each
pairwise combination.
doi:10.1371/journal.ppat.1000191.g007
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and VCA domain. Similar to results using EspFU truncations and an

N-WASP/WIP complex, pyrene actin assays using WASP GBD-

VCA revealed that the number of EspFU repeats correlated with

increased actin polymerization rates, even when protein concentra-

tions were normalized to repeat units (Figure 8C). These results

indicate that synergy in actin assembly require no WASP sequences

other than the GBD and VCA domain.

Discussion

In order to better understand EHEC pedestal formation, we

first sought to define the minimal set of bacterial effectors essential

to this process. We found that EspFU is likely the only EHEC

effector besides Tir that is required for pedestal formation, because

pedestals can be induced on mammalian cells that express these

two factors in the absence of any other bacterial proteins. In

addition, the cytoplasmic C-terminus of Tir could be functionally

replaced with the C-terminus of EspFU, indicating that the only

critical function of this Tir domain is to recruit the EspFU repeats

to sites of EHEC attachment. The C-terminus of the prototype

EspFU protein consists of six 47-residue proline-rich repeats, and a

fusion containing a single repeat unit retained significant ability to

generate pedestals when clustered at the plasma membrane. This

is consistent with a recent report describing actin recruitment to

the plasma membrane after artificially clustering a single repeat

with antibodies [42]. That study, as well as the recent report of the

structure of a single EspFU repeat bound to the WASP GBD [41],

revealed that EspFU binds to the autoinhibitory region within the

GBD that normally interacts with the VCA domain, a finding

consistent with previous mapping studies [14,27,32]. Therefore,

the bare minimum components required for pedestal formation

are the domains of Tir that facilitate its membrane localization

and clustering by intimin, and a single GBD-binding EspFU

peptide repeat.

Figure 8. Increasing the number of EspFU repeats does not alter affinity for the GBD, but promotes the formation of an Arp2/3-
containing complex. (A) Isothermal titration calorimetry analyses of the interactions between WASP GBD and EspFU fragments are shown. The GBD
was titrated into R95 (left), R94-5 (middle), or R91-5 (right). Raw and integrated heats of injections are shown in upper and lower panels, respectively.
Black lines in the lower panels show fits of data into a single-affinity, multi-site binding model. Fits of the data for R94-5 and R91-5 to models with two
different affinities were not statistically improved over the single-affinity model. (B) Interactions between Arp2/3 complex and N-WASPC in complex
with Alexa647-labeled EspFU R95 or R94-5 were examined by gel filtration chromatography. The A650 profile is shown. (C) Actin (4 mM) was
polymerized by itself (black curve), or in the presence of 10 nM Arp2/3 complex plus either 0.5 mM WASP GBD-VCA (purple, control), 0.5 mM GBD-
VCA+1 mM R95 (yellow), or 0.5 mM GBD-VCA+0.5 mM R94-5 (blue), or 0.5 mM GBD-VCA+0.2 mM R91-5 (red). F-actin fluorescence was measured in
arbitrary units (AU). Note that R95, R94-5, and R91-5 were used at the same total repeat concentration.
doi:10.1371/journal.ppat.1000191.g008
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Within the Tir C-terminal domain, a tripeptide sequence

(NPY458) is required for recruitment of EspFU and actin pedestal

formation [30], but a direct interaction between Tir and EspFU has

not been detected, suggesting that they interact indirectly. The

delineation of Tir and EspFU as the only bacterial effectors required

for pedestal formation indicates that the putative adaptor that

mediates this interaction is of host origin. Efficient association of

EspFU with the putative adaptor linking it to Tir may require

multiple EspFU repeats, because when Tir and EspFU were

expressed separately rather than as a single fusion protein, at least

two repeats were required for robust EspFU function. Consistent

with these results, a translocated 2-repeat EspFU derivative, but not a

1-repeat derivative, localized to sites of bacterial attachment [32].

Aside from promoting Tir-EspFU interactions, this host factor

may itself promote some level of actin assembly, because residual

pedestals can form at low levels in the absence of EspFU [28].

Cortactin, which has the ability to stimulate Arp2/3 and contributes

to pedestal formation via an unknown mechanism, can interact with

both Tir and EspFU, but binds the Tir N-terminus [36], a domain

that is largely dispensable for actin assembly [31]. Regardless of the

identity of the adaptor, the finding that a hybrid protein containing

Tir fused directly to the EspFU repeats is fully functional for pedestal

formation indicates that neither the adaptor nor the C-terminus of

Tir play any essential role in actin assembly other than to recruit

EspFU. Thus, EspFU is the primary effector that signals to the actin

cytoskeleton during pedestal formation.

In addition to promoting more efficient recruitment to Tir, the

presence of multiple repeat units in EspFU provides more robust

signaling function, because a Tir-EspFU fusion carrying two or

more repeats triggered pedestal formation at levels 2-fold higher

than a fusion carrying a single repeat. Recently, a full-length

repeat region was shown to recruit GFP-actin to the plasma

membrane somewhat (,20%) more frequently than a single

repeat [42]. That report and others have also shown that multi-

repeat EspFU derivatives promote more efficient actin assembly in

vitro than a single-repeat derivative [32,42]. Such studies have

relied upon analyses of recombinant N-WASP or small N-WASP

fragments containing the minimal autoinhibitory module, a GBD-

VCA fusion. However, in recent years it has become apparent that

in the cell cytoplasm the intrinsic activity of N-WASP may be

significantly modulated through interactions with other factors

[20–21]. We therefore examined EspFU-induced actin polymer-

ization in brain extracts, and found that in this complex

environment, the number of repeats correlated both with the

ability of EspFU derivatives to interact with native N-WASP and to

stimulate actin assembly. Single-repeat constructs did not

accelerate polymerization in these assays, possibly due to

competition with endogenous N-WASP activators or the presence

of inhibitory factors in the extract.

Under physiological conditions, N-WASP is stably associated

with WIP, a protein that binds to its N-terminal WH1 domain and

influences its activation [20–21]. We found that EspFU constructs

are capable of potently activating Arp2/3-mediated actin assembly

in the presence of a recombinant N-WASP/WIP complex, and as

predicted based upon N-WASP pulldown assays and measure-

ments of actin polymerization in extracts, EspFU derivatives

containing greater numbers of repeats stimulate actin assembly

more rapidly. Interestingly, when we normalized the EspFU

derivatives to the concentration of repeats and quantitated actin

assembly rates, we found that increasing the number of repeats

within individual proteins does not simply result in additive

increases in actin polymerization. Instead, the presence of multiple

repeats in the same derivative enhances N-WASP/WIP-mediated

actin assembly synergistically.

It is possible that this enhancement phenotype is due to

cooperativity among the repeats in EspFU-N-WASP binding.

Indeed, an earlier study reported that the dissociation constants

(Kd) for the EspFU-N-WASP interaction varied depending on the

numbers of repeats (e.g., 3.6 nM for 6 repeats, 6.4 nM for 4

repeats, and 11 nM for 2 repeats, and no measurable binding for 1

repeat) [32]. However, these values were calculated on the basis of

in vitro actin assembly assays that involve the formation of an N-

WASP-Arp2/3 complex, and may not simply reflect the

interaction between EspFU and N-WASP. Similarly, the more

efficient pulldown of N-WASP by multi-repeat EspFU derivatives

in brain extracts that we observed could be influenced by other

endogenous factors. Although a previous study found that 2

repeats is the minimal N-WASP-binding module within EspFU in

gel overlay assays [32], we found that a single repeat bound to the

GBD with high efficiency in yeast two-hybrid assays. Furthermore,

the Kd for binding of purified 1-, 2-, or 5-repeat EspFU derivatives

to the WASP GBD were all similar to one another (i.e., 83–

95 nM), and within an order of magnitude of that measured for

the N-WASP GBD (18 nM; [42]). These results provide

convincing evidence that the EspFU repeats do not bind to the

GBD in a cooperative fashion.

An alternative explanation for inter-repeat cooperativity during

actin polymerization is that an EspFU-N-WASP-Arp2/3 complex

can be formed more efficiently. The major threshold for pedestal-

forming function apparently resides within 2 EspFU repeats, and

we were unable to detect substantial differences in the frequency

or intensity of actin pedestal formation promoted by EspFU

proteins harboring 2, 3, 4, or 6 repeats (although in vitro actin

assembly assays indicate that the number of repeats present in an

EspFU derivative correlates positively with function). Similarly,

analysis of a diverse collection of espFU-containing E. coli strains

showed that all EspFU proteins contain at least 2 repeats [35].

Therefore, we compared the ability of EspFU derivatives

containing 1 versus 2 repeats to enter into a complex with

recombinant N-WASP and Arp2/3 complex. As predicted from

the affinities of EspFU fragments for the GBD, the single and two

repeat derivatives bound to N-WASP indistinguishably. However,

the 2-repeat protein formed a complex with both N-WASP and

Arp2/3 with much greater efficiency. These experiments suggest

that N-WASP multimers assembled by tandem EspFU repeats may

have higher affinity for Arp2/3 complex. As predicted from such a

model, the inter-repeat cooperativity was revealed during in vitro

actin assembly assays using a WASP derivative containing only the

EspFU-binding GBD and the Arp2/3-binding VCA domain.

Further study will be required to illuminate the molecular basis of

this enhanced interaction.

Interestingly, the multivalency that is clearly a critical property

of EspFU is likely an important feature of other Arp2/3-mediated

processes that are triggered by microbial pathogens. Pedestal

formation by EPEC, which occurs in an EspFU-independent

manner, requires clustering of Tir, a step that may mimic

multivalent binding. The critical EPEC Tir phosphopeptide has

no activity when added in soluble form in standard pyrene actin

assays [S. Rankin, unpub. obs.], but potently stimulates actin

assembly when clustered on a bead [25]. EspF, an EHEC effector

that is 35% similar to EspFU but not involved in pedestal

formation [28], also uses peptide repeats to activate N-WASP in

vitro [33]. Finally, the Shigella IcsA (VirG) protein uses repetitive

sequences to bind N-WASP and promote actin-based intracellu-

lar motility [43]. Future investigation into how the multivalent

nature of EspFU promotes actin assembly is likely to provide

insight into related phenomena central to multiple pathogenic

processes.

EspFU, N-WASP, and Actin Assembly

PLoS Pathogens | www.plospathogens.org 11 October 2008 | Volume 4 | Issue 10 | e1000191



Materials and Methods

Bacteria, plasmids, and cell lines
The EHEC dam mutant used in this study was derived from

TUV93-0, a Shiga toxin-deficient version of the prototype

O157:H7 strain EDL933 [44]. The EPEC bacterium was the

prototype O127:H6 strain, JPN15/pMAR7. EPEC KC12, which

contains the EPEC tir-cesT-eae operon replaced with the corre-

sponding EHEC operon, has also been described [45]. A non-

pathogenic strain of E. coli (MC1061) expressing EHEC intimin

was also described elsewhere [31]. For yeast two-hybrid analyses,

espFU derivatives were generated by PCR from EDL933 genomic

DNA and cloned into the EcoRI and BamHI sites of pGAD424

[28] to create fusions between an N-terminal GAL4AD and C-

terminal 5myc tag. For transfections, espFU fragments were

subcloned into the KpnI and BamHI sites of pKC425 [46] to

generate fusions between an N-terminal GFP-tag and C-terminal

5myc tag. For protein expression and purification, most espFU

derivatives were subcloned into the NdeI and XbaI sites of the

vector pET16b (Novagen) to create fusions between an N-terminal

His10-tag and C-terminal 5myc tag. Some EspFU constructs

contained only an N-terminal His-tag (Figure 8) [41]. For Tir-

EspFU hybrids, espFU-myc derivatives were subcloned into the

KpnI and XbaI sites of the HN-Tir-related vector pKC689 [31].

EspFU truncations contained amino acids 1-88 (N), 80-384 (R1-6),

80-275 (R1-4), 80-228 (R1-3), 80-181 (R1-2), 80-134 (R1), 229-

384 (R4-6), 276-384 (R5-6), 323-384 (R6), 80-314 (R91-5), 221-

314 (R94-5), and 268-314 (R95). For dominant negative transfec-

tions, rat N-WASP derivatives were generated by PCR with an N-

terminal Flag-tag using domain boundaries described previously

[28] and cloned into the KpnI-EcoRI sites of the vector pCDNA3

(Invitrogen). N-terminally GFP-tagged derivatives of the GBD

were generated by subcloning into pKC425. Plasmids for

expression of membrane-targeted HN-TirFL in mammalian cells

and expression of the N-WASP GBD fused to the LexA DBD in

pBTM116 have been described previously [28,31]. Plasmids for

expression of His-Flag-N-WASP and His-Myc-WIP in insect cells

are described elsewhere (ADS and MDW, submitted). N-

terminally His- or GST-tagged WASP GBD (residues 242–310),

N-WASPC (residues 193-501) and WASP GBD-VCA (residues

230–310 and 420–502 with a GGSGGS linker) constructs are

described elsewhere [41]. For routine passage, all E. coli strains

were grown in LB media at 37uC. Prior to infections, EHEC was

cultured in DMEM+100 mM HEPES pH 7.4 in 5% CO2 to

enhance type III secretion. HeLa, Cos7, and murine fibroblast-like

cells (FLCs) [47] were used interchangeably and cultured in

DMEM+10% FBS at 37uC in 5% CO2.

Transfections and infections
All transfections were performed as described previously [31].

Infections for 3 h with non-pathogenic E. coli expressing intimin

[31] and EHEC or EPEC strains [44–45] have also been

described. To cluster Tir, cells were treated with antibodies that

recognize its extracellular domain prior to the addition of

formalin-fixed S. aureus Pansorbin particles (Calbiochem) [25].

Immunofluorescence microscopy
Infected cells were fixed in 2.5% paraformaldehyde for

35 minutes and permeabilized with 0.1% Triton-X-100 in PBS

as described previously [45]. Bacteria were identified with 1 mg/

ml DAPI (Sigma), and F-actin was detected using 4 U/ml

Alexa568-phalloidin (Molecular Probes). To visualize N-WASP

derivatives, cells were treated with an anti-Flag M5 antibody

(Sigma) and Alexa488 goat anti-mouse antibodies (Molecular

Probes). To visualize HN-Tir derivatives, cells were treated with

an HA.11 antibody (Covance) and Alexa488 or Alexa350 goat

anti-mouse antibodies. To quantify the pedestal formation index in

cells expressing high levels of N-WASP derivatives, which were

identified by bright anti-Flag or GFP fluorescence, the percentage

of cells harboring at least 10 adherent bacteria and 5 actin

pedestals was measured. To quantify the pedestal index in cells

infected with KC12, the percentage of cells harboring at least 10

adherent bacteria and 5 actin pedestals was measured. To quantify

the pedestal index in cells treated with pansorbin particles, the

percentage of HA-fluorescing cells harboring at least 10 adherent

particles (the latter identified by virtue of their ability to bind

fluorescently labeled secondary antibodies) and 5 actin pedestals

was measured. At least 50 cells were examined per sample per

experiment. Our previous work suggests that scoring of a pedestal

index accurately reflects similar quantification methods that

measure the fraction of bound bacteria that generate pedestals

[25]. Cells expressing extremely high fluorescence levels of EspFU

were refractory to pedestal formation and were not included in

these analyses. All scalebars are 1 mm in length.

EspFU interaction assays
For yeast two-hybrid assays. EspFU variants consisting of

different combinations of the 6 repeats were fused to the Gal4

transcriptional activation domain, whereas the N-WASP GBD was

fused to the LexA DNA-binding domain. Pairwise combinations of

these fusion proteins were tested for interactions by measuring

activation of a lacZ reporter, as described [28]. For some pulldown

assays (Figure 4B), cobalt-chelate conjugated magnetic Talon

particles (Invitrogen) were saturated with His-EspFU-myc deriva-

tives by incubating them with 75 mg/ml of each recombinant

fragment for 1 h. After removal of unbound EspFU, beads were

incubated with brain extract for 1 h in 50 mM NaPO4 pH 7.4,

150 mM NaCl, and 0.015% Triton X-100. Bound proteins were

eluted by boiling in SDS-PAGE sample buffer. For other pulldown

assays (Figure 4C), His-EspFU-myc derivatives were incubated in

brain extract at specific concentrations for 0.5 h and collected

using an excess of Talon particles. Bound proteins were again

eluted by boiling in SDS-PAGE sample buffer.

Immunoblotting
To prepare mammalian cell lysates, transfected cells were

collected in PBS+2 mM EDTA and lysed in 50 mM Tris-HCl,

pH 7.6, 50 mM NaCl, 1% Triton X-100, 1 mM Na3VO4, 1 mM

PMSF, and 10 mg/ml each of aprotinin, leupeptin, pepstatin, and

chymostatin (Sigma)), prior to mixing with SDS-PAGE sample

buffer. Protein samples were boiled for 10 minutes, centrifuged,

and analyzed by 10% SDS-PAGE prior to staining with

Coomassie blue or transferring to nitrocellulose membranes and

staining with Ponceau S. Membranes were blocked in PBS+5%

milk (PBSM) before probing with N-WASP or GFP antibodies, as

described previously [28]. Following washes, membranes were

treated with secondary antibodies conjugated to alkaline phos-

phatase or horseradish peroxidase and developed using BCIP/

NBT [45] or enhanced chemiluminescence [48].

EspFU expression and purification
His-EspFU-myc fusion proteins were expressed in E. coli BL21-

Rosetta (Novagen) at 37uC in the presence of 0.1 mM IPTG for

3 h. Bacteria were lysed in 10 mM Tris pH 7.4, 150 mM NaCl,

and protease inhibitor cocktail (Roche) using a cell disruptor

(30kpsi, Constant Cell Systems). EspFU was purified first using

His-tag affinity for Ni-NTA-agarose beads (Qiagen) and eluted in

lysis buffer containing 400 mM imidazole. To remove EspFU
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degradation products, an anion exchange purification step,

facilitated by the negatively charged 5myc-tag, was performed.

EspFU was bound to a HiTrap Q column (GE Healthcare) and

eluted in 10 mM Tris pH 9.5 containing 1 M NaCl. Other EspFU

constructs (R95, R94-5, R1-5; Figure 8) with just an N-terminal

His-tag were expressed in E. coli BL21-DE3 at 20uC in the

presence of 1 mM IPTG for 16 h, and after Ni-NTA affinity

purification the tag was cleaved with thrombin. Cleaved proteins

were subjected to ion exchange and gel filtration chromatography

to remove the tag and other impurities. Protein concentrations

were estimated by Bradford assay (Bio-Rad).

Preparation of brain extracts
Brains obtained from freshly slaughtered pigs (Dalehead Foods

Ltd, Linton, UK) were cleaned, sectioned, and resuspended in

extraction buffer (0.1 M MES pH 6.8, 1 mM EGTA, 0.5 mM

MgCl2, 0.1 mM EDTA, 1 mM DTT, protease inhibitor cocktail),

prior to homogenization using a Waring blender (2615 s, 4uC).

After clarification (7,000 g, 20 min, 4uC), extracts were filtered

through cheesecloth and further clarified (11,000 g, 40 min, 4uC)

prior to storage (280uC). Extract to be subfractionated (60 ml) was

dialysed against 265 L 20 mM Tris-Cl pH8, 2 mM MgCl2,

5 mM EGTA, 1 mM EDTA, 0.5 mM DTT, 0.2 mM ATP, 2.5%

glycerol at 4uC, prior to loading onto tandem HiTrap Heparin

columns (265 ml), pre-equilibrated with dialysis buffer. Bound

proteins were eluted using a 0–0.5 M KCl gradient in dialysis

buffer (2 ml/min) and 20 3 ml fractions collected. Fractions 11–17

contained both Arp2/3 complex and N-WASP upon immuno-

blotting, and were combined, dialysed (as above), concentrated 5-

fold (Centricon), and stored at 280uC.

N-WASP, WIP, and Arp2/3 expression and purification
His-tagged human N-WASP and WIP were expressed using

recombinant baculovirus-infected High5 insect cells, as described

in detail elsewhere (ADS and MDW, submitted). A recombinant

N-WASP/WIP complex was purified by Nickel affinity chroma-

tography followed by gel filtration chromatography to separate the

complex from N-WASP or WIP alone. To maintain an

autoinhibited N-WASP/WIP complex, freeze-thaw cycles and

prolonged periods of storage on ice were kept to a minimum.

Recombinant human Arp2/3 complex and native bovine Arp2/3

complex were purified as described previously [39,41].

Pyrene-actin assembly assays
Assays utilizing brain extract contained samples supplemented

with 2.5 mM skeletal muscle actin (10% pyrene-labeled), and

polymerization was measured as described previously [49]. Assays

using N-WASP/WIP complex contained 2.0 mM actin (7%

pyrene-labeled) and 20 nM recombinant Arp2/3 complex, and

polymerization was measured as described previously [48]. Assays

using the N-WASP GBD-VCA contained 4.0 mM actin (5%

pyrene-labeled) and 10 nM bovine Arp2/3 complex, and

polymerization was measured as described elsewhere [41].

Isothermal titration calorimetry and gel filtration
chromatography

Isothermal titration calorimetry was performed as described

elsewhere [41]. Briefly, the WASP GBD was titrated into R95,

R94-5, or R91-5 in KMEI buffer (50 mM KCl, 1 mM MgCl2,

1 mM EGTA, and 10 mM imidazole pH 7.0) plus 5 mM b-

mercaptoethanol. Prior to gel filtration analyses, the N-termini of

EspFU fragments R95 and R94-5 were fluorescently labeled by

dialysis against 100 mM sodium bicarbonate pH 8.3 and

treatment with a five-fold molar excess of AlexaFluor647-

carboxylic acid, succinimidyl ester (Invitrogen) at 4uC for

16 hours. Extra dye was removed by desalting chromatography

and subsequent dialysis. Conjugation was confirmed by mass

spectrometry. Labeling efficiency was estimated as .97% by the

ratio of absorbance at 280 and 650 nm. Interactions between

Arp2/3 complex and N-WASPC in complex with EspFU were

examined using a Superdex 200 10/300 GL column (GE

Healthcare) equilibrated in KMEI plus 1 mM dithiothreitol

buffer.
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