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ABSTRACT Diffraction of x-rays from living cells, isolated nuclei, and metaphase chromosomes 
gives rise to several major low angle reflections characteristic of a highly conserved pattern of 
nucleosome packing wi th in the chromatin fibers. We answer three questions about the x-ray 
data: Which reflections are characteristic of chromosomes in vivo? How can these reflections 
be preserved in vitro? What chromosome structures give rise to the reflections? 

Our consistent observation of diffraction peaks at 11.0, 6.0, 3.8, 2.7 and 2.1 nm from a variety 
of l iving cells, isolated nuclei, and metaphase chromosomes establishes these periodicities as 
characteristic of eucaryotic chromosomes in vivo. In addition, a 30-40-nm peak is observed 
from all somatic cells that have substantial amounts of condensed chromatin, and a weak 18- 
nm reflection is observed from nucleated erythrocytes. These observations provide a standard 
for judging the structural integrity of isolated nuclei, chromosomes, and chromatin, and thus 
resolve long standing controversy about the " t rue"  nature of chromosome diffraction. All of 
the reflections seen in vivo can be preserved in vitro provided that the proper ionic condit ions 
are maintained. 

Our results show clearly that the 30-40-nm maximum is a packing reflection. The packing we 
observe in vivo is directly correlated to the side-by-side arrangement of 20-30-nm fibers 
observed in thin sections of fixed and dehydrated cells and isolated chromosomes. This 
confirms that such packing is present in l iving cells and is not merely an artifact of electron 
microscopy. As expected, the packing reflection is shifted to longer spacings when the fibers 
are spread apart by reducing the concentration of divalent cations in vitro. Because the 18-, 
11.0-, 6.0-, 3.8-, 2.7-, and 2.1-nm reflections are not affected by the decondensation caused by 
removal of divalent cations, these periodicities must reflect the internal structure of the 
chromatin fibers. 

Packaging of DNA in chromosomes can be best understood in 
terms of three distinct levels of structure. The lowest level of 
structure is the nucleosome, a repeating subunit consisting of 
a highly conserved nucleosome core particle with ~ 146 base 
pairs (bp) of DNA wrapped around an octamer of the "core 
histones" (H32 H42 H2A2 H2B2), and a variable amount (20- 
100 bp) of "linker DNA" probably associated with histone H 1 
(34, 40). The primary structure of chromosomes is a linear 
arrangement of nucleosomes along the DNA, the so-called 
"string of beads." Nucleosome cores have been shown by 
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electron microscopy, neutron scattering, and crystallography to 
be flattened disks 11.0 nm in diameter and 5.7 nm high with 
two parallel turns of DNA ~2.8 nm apart (21, 32, 58). At the 
second level, the "string of beads" is further folded to form the 
basic chromatin fiber (20, 67, 68). At the third level, the 
chromatin fibers are further folded into loops anchored to- 
gether at the axis of the chromatid or on the nuclear matrix (5, 
11, 16, 29). Here we describe our x-ray diffraction studies of 
the second level of chromosome structure, the chromatin fiber. 

At this level, the most important structural form is probably 
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the 20--40-nm thick fibers, which appear to predominate in 
sections of whole cells and in vitro under "physiological" salt 
conditions (18, 19, 67). It is reasonable to focus on the study of 
these thick fibers in hope of gaining insight into the role of 
chromatin in gene regulation and replication. 

How might nucleosomes be arranged within the thick chro- 
mosome fibers? Three possibilities have been suggested; first, 
helical packing of the nucleosomes to form a coil or solenoid 
(20, 68); second, clustering of  the nucleosomes into 20--40-nm 
globules called "superbeads" (25, 27, 56); and third, a "twisted 
zig-zag" packing of the nucleosomes (72). Unfortunately, de- 
spite extensive study by x-ray and neutron diffraction, electron 
microscopy, and electric dichroism, there is not yet enough 
information to determine which of these general models is 
more correct, and certainly not enough information to construct 
a detailed model. 

Previous diffraction studies have consistently shown broad 
rings at ~11, 5.5, 3.8, 2.7 and 2.1 rim, indicative of  regular 
packing of nucleosomes in isolated chromatin. The 3.8-, 2.7- 
and 2. l-rim reflections seem to come from the internal structure 
of the nucleosome, since they are observed from dilute isolated 
nucleosomes whereas the 11.0- and 5.5-rim reflections are not 
(17, 26, 58). The 11.0- and 5.5-rim reflections are expected to 
arise from higher order packing of the nucleosome into thick 
fibers (20, 68). However, the 11.0- and 5.5-nm reflections 
cannot be taken as evidence for the integrity of chromatin fiber 
structure since they have often been observed under conditions 
where thick fibers should not exist, such as after removal of 
historic H 1, after sheafing in the procedure of  Zubay and Doty 
(75), or in very low ionic strength (2, 3, 8, 10, 15, 20, 37, 44, 48, 
57, 71). In all of these cases, the 11.0- and 5.5-nm peaks 
probably arise merely from the close contact of nucleosomes in 
concentrated chromatin gels and not from their packing in 
thick fibers. Such nonspecific packing would explain the con- 
centration dependence of  the 11.0-nm peak in gels (e.g., refer- 
ences 3, 8). 

The fact that the diffraction patterns of all isolated chro- 
matin, whether "intact" or demonstrably disassembled, are 
virtually indistinguishable could indicate that all isolated chro- 
matin has a similar, disordered structure. Such disorder could 
reflect the nature of  nucleosome packing in vivo, or merely the 
disordering influence of the isolation procedures used. While 
the former possibility has never been carefully explored, the 
latter possibility has many precedents in the study of chromo- 
somes. Even the most "modern" isolation procedures have the 
potential for altering fiber structure. Treatment of the chro- 
mosomes with endonucleases and with 0.2 mM EDTA could, 
for instance, cause damage by releasing any supercoil tension 
present in the supercoil domains of tertiary chromosome struc- 
ture, by separating the fibers from the nuclear matrix, by 
introducing thermodynamically unstable "end effects," or by 
irreversibly altering the position or conformation of H1 or 
some other histone. Even the most gentle procedures to isolate 
"intact" nuclei must use rather arbitrary "physiological" salt 
conditions. In addition to the hazards of isolation, there are 
the hazards of  histone modification and proteolysis during the 
diffraction experiments themselves, which have often involved 
exposures of a day or longer, usually at room temperature. The 
difficulty in evaluating the actual effects of these potentially 
disruptive effects is the lack of any assay for the structural 
integrity of chromosome fibers. 

Electron microscopy, which has the potential of directly 
determining the structure of fibers by thin sectioning ceils and 
by negatively staining individual molecules, has been useless 

in this role because dehydration of the fibers, even after 
fixation, dramatically degrades the periodic order of isolated 
chromatin (45), metaphase chromosomes (55) and nuclei (14, 
30). In fact, 30 years of  microscopy has never produced periodic 
images of  chromatin fibers. 

Some investigators have recognized the need to establish 
criteria by which to judge the structural integrity of isolated 
chromatin by performing experiments upon whole cells or 
isolated "intact" nuclei. In some of the earliest diffraction 
studies of  chromosomes, Wilkins and collaborators (70, 71) 
reported that calf thymocytes had a 3.8-rim reflection, while 
sea urchin sperm had a prominent 2.7-nm and weak 3.8- and 
2.1-nm reflections. Subsequently, several investigations of 
"intact" nuclei have been published. As pointed out by Luzzati 
and Nicolaieff (36, 37) and Olins et al. (47, 48), reproducible 
shoulders at ~11.0 and 5.5 nm are found in the diffraction 
patterns from chicken erythrocyte nuclei, although the 11.0 
was not visible in calf thymus nuclei. However, Subirana et al. 
(65) and Baudy and Brain (4) were unable to detect the 11.0- 
rim reflection and questioned the validity of  the earlier reports. 
In addition, Notbohm and Harbers (46) were unable to detect 
any maxima at 11.0, 6.0, or 3.8 nm from nuclei. Thus there 
have been questions raised about whether the classical "higher 
order" reflections even exist in patterns from native chromo- 
somes in nuclei. 

In addition to these conflicting data on the reflections present 
in the 2.7-11.0-nm range in nuclei, there are several reports of 
smaller angle reflections at low salt concentrations. These data 
will be analyzed in the Discussion. 

Here we describe the results of our x-ray diffraction studies 
of chromatin in living cells, isolated nuclei, and metaphase 
chromosomes. Our chief aim was to determine the true spacings 
from chromatin in vivo where no harm has been done to the 
chromosome structure. It was hoped that such results would 
provide a standard for the quality of isolated nuclei and 
chromatin and possibly resolve the inconsistencies and uncer- 
tainties of previous work in this field. We were also motivated 
by the hope that chromatin in vivo might be more highly 
ordered, and thus give a better diffraction pattern, especially in 
the case of histone-containing sperm where unmodified his- 
tones, lack of transcription, and the constraints of volume 
might mean that chromatin would be in its most highly ordered 
state. 

MATERIALS A N D  M E T H O D S  

Chemicals and Buffer Solutions: Wash buffer CWB) consisted of 
130 mM NaCl, 5 mM KC1, 2 mM MgCI2, and 10 mM HEPES, pH 7.3. Modified 
Earle's medium consisted of  Earle's basic salt solution supplemented with 0.8% 
bovine serum albumen (Fraction V) and 10 mM HEPES, pH 7.3. Synthetic sea 
water (SSW) was prepared according to directions from a powder purchased 
from Instant Ocean (Eastlake, OH). The pH was adjusted to 8.3 at 5°C. 

Magnesium-containing lysis buffer (MLB) consisted of 60 mM KCI, 15 mM 
NaC1, 2 mM MgC12, 15 mM HEPES, pH 7.3, 0.1% Nonidet P-40 (NP-40) and 10 
#M phenylmethylsulfonyl fluoride (PMSF). EDTA-contalning lysls buffer (ELB) 
was the same as MLB except that MgCI2 was omitted and 2 mM EDTA was 
added. When detergent was omitted from these buffers they are referred to as 
MB and EB. The diffraction patterns with and without NP-40 were identical. 
Sodium tetrathionate, which eliminates both proteolysis and histone dephospho- 
rylation, has no effect on the diffraction patterns, and was used at 1 mM 
concentration in some of the experiments, Buffer A consisted of 15 mM 
Tris[bydroxymethyl]amino methane chloride (Tris-HCl) pH 7.4, 80 mM KC1, 0.5 
mM spermidine, 0.15 mM spermine, and 2 mM EDTA. 

Isolation buffer (IB) for HeLa chromosomes and nuclei consisted of  10 mM 
HEPES, pH 7.3, l0 mM NaCI and 5 mM MgC12. 

Micrococcal nuclease (EC 3.1.4.7, from Staphylococcus aureus) and Deoxyri- 
bonuclease I (DN-EP) from bovine pancrease (EC 3.1.4.5) were obtained from 
Sigma Chemical Co. (St. Louis, MO). 
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Cell Preparation: Chicken blood was collected in 5-20-ml samples 
from adult Rhode Island Red hens by cardiac puncture, using 15 U/ml  heparin 
to prevent clotting. The erythrocytes were immediately washed three times by 
centrifugation (600 g for 5 min) in 10 vol of WB, each time discarding the burly 
coat. 

Lymphocytes were isolated by teasing BALB/c mouse lymph glands, spleen 
or thymus tissue in modified Earle's medium to disperse the cells, and then 
washing the ceils twice in this medium by centrifugation at 600 g for 5 min. Such 
cells were routinely found to be 80-90% viable as assayed by the trypan blue 
exclusion test (see below); but in some experiments viable cells were purified to 
98% viability by isopycnic banding in Percoll gradients (Pharmacia Fine Chem- 
icals, Uppsala, Sweden). 

Sea urchin (Echinus esculentus, Psammechinus miliaris, Stronglyocentrotus 
purpuratus, and Lytechinus pictus), scallop (Pectin opercularis), and dog whelk 
(Nucella lapillus) sperm were collected by excising the ripe gonads and collecting 
the semen in SSW. The sperm were separated from gonadal tissue by filtration 
through cheesecloth. 1 ral of semen was suspended in 10 ml of SSW and spun at 
600 g for 5 min to remove debris. Sperm were then pelleted from the supematant 
by centrifugation at 2,400 g for 5 min, washed twice in l0 mi SSW, and finally 
resuspended in 1 ml SSW. 

Sperm heads were prepared by suspending washed sperm in 60 ml SSW and 
mixing in a Sorvall omnimixer until >95% of the flagella were sheared from the 
bodies but <5% of the sperm had lysed. The heads were separated from the tails 
by centrifugation three times at 2,000 g for 5 rain. Heads were used immediately 
after preparation and remained viable in SSW during the x-ray exposure. 

Cell Culture and Synchronization: HeLa $3 cells were grown in 
suspension in RPMI-1640 medium supplemented with 5% fetal calf serum, 100 
U/ml  penicillin and 100 #g/ml streptomycin. Cultures were diluted daily to 2.0 
× 10 ~ cells/ml. 

To arrest cells in metaphase, cultures at 2.5 x 105 cells/ml were treated with 
2.5 mM thymidine (73) for 20 h, after which the cells were pelleted, washed with 
0.9% NaC1 solution, and resuspended in half the original volume of fresh medium. 
After 4 h, 0.1 #g/ml colcemid was added to block the cells in metaphase and the 
ceils were harvested after an additional 14 h. 

Assay o f  Cell Viability: The viability of erythrocytes and cultured 
mammalian cells was determined using the criterion of cell permeability using 
trypan blue or fiuorescein diacetate (23, 59). Somatic cells were preserved intact 
during x-ray experiments by keeping them in modified Earle's medium at 4°C. 
Sperm were preserved in SSW at 4°C. Sperm motility was used as the indicator 
of sperm viability. 

Isolation o f  Cell Nuclei: Nuclei were isolated from erythrocytes, 
lymphocytes, and sperm cells by pelleting the cells from their storage medium at 
1,000-2,000 g for5 min, removing all the supernatant and rapidly suspending the 
cells in 10 ml MLB. The nuclei were then washed three times by pelleting at 
2,000 g for 3 min followed by resuspension in 10 ml of buffer. The resulting 
white pellet was resuspended in a small volume of MLB or MB and checked by 
phase-contrast microscopy at x 1,000 to ensure that the nuclei had not aggregated 
or lysed and that the chromocenters were intact. 

Rat fiver nuclei were isolated in buffer A as described by Hewisch and 
Burgoyne (24). 

HeLa interphase nuclei were isolated essentially as described by Paulson and 
Taylor (54). Changes in the ionic conditions of nuclei were brought about by 
suspending about 0.2 ml of a nuclear pellet in 10 ml of the desired buffer, 
followed by three cycles of pelleting (2,000 g for 5 rain) and resuspension. 

Isolation of HeLa Metaphase Chromosomes: HeLa chro- 
mosomes were isolated either as aqueous chromosomes (39) or as chromosome 
clusters (52) from cultures which had been arrested to 90-95% in metaphase. In 
both methods, ceils were lysed in IB plus 0.5 M sucrose, 0.5 mM CaCh, and 0.1% 
NP-40 and the chromosomes were finally resuspended and washed in the same 
solntion without the sucrose. 

For experiments in which chromosomes were to be studied in 10 mM HEPES, 
pH 7.4, 2 mM MgCh, and 0.5 mM EGTA, they were isolated as chromosome 
clusters as described above except that Ca ++ was omitted from all solutions. 

Fixation, Dehydration, and Embedding of Nuclei: Nuclei in 
MLB were fixed with 1% glutaraldehyde for 10 min at 0°C, washed in H20, 
stained in I% UO2 for 10 min, and then dehydrated in ethanol. Ethanol was 
replaced with increasing concentrations of propylene oxide, and then Araldite or 
Epon, with accelerator followed by polymerization at 60°C. 

Electron Microscopy: Negatively stained fibers were prepared by 
digestion of 1 mg/ml  of chicken erythroeyte nuclei in MB supplemented with 1 
mM CaC12 for 30 s at 37°C using 0.014 U/ml  of micrococcal nuclease. The 
digestion was quenched by adding 10 mM EDTA, and the fibers were released 
by nitrogen decompression into EB (Langmore, J. P., and J. L. Workman, 
manuscript in preparation). Fibers were fLxed in 0.1% glutaraldehyde in EB 
overnight followed by adsorption into glow discharged grids and staining with 1% 
uranyl acetate. Embedded nuclei were thin sectioned (50-100 nm thick) and 
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stained in 1% uranyl acetate followed by 2% lead citrate. Micrographs were 
recorded with a JEOL JEM 100B at 80 KV. Electron micrographs, as well as all 
x-ray diffraction photographs, were contact-printed to make the figures. 

Nuclease Treatment of Nuclei for Diffraction: As one of the 
controls, chicken erythrocyte nuclei at a concentration of l mg/ml in MB were 
digested with 800 U of DNase I for 50 min at 37°C in the presence of 1 mM 
sodium tetrathionate in order to totally inhibit proteolysls (as determined by SDS 
PAGE). 

Preparation and Handling of X-ray Specimens: To make an 
x-ray specimen, a concentrated suspension was loaded in the top of a washed 
glass x-ray capillary (0.7- or 1.0-mm diameter; C. Supper Co., Natick, MA) and 
then sedimented to a pellet at 4°C in a swinging bucket centrifuge (5 min at 100 
g for whole ceLLs, 2,000 g for nuclei, chromosomes, and spermheads). The 
specimen typically formed a 1-5-cm pellet in the capillary, which was then sealed 
with wax and maintained at 0-4°C for the duration of the experiment. To reduce 
radiation damage, the capillaries were continuously translated during exposure. 

Samples of nuclei and chromosomes were prepared before the x-ray exposure 
and also after the exposure (by removing the contents of a capillary) and analyzed 
on 15% SDS PAGE (28). The x-ray patterns shown are representative of samples 
that had undergone no proteolysls of the histories. When proteolysis of H 1 or H5 
occurred, loss of the 30-40-rim peak occurred. Larger angle reflections could 
survive severe historic proteolysis. 

In experiments involving whole ceils it was important to insure that an x-ray 
exposure had no harmful effects on the ceils. Lymphocytes in modified Earle's 
medium and sperm in SSW remain >90% viable after 8 h in capillaries at 4°C. 
After exposing the cells to a dose and dose rate greater than those used to record 
a diffraction pattern, no effect of radiation upon viability could be detected. 

X-ray Cameras: The success of this study depended on the use of x-ray 
cameras that could record low angle scattering quickly and with very tittle 
background. We therefore built two Franks double mirror cameras (22)--one 
able to resolve spacings of 10 nm with a specimen to film distance of 5.3 cm and 
the second to resolve spacings of 80 nm using 20-cm long uncoated quartz mirrors 
with a specimen-to-film distance of 33.3 cm (Paulson, J. R., C. Schntt, and J. P. 
Langmore, manuscript in preparation). The cameras were mounted on an Elliot 
GX-13 rotating anode x-ray generator with a 0.1 x 1 mm focus. Later, an Elliot 
GX-20 with 0.1 × 2 mm focus was used with a 96-cm camera of similar design, 
coupled to a position sensitive detector (Technology for Energy Corporation, 
Knoxville, TN). Typical beam currents were 108 photons/s. 

Analysis of Diffraction Patterns: Throughout this paper, recipro- 
cal distances will be expressed in terms o f s =  2 sin (0/2)/h, where ~, is the photon 
wavelength (0.154 rim) and 0 is the scattering angle. An arbitrary periodicity in 
nanometers of D in the specimen will give rise to a peak in the x-ray scattering 
at a reciprocal distance ( I /D)  nm -1. Thus, when we refer to a "40-rim peak," we 
mean a peak in the scattering at s = 0.025 nm-L 

Two-dimensional densitometry of the x-ray films was carried out using a 
Photoscan P-1000 rotating drum densitometer controlled by an interactive com- 
puter program. Specular optical densities in the range 0-2 were measured and 
related to x-ray intensities using data applicable to Ilford G film (43). These 
intensities were always corrected for the measured values of film fog and solvent 
scattering. The intensities near the center of the pattern could be displayed on a 
storage display unit to allow the operator to check the centering of the pattern to 
exclude the shadow of the beam stop from the analysis. Data were averaged 
within concentric annull of different radii about the experimental center to give 
the average intensity, I, as a function of s. Because the focus and first order 
resolution of the camera were best in the horizontal direction, only data from the 
horizontal sectors are presented. 

Presentation of the Data: Most of the data in this paper are 
presented as plots of log(s21) vs. s. "Multiplying the intensity, 1, by s ~ corrects for 
the random orientation of the chromatin fibers with respect to the x-ray beam, so 
that s21 gives the true relative strengths (power) of the structural periodicities in 
the specimen by the following argument. The random orientation ofthe specimen 
causes the efficiency of recording a given diffraction peak to decrease propor- 
tionately to the square of the distance of the peak from the center of the pattern. 
To restore the recorded intensities to their true relative weights, we correct for 
this decrease in efficiency by multiplying the recorded average intensities by the 
Lorentz factor ors  ~. 

It should be noted that in the analysis of films exclusion of the beam stop is 
essential, since failure to do so would give rise to an artifactual peak in both the 
I and s21 plots at very low angles. Similarly, correction of the optical density data 
for partial saturation of the film (43) is of utmost importance since otherwise an 
artifactual peak in s 2 at very low angles might be observed for strongly exposed 
fihns. As a result of the careful interpretation of fdm densities, the shape of the 
log(s21) plot is the same regardless of the exposu.e time. Moreover, our film 
results were compared and found to agree well with the results using the electronic 
position sensitive detector which of course is not subject to the potential artifacts 
associated with densitometry. 



To avoid overlapping lines in the logarithmic plots, the intensities were 
multiplied by arbitrary constants. This only affects the vertical positions of the 
lines and does not affect the shapes whatsoever. 

RESU LTS 

Observation of a 40-nm Reflection from Whole 
Chicken Erythrocytes 

To investigate the structural periodicities of chromosomes in 
vivo, we recorded diffraction patterns from living cells. Chicken 
erythrocytes were chosen for study because they are quiescent, 
nucleated cells with few cytoplasmic organelles. Their chro- 
mosomes are transcriptionally inactive and are almost com- 
pletely condensed into structures called chromocenters or chro- 
matin bodies (13, 19). Rabbit erythrocytes, which do not have 
nuclei, were also chosen for study in order to control for 
possible contributions from non-nuclear structures. 

Fig. 1 shows low angle x-ray diffraction patterns from 
chicken and rabbit erythrocytes. A shoulder in the intensity at 
- 4 0  nm is apparent in the chicken erythrocyte pattern but not 
in the rabbit erythrocyte pattern. At higher angles another 
shoulder is seen at ~6.0 nm in patterns from both nucleated 
and non-nucleated erythrocytes. This high angle shoulder is 
due to the intermolecular spacings of the highly concentrated 
intracellular hemoglobin. 

The measured intensities are plotted in Fig. 2. The rabbit 
intensities were normalized to the chicken intensities as de- 
scribed earlier (30). The rabbit intensities were then subtracted 
from the chicken intensities to give the difference curve shown 
in Fig. 2c. This curve shows a strong maximum at - 4 0  nm 
(the mode is at 38 nm, the mean is at 41 nm) which represents 
the structural differences (presumably of nuclear origin) be- 
tween the two cells. Higher angle difference patterns are diffi- 
cult to obtain since the hemoglobin reflections dominate the 
diffraction patterns. 

FIGURE 1 Low angle x-ray diffraction patterns of living cells, for 
comparison with previousl/ published diffraction patterns of iso- 
lated chromatin. (a) Living chicken erythrocytes (4.2-h exposure). 
(b) Living rabbit erythrocytes (4.5-h exposure). (c) Solvent blank, 
WB in capillary (16.5-h exposure) recorded immediately after the 
erythrocyte exposure above, showing the extremely low camera 
background. (d) Living mouse lymph node lymphocytes in modified 
Earle's medium (22.5-h exposure). (e) Living whole sea urchin sperm 
Echinus esculentus in semen (2.5-h exposure). (f) Living sea urchin 
sperm heads in SSW (1-h exposure). Specimen-to-film distances 
were 33.3 cm in (a-c) and 21.5 cm in (d-f).  Bars: (a-c) a reciprocal 
distance of 1/5.0 nm, and (d-f)  1/3.2 nm. 
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FIGURE 2 Quant i ta t ive  
analysis of x-ray patterns 
from living erythrocytes. 
(a) Measured intensities 
from chicken erythrocytes. 
(b) Measured intensities 
from rabbit erythrocytes. 
(c) Difference between 
chicken and rabbit eryth- 
rocyte intensities. 
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FIGURE 3 X-ray diffrac- 
tion patterns of chicken 
erythrocytes presented as 
log(I),  log(sl) and Iog(s 2/), 
for purposes of comparison 
of our data with those plot- 
ted in different forms in 
other studies. Vertical po- 
sitions of lines are arbitrary. 
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Evidence That the 40-nm Reflection from 
Chicken Erythrocytes Is Due to Chromatin 

The nuclear origin of the 40-nm peak is also demonstrated 
by diffraction of chicken erythrocyte nuclei isolated in MLB. 
Fig. 3 b shows that the 40-nm reflection appears as a prominent 
peak in the plot of integrated intensity (s2I) but it is also 
apparent in the plots of I and sl which are more commonly 
used ways of presenting such data. 

Diffraction maxima are also found at 11.0, 6.0, 3.8, 2.7, and 
2.1 nm, which form the well known chromatin diffraction 
pattern. In addition a diffraction peak is present at 18 nm. 
Presumably, these peaks were not seen from intact chicken 
erythrocytes because they were overwhelmed by the strong 
scattering from hemoglobin. 

I f  the diffraction maxima from isolated nuclei are of chro- 
mosomal origin, DNase I digestion of nuclei should cause 
noticeable changes in the diffraction patterns. Fig. 4a  shows 
the integrated diffraction intensities for intact chicken eryth- 
rocyte nuclei that had undergone a 50-min incubation at 37°C 
in MB. Fig. 4 b shows the pattern for nuclei prepared at the 
same time but subjected to extensive digestion (50% solubility 
of nucleotides) with DNase I. The digested nuclei fail to show 
any of the reflections at 40, 18, 11.0, 6.0, and 3.8 nm. No 
evidence of proteolysis was detected by PAGE of  a sample of 
the digested nuclei taken after the x-ray exposure (data not 
shown). Thus, all of the observed reflections from nuclei arise 



¢7) 
O 

7.0 

6.0 
0.0 

o 

0.1 0.2 

FIGURE 4 Nuclease digestion 
destroys the 40-nm reflection 
and other characteristic chro- 
matin reflections from isolated 
chicken erythrocyte nuclei. (a) 
Intact chicken erythrocyte nu- 
clei in buffer MB. (b) Same as 
a, but digested with DNase I. 
(c) The intensities in b sub- 
tracted from those in a. All in- 
tensities on the same absolute 
scale. 

from chromatin structure and not from cytoplasmic contami- 
nants, nuclear matrix, or nuclear envelope. 

Additional verification of the chromosomal origin of the 
diffraction patterns comes from the fact that electron micros- 
copy of isolated nuclei shows the condensed chromatin fibers 
to be the dominant structure present after isolation. 

Chromatin X-ray Patterns from Living Mouse 
Lymphocyte Cells and from Isolated 
Lymphocyte N u c l e i  

Chicken erythrocytes were very useful cells for studying the 
40-nm chromatin x-ray reflection in vivo, because we were able 
to subtract the contribution from the cytoplasm. Another ap- 
proach to studying chromatin structure in vivo is to study cells 
that have very little cytoplasm, such as lymphocytes. 

A diffraction pattern from living mouse lymphocytes in 
modified Earle's medium is shown in Fig. I d. The diffraction 
shoulders at 11.0 and 6.0 are visible. The integrated intensities 
from the living mouse lymphocyte cells are shown in Fig. 5 a. 
The pattern shows maxima at 33, 11.0, 6.0, 3.8, and 2.1 nm. 
The 2.7-nm peak is very weak, hidden by background scatter- 
ing, or else not present. The same patterns were recorded from 
lymphocytes isolated from thymus or lymph nodes, and after 
purification on Percoll gradients. Similar spectra were recorded 
from living mouse myeloma and human lymphoblastic leuke- 
mia cells (data not shown). 

To determine whether the diffraction peaks in Fig. 5 a were 
from nuclear or cytoplasmic structures, nuclei were isolated 
from these lymphocytes by the same method used for chicken 
erythrocyte nuclei. The diffraction pattern from these isolated 
lymphocyte nuclei is shown in Fig. 5 b. The lymphocyte nuclei 
give nearly the same pattern as the chicken erythrocyte nuclei, 
showing the same series of peaks at 11, 6.0, 3.8, 2.7, and 2.1 
nm. In the very low angle region, however, the lymphocyte 
nuclei show a 33-nm reflection whereas the chicken erythrocyte 
nuclei show a 40-nm reflection. The 18-nm reflection, which is 
weak in the case of chicken erythrocyte nuclei, is not detectable 
from these lymphocyte nuclei. 

Most importantly, the pattern of diffraction from living 
lymphocytes is nearly the same as that from isolated nuclei 
(compare Fig. 5 a and b). There are only two small differences. 
First, the 2.7-rim reflection is very weak in the case of whole 
ceils. Second, the 33-nm reflection is somewhat weaker relative 
to the 11.0-nm reflection in the case of the isolated nuclei. 

Chromatin X-ray Patterns from Living Sea 
Urchin and Scallop Sperm and from Isolated 
Sperm Nuclei 

Histone-containing spermatozoa provide another example in 
which the entire chromatin x-ray diffraction pattern can be 
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FIGURE 5 D i f f rac t ion  
patterns from living 
cells compared to iso- 
lated nuclei. Lympho- 
cytes in this example 
were isolated from 
lymph nodes, but simi- 
lar results were also ob- 
tained with lympho- 
cytes isolated from 
spleen and thymus. 
Sperm patterns are very 
similar to patterns re- 
corded from all other 
chromatin containing 
sperm. (a) Living mouse 
lymphocytes in modi- 
fied Earle's medium. (b) 
Mouse lymphocyte nu- 
clei, in buffer MB. (c) 
Living E. esculentus 
sperm heads in SSW. 
( d) E. esculentus sperm 
nuclei, in buffer MB. 

observed in vivo. However, the flagella (tails) of the sperm 
have a strong diffraction pattern with a basic spacing of 96 nm 
and very strong rings at 28 and 16 nm, resulting from the 
structural periodicities in the axoneme. The diffraction pattern 
from whole sperm in semen consists of this tail pattern super- 
imposed on the pattern from the heads (Fig. 1 e). 

To see only the diffraction from the chromatin-containing 
heads we sheared the flagella from the heads. The diffraction 
patterns from isolated sea urchin (E. esculentus) sperm heads 
are shown in Figs. I f  and 5 c. These heads are still living, 
because many still have a short motile tail and the heads have 
retained the same size and shape they had as intact sperm. 
However, since the 28- and 16-nm peaks are not detectable, 
remaining tails or fragments of tails are not contributing sig- 
nificantly to the diffraction pattern. In addition, SDS PAGE 
showed little tubulin in the head preparation. All five histones 
were present, however. 

Diffraction patterns from E. esculentus nuclei isolated in 
MLB are shown in Fig. 5 d. The nuclei give almost the same 
pattern as the intact heads. Very similar results were also 
obtained from sperm heads and nuclei from the sea urchins P. 
miliaris, S. purpuratus, and L. pictus and from the frog R. 
temporariens and from the scallop P. opercularis (results not 
shown). 

As a control, we have also studied protamine-containing 
sperm from Nucella lapillus by our techniques. Diffraction 
from whole sperm, sperm heads and isolated nuclei of N. 
lapillus showed a strong peak at -2.5 nm and none of the 
chromatin reflections (data not shown). SDS PAGE confirmed 
the absence of histones. 

Sperm chromatin, both in vivo and in isolated nuclei, shows 
diffraction peaks at 11.0, 6.0, 3.8, and 2.1 rim. The 2.7-nm peak 
is always very weak in diffraction patterns from heads and 
weak in patterns from nuclei. Spermatozoa differ from somatic 
cells in that the l l.0-nm is much weaker than the 6.0-nm 
reflection. 

Sperm nuclei diffraction patterns also differ substantially 



from those of lymphocyte and chicken erythrocyte nuclei in 
that the peak at 30-40 nm is totally absent despite an extensive 
search for the reflection in a variety of sperm nuclei under a 
variety of ionic conditions. This consistent difference between 
sperm and somatic cells will be discussed later. 

X-ray Diffraction Patterns from Nuclei of Other 
Cell Types and from Mitotic Chromosomes 

We would like to extend these results to the investigation of 
other types of living ceils, but unfortunately this has not been 
possible for various reasons. In most cells, the volume of 
cytoplasm is too large, and therefore the concentration of  
chromatin in the cell as a whole is too low to observe a 
chromosome diffraction pattern above the background from 
cytoplasmic structures. In other cells, reflections are observed 
but we cannot be certain that they come from chromatin. In 
general, reflections from whole cells can only be reliably attrib- 
uted to ehromatin if we can show that the contributions from 
cytoplasmic structures is insignificant (as in the case of sperm 
and lymphocytes) or if we are able to subtract the background 
due to the cytoplasm (as in the case of chicken erythrocytes). 

We have, however, recorded x-ray diffraction patterns from 
nuclei and chromosomes isolated from several different types 
of cells. Fig. 6 shows patterns from cultured human (HeLa) 
cell nuclei isolated HeLa metaphase chromosomes isolated in 
buffer IB plus 0.5 mM CaClz, chicken erythrocyte nuclei 
isolated in buffer MB, rat liver nuclei in buffer MB and in 
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FIGURE 6 X-ray diffraction of isolated nuclei and chromosomes 
from several dif ferent species. (a) HeLa interphase nuclei in IB + 0.5 
mM CaCl2 + 0.1% NP-40. (b) HeLa metaphase chromosomes, same 
conditions. (c) Chicken erythrocyte nuclei in buffer MB. (d) Rat 
liver nuclei in buffer MB. (e) Rat liver nuclei in buffer A. ( f )  Sea 
urchin sperm (E. esculentus) nuclei in buffer MB. (g) Mouse lym- 
phocyte nuclei in buffer MB. 

buffer A, sea urchin sperm nuclei and mouse lymphocyte 
nuclei. Most nuclei show peaks in the 30-40-rim region (see 
Table I). Rat liver nuclei do not show any diffraction peak in 
this region but resemble the sea urchin sperm nuclei. HeLa 
metaphase chromosomes have a convincing maximum at 32 
rim, whereas HeLa interphase nuclei under the same conditions 
show, less consistently, a peak at 38 rim. Metaphase chromo- 
somes and interphase nuclei are compared in more detail in 
the accompanying paper (53). 

The 18-nm reflection is observed only in chicken erythrocyte 
nuclei. Subsequent studies have confirmed that a strong reflec- 
tion at - 1 8  nm is characteristic of chromatin in all nucleated 
erythrocytes (Langmore, J. P., and J. L. Workman, manuscript 
in preparation). 

The 11-, 6.0-, 3.8-, 2.7-, and 2.l-rim reflections are quite 
similar in all of  these ceils, and Table I shows that the positions 
of  these maxima do not vary significantly. 

Evidence That the 30-40-nm X-ray Reflection 
Comes from Side-to-side Packing of Chromatin 
Fibers in Nuclei and Chromosomes 

What structural feature gives rise to the 30-40-rim reflection? 
One possible explanation is suggested by the elegant electron 
microscopy of  Davies and his collaborators (18, 19, 69). They 
reported an apparent 28-30-nm spacing between chromatin 
fibers in thin sections of  embedded chicken erythrocytes. We 
embedded chicken erythrocytes and their isolated nuclei in 
epoxy by a similar method and obtained similar results (Fig. 
7 a). The ehromocenters have a granular internal strneture, 
apparently composed of  packed thick chromatin fibers o f - 3 0  
nm diameter. 

To test whether there is any relationship between the 40-rim 
x-ray spacing seen in chicken erythrocytes in vivo and in 
isolated chicken erythrocyte nuclei and the 30-rim periodicity 
seen in the electron microscope, we recorded x-ray diffraction 
patterns during the different preparative steps for microscopy 
(Fig. 8). Dehydration and embedding in epoxy caused a broad- 
ening and progressive shrinkage of the x-ray spacing to 31 nm, 
which is very close to the observed center-to-center spacing 
measured by Davies et al. (19) and by us. Thus the side-by- 
side partially ordered packing of  30-rim fibers observed by 
Davies in thin sections is directly correlated with more orderly 
packing of 30-40-rim fibers in vivo. Dehydration distorts the 
internal structure of  the fibers as shown by loss of the 18-, 
11.0-, and 6.0-rim peaks and appearance of a broad 7-nm 
maximum. Dehydration also produces a drastic shrinkage of 
the nuclei as observed by phase-contrast microscopy that is 
quantitatively related to the x-ray results (data not shown). 

As a further test that the 40-nm reflection from chicken 
erythrocytes comes from side-to-side packing of chromatin 
fibers in chromocenters, we studied the effect of  Mg ++ concen- 
tration on the x-ray diffraction pattern. Chromocenters can be 
decondensed by replacing the 2 mM MgC12 in buffer MB with 
2 mM EDTA to make buffer EB. Dispersal of  chromocenters 
in this way is reversible and can be observed in the phase- 
contrast microscope and in the electron microscope. Nuclei in 
EB still possess thick chromatin fibers, but the chromocenters 
have disappeared, and in thin sections one sees only a homo- 
geneous distribution of  thick fibers (Fig. 7 b). The thick fibers 
we observe running in the plane of  the sections (arrows in Fig. 
7 c) are 25-30 nm in diameter, the same as the diameter of 
condensed fibers present in nuclei fixed in MB. We do not 
observe globular substructure in longitudinal fiber sections, nor 
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TABLE I 

Measured Positions of  Diffraction Maxima from Various Cells, Nuclei, and Chromosomes 

Very low angle 11.0 nm 6.0 nm 3.7 nm 2.7 nm 2.1 nm 

Chicken erythrocytes 40.0 . . . . .  
Chicken erythrocyte nuclei, buffer MB 41.0, 18.3 11.3 6.3 3.6 2.7 2.0 
Mouse lymphocytes 32.6 10.7 6.1 3.6 2.6 2.1 
Mouse lymphocyte nuclei, buffer MB 34.2 11.2 6.3 3.6 2.9 2.1 
Sea urchin sperm heads - -  10.9 5.9 3.5 - -  2.1 
Sea urchin sperm nuclei buffer A - -  10.3 5.6 3.4 2.8 2.1 
Sea urchin sperm nuclei, buffer MB - -  10.4 6.1 3.4 - -  2.1 
Scallop sperm heads - -  11.0 6.0 3.7 - -  2.1 
Rat liver nuclei, buffer A - -  10.3 6.0 3.6 2.7 2.0 
Rat liver nuclei, buffer MB - -  10.7 6.2 3.7 2.7 2.1 
HeLa nuclei, IB + 0.5 mM CaCI2 38.0 11.0 6.1 3.7 2.9 2.2 
HeLa metaphase chromosomes, IB + 0.5 mM CaCI2 31.7 11.1 6.0 3.6 2.8 2.1 

FIGUre 7 Electron micrographs of thin sections of chicken erythrocyte nuclei and fibers. (a) Nuclei in buffer MB, which contains 
2 mM MgCI2. (b) Nuclei in buffer EB, which is identical to MB except that MgCI2 is replaced by 2 mM EDTA. In MB the thick 
chromatin fibers are tightly packed in the chromocenters, whereas in EB the chromocenters are dispersed. (c) Tangential section 
of the edge of a nucleus in buffer EB, with chromatin fibers spilling out into cytoplasmic space. Arrows indicate fibers within the 
plane of the section, confirming that the fibers appear continuous. (d)  Negatively stained isolated fibers in EB, illustrating the 
relatively continuous structure. 

in negatively stained fibers released from erythrocyte nuclei 
into EB after mild micrococcal nuclease digestion (Figs. 7 c and 
d). 

X-ray diffraction patterns of chicken erythrocyte nuclei in 
buffers MB and EB are shown in Fig. 9 a and b, respectively. 
When Mg ÷÷ is removed, the 40-nm band disappears--or shifts 
to a longer spacing of 55 nm--presumably because the fibers 

become farther apart. However, the other peaks do not change 
their positions (Table II) even although their relative intensities 
change. This substantiates our hypothesis that the 40-nm spac- 
ing comes from the packing of chromatin fibers while demon- 
strating that the 18-, 11.0-, 6.0-, 3.8-, 2.7-, and 2.l-rim perio- 
dicities arise from internal structure of the fibers. 

We made similar observations on HeLa metaphase chro- 
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FIGURE 9 Decondensation of chromocenters or metaphase chro- 
mosomes shifts the 30-40-nm reflection to larger spacings (i.e., 
smaller s) but the higher angle reflections are not affected. Left 
panel shows only small angles. (a) Chicken erythrocyte nuclei in 
buffer MB (41-nm peak). (b) Chicken erythrocyte nuclei in buffer 
EB (58-nm peak). (c) HeLa metaphase chromosomes in 10 mM 
HEPES pH 7.4, 10 mM NaCI, 20 mM MgCl2 and 2 mM CaCI2 (26-rim 
peak). (d) HeLa metaphase chromosomes in 10 mM HEPES, pH 7.4, 
10 mM NaCI, 5 mM MgCI2 and 0.5 mM CaCI2 (31-nm peak). (e) 
HeLa metaphase chromosomes in 10 mM HEPES, pH 7.4, and 2 mM 
MgCl2 (48-nm peak). 

mosomes. Mammalian metaphase chromosomes consist of 
tightly packed fibers. X-ray diffraction patterns were recorded 
from chromosomes in 20 mM Mg ÷+, 2 mM Ca ++ (Fig. 9 c); 5 
mM Mg +÷, 0.5 mM Ca ++ (Fig. 9d); and 2 mM Mg ÷+, 0.5 mM 
EGTA (Fig. 9 e). The higher angle parts of  the patterns do not 
change markedly (see Table II) but the low angle peak shifts 
from 28-30 nm to 40 nm as the divalent cation concentration 

is decreased. This fits with our hypothesis and with the electron 
microscope results of Marsden and Laemmli (39) and Adolph 
(1) who made thin sections of chromosomes fixed under the 
same ionic conditions we have used. 

DISCUSSION 

In this work we have answered three questions: Which x-ray 
spacings are characteristic of chromatin in vivo? What condi- 
tions serve to preserve these spacings in isolated nuclei and 
metaphase chromosomes? What are the origins of these reflec- 
tions? We discuss these interrelated points below. 

X - R A Y  R E F L E C T I O N S  AT 3 0 - 4 0 ,  l l . 0 ,  6 .0 ,  3 .8 ,  2 .7 ,  A N D  

2.1 n m  ARE C H A R A C T E R I S T I C  OF C H R O M A T I N  I N  

VlVO: Our results with mouse lyrnphocytes and sea urchin 
spermheads show clearly that reflections at 11, 6, 3.8, 2.7, and 
2.1 nm are characteristic features of  the x-ray diffraction pat- 
tern of  chromatin in vivo. In addition, erythrocytes, and lym- 
phocytes exhibit a 30--40-rim reflection, as yet undetected in 
SpCI'I~. 

The interpretation of the diffraction patterns from living 
cells is often difficult due to the unwanted scattering from 
nonchromosomal origins. In some cases, for instance HeLa 
cells and rabbit reticulocytes (not shown), a 30-nm reflection 
is observed that is clearly not from chromatin but probably 
from the arrangement of ribosomes on the rough endoplasmic 
reticulum or some other cytoplasmic feature. To establish that 
a 30-40-nm reflection from living cells indeed comes from 
chromatin, it is necessary to subtract the contribution from the 
cytoplasm (as we have done with chicken erythrocytes) or to 
show that the cytoplasm does not contribute significantly (as 
we have done with lymphocytes and sperm by comparing the 
patterns from whole ceils and isolated nuclei). 

The fact that all the cells (and nuclei) that we examined 
exhibit common diffraction peaks at 11, 6, 3.8, 2.7, and 2.1 nm 
leads us to believe that the basic pattern of  nucleosome packing 
is highly conserved in eucaryotic cells. Variations in the 30-40- 
nm reflection and its absence in spermatozoa are explained by 
differences in the higher orders of structure in these cells. These 
differences are best discussed with reference to nuclei, where 
more comparative data have been collected. 

THE IN V I V O  X - R A Y  D I F F R A C T I O N  P A T T E R N  FROM 

C H R O M A T I N  CAN BE P R E S E R V E D  I N  I S O L A T E D  N U C L E I  

AND CHROMOSOMES: W e  have shown that the reflections 
at 30~10, 11, 6, 3.8, 2.7, and 2.1 nm, which are characteristic of 
chromatin in vivo, are also seen in diffraction patterns from 
isolated nuclei, provided the right conditions are used and care 
is taken to prevent mechanical damage and proteolytic degra- 
dation. We found that buffer MB is particularly suitable for 
preserving the native chromatin fiber packing; higher or lower 
amounts of divalent cations promote over-compaction or un- 
der-compaction of the fibers (Langmore, J. P., and J. L. Work- 
man, manuscript in preparation). 

The biggest difference between the patterns of living cells 
and those of isolated nuclei is that the 2.7-nm reflection is not 
so strong in whole cells as in isolated nuclei. We do not yet 
understand the reason for this. Possibly, diffraction from the 
organelles reduces the contrast between the 2.7-nm reflection 
and its neighbors. Alternatively, a slight difference in nucleo- 
some packing is possible. 

Since other nuclei and metaphase chromosomes (from cells 
in which the chromatin pattern cannot be observed in vivo) 
give patterns similar to those of lymphocyte nuclei in the same 
or similar buffers, we assume that these structures have been 
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TABLE I I  

Positions of  Diffraction Maxima for Chicken frythrocyte Nuclei and Heta Metaphase  Chromosomes  as a Function of  a Divalent Cation 
Concentrations 

Reflections 

Specimen 30-40 nm 18.5 nm 11.0 nm 6.0 nm 3.7 nm 2.7 nm 2.1 nm 

Chicken erythrocyte nuclei* 
(a) 2 mM Mg CI2 41.2 
(b) 2 mM EDTA 57.6 

HeLa metaphase chromosomes:~ 
(a) 20 mM Mg CI2, 2 mM CaCI2 26.4 
(b) 5 mM MgCI2, 0.5 mM CaCl2 31.4 
(c) 2 mM Mg CI2, 0.5 mM EGTA 48.3 

18.3 11.3 6.3 3.6 2.7 2.0 
18.9 11.6 6.0 3.6 2.8 2.1 

11.4 5.9 3.7 2.8 2.1 
10.8 6.0 3.6 2.8 2.1 
11.4 6.0 3.6 2.7 2.2 

* Chicken erythrocyte nuclei isolated in buffer MLB and then either (a) exposed to x-rays in MLB or (b) transferred to buffer EB. See Materials 
and Methods. 
HeLa chromosome clusters isolated in IB + 0.1% NP-40, then transferred to (a) 10 mM HEPES, pH 7.4, 10 mM NaCl, 20 mM MgCI2, 2 mM 
CaCI2; (b) IB + 0.5 mM CaCI2; or (c) 10 mM HEPES, pH 7.4, 2 mM MgCI~. 

isolated intact. Presumably, there are slight structural differ- 
ences between chromatins of different species, since the relative 
intensities of the various peaks in the diffraction patterns are 
different for different cell types, even when the same ionic 
conditions are used. Metaphase chromosomes and interphase 
nuclei of HeLa cells have a very similar structure, when com- 
pared under identical ionic conditions. More detailed compar- 
isons are presented in the accompanying paper (53). 

One of our motivations for this study was to see whether 
chromatin is more ordered in vivo, particularly in histone- 
containing sperm, since the chromatin is uniformly condensed, 
transcriptionally inactive and contains few nonhistone proteins 
or modified histories. To our disappointment, however, we 
found that chromatin fibers in vivo seem to be neither more 
nor less highly ordered than in isolated nuclei or chromosomes. 
Thus, the lack of sharpness of bands in diffraction patterns 
from isolated nuclei or chromatin fragments prepared under 
physiological conditions is not a preparation artifact but is due 
to an inherent lack of long range order in chromosomes. 

The width of the 30~0-nm peak (~0.01 nm -1 in the best 
patterns) is probably due to heterogeneity in fiber diameter or 
disorder in fiber packing. This result is consistent with electron 
microscopy of nuclei, which shows a lack of crystalline packing. 

The diffuse nature of the 18-, 11-, 6-, 3.8-, 2.7-, and 2.1-nm 
bands is not inconsistent with a highly regular internal fiber 
structure, because several factors can contribute to the breadth 
of these bands, including inherent diffuseness of the molecular 
Fourier transform as in the case of the Bessel functions that 
describe diffraction from helical fibers, and overlap of peaks 
with slightly different periodicities (which arise from different 
features of the fiber structure) because of the random orienta- 
tion of the fibers. In fact, diffraction from chromatin fibers is 
no more diffuse than diffraction from many other randomly 
oriented helical molecules. For example, the diffraction pat- 
terns of double-stranded DNA in solution (7) are as diffuse as 
our patterns of nuclei. The inherent regularity of the chromo- 
some fibers in comparison with other cellular structures, such 
as the axoneme of sea urchin sperm, is demonstrated by the 
domination of the chromatin scattering over that from other 
sources. 

Our consistent observation of an 11-nm reflection from all 
chromatin-containing nuclei in "physiological" buffers resolves 
the long-standing question about the existence of an 1 l-rim 
periodicity in "intact" nuclei and chromosomes. Difficulties in 
sample preparation (e.g., proteolytic or nucleolytic degradation 

or improper ionic conditions) or excessive camera background 
were probably responsible for the failure of several other 
studies (4, 46, 65) to detect that reflection from nuclei. 

T H E  3 0 - 4 0 - r i m  R E F L E C T I O N  COMES F R O M  S I D E - T O -  

S I D E  P A C K I N G  OF T H I C K  C H R O M A T I N  F I B E R S ;  T h e  

30-40-rim reflection is not an artifact of  the film analysis 
procedure but is a real feature of the cells, nuclei and chro- 
mosomes. In particular, it does not result artifactually from 
computation of the integrated intensity s2I, as claimed by 
Subirana (64). On the contrary, the 30-40-rim reflection is seen 
as a peak even in the plot of I vs. s for chicken erythrocytes, 
following subtraction of  the background of scattering from the 
cytoplasm (represented by the scattering from enucleated rabbit 
erythrocytes). It also appears as a shoulder in plots of I and s l  
for lymphocytes, lymphocyte nuclei, and HeLa metaphase 
chromosomes (data not shown). Additional arguments for the 
validity of our film analysis procedure are given elsewhere (30, 
31). 

Second, the 30--40-nm reflection is due to chromatin. It is 
seen from chicken erythrocytes but not from rabbit erythro- 
cytes. It is seen from isolated chicken erythrocyte nuclei and is 
destroyed when they are digested with nuclease. It is also seen 
from isolated lymphocyte and HeLa nuclei and especially 
strongly from isolated HeLa metaphase chromosomes which 
consist almost entirely of chromatin and in particular have no 
contaminating nuclear envelopes or nucleoli. 

It is known from many electron microscope studies that the 
bulk of chromatin in higher eucaryotes consists of 30-nm thick 
fibers when the cells are fixed under physiological conditions. 
In particular, thin sections of chicken erythrocytes indicate that 
chromocenters (condensed patches of chromatin) have a gran- 
ular internal structure with a periodicity of 30 nm, apparently 
composed of ordered arrays of chromatin fibers 30 nm apart. 
Fortunately, the thin sections of erythrocytes and their isolated 
nuclei reveal no nonchromosomal structures with this charac- 
teristic periodicity. A series of diffraction patterns during the 
process of dehydration and embedding demonstrated that the 
40-nm reflection continuously exists throughout this process, 
although shrinking to a fmal value of 31 nm in the completely 
embedded state. We conclude that the fibers seen in thin 
sections are also present in vivo and that their true periodicity 
in vivo is closer to 35-40 nm than the 25-30 nm determined by 
microscopy. From the fact that the packing reflection is more 
narrow in vivo than in the embedded state, we conclude that 
the packing present in living cells is slightly more uniform than 
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observed in electron micrographs. 
As a definitive test of our packing hypothesis we took 

advantage of the microscopical observation that the tightly 
aggregated fibers within chromocenters and metaphase chro- 
mosomes disaggregate when divalent ions are removed. The 
fact that only the 30~0-nm reflection moves to larger spacings 
when the fibers spread farther apart proves that this reflection 
(and only this reflection) is due to the side-by-side packing of 
the fibers. X-ray experiments over a range of magnesium 
concentrations confirm that the x-ray spacing varies as the 
square root of the local concentration of chromatin within 
chromocenters, proving that the x-ray spacing is a quantitative 
measure of the distance between fibers and that the mass per 
unit length of the fibers does not depend upon concentration 
of the divalent cations (Langmore, J. P., and J. L. Workman, 
manuscript in preparation). 

These results demonstrate clearly that the 30--40-nm reflec- 
tion comes from side-by-side packing of chromatin fibers in 
chromocenters and metaphase chromosomes. The dependence 
of  the 30--40-rim reflection upon chromatin fiber concentration 
excludes the three alternative interpretations of this reflection, 
namely: (a) it is due to a helix with 40-rim repeat (4); (b) it is 
due to the first subsidiary maximum of 70-rim fibers (46); and 
(c) it is due to regular globular structures ("superbeads") along 
the length of  the fibers (56). 

Although our results are in good agreement with the micros- 
copy of lymphocytes and erythrocytes, the results on sperm are 
more difficult to interpret. When sea urchin sperm are fixed in 
sea water the nuclei seem to be denser than somatic cell 
chromocenters, with faint globular or fibrillar substructure 
about 25 nm in size (35). When surface spread, sea urchin 
chromatin fibers seem to be uniform 25-nm fibers (60). How- 
ever, when sperm are fixed in hypotonic media without added 
divalent cation, globular "superbead" structures -36  nm in 
diameter are seen in thin sections (74). In spite of this micro- 
scopical evidence for fibers or "superbeads" in sea urchin 
sperm, our attempts to observe packing reflections from E. 
esculentus, P. miliarus, S. purpuratus and L. pictis have consis- 
tently failed to reveal reflections between 60 and 11 nm. 
Perhaps the conditions used for microscopy have caused non- 
specific aggregation of sperm nucleoprotein into fibrous struc- 
tures, similar to the divalent ion-sensitive fibers that are arti- 
facts of electron microscope preparations of surface spread 
DNA and hemoglobin (61) and nucleoprotamine (55). Perhaps 
the fibers are really >60 nm in diameter and therefore beyond 
the resolution of our camera. Alternatively, the fibers might be 
so tightly packed that inadequate contrast exists between the 
fibers to produce a visible ring. 

As shown in Table I, even though the basic high angle 
reflections are conserved in all cells and nuclei we studied, the 
variability in the low angle features make it difficult to gener- 
alize knowledge about higher order of structure in one cell type 
to all cells. In somatic cells and nuclei, the variation in the 
30-40-nm reflection could be due to (a) differences in the 
proportion of chromatin in the chromocenters, (b) differences 
in the tightness of  fiber packing in the chromocenters, and/or  
(c) differences in the diameter of the chromatin fibers. For 
example, rat liver nuclei probably lack a packing reflection 
because they have few chromocenters (thin sections show very 
little condensed chromatin) and thus resemble chicken eryth- 
rocyte nuclei in buffer EB. In HeLa nuclei, however, where an 
intermediate amount of condensed chromatin is present, the 
packing reflection may be a mixture of a 32-nm peak from 
chromocenters and a longer spacing from uncondensed chro- 

matin, or it may just be that the fibers are not packed so closely 
together as in lymphocytes and HeLa metaphase chromosomes. 
Further quantitative studies would be needed to resolve this 
ambiguity. Alternatively, the observed 16% difference between 
the positions of the interphase and metaphase reflections could 
be the result of a basic difference in the symmetry of packing. 
For instance, assuming that all HeLa fibers are separated by a 
center-to-center distance of 38 nm, square packing would 
produce a reflection at 38 nm, whereas hexagonal packing 
would produce a reflection at 33 nm. 

T H E  18- ,  11-,  6 - ,  3 . 8 - ,  2 .7% A N D  2 . l - r i m  R E F L E C -  

T I O N S  R E S U L T  F R O M  T H E  I N T E R N A L  S T R U C T U R E  OF 

CHROMOSOME FIBERS: When the positions and intensities 
of  diffraction peaks are independent of concentration, the 
conclusion that those peaks arise from the internal structure of 
the particles is justified. Since removal of divalent cations has 
no effect upon the reflections at 18, 11, 6, 3.8, 2.7 and 2.1 nm, 
we conclude that they arise from the internal structure of the 
chromosome fibers and are independent of side-by-side fiber 
packing. 

The 18-nm reflection has been seen only from erytlarocytes. 
We cannot conclude that it reflects an erythrocyte-specific 
structure, however, since it is only expressed as a very weak 
shoulder that may, in nonerythrocyte nuclei, simply be too 
weak to detect. The 18-nm shoulder would be expected as an 
axial repeat of the chromosome fiber if, for instance, the basic 
helical repeat were 18 nm (two turns of the solenoid). If  this 
were true the position of 18-nm shoulder should be as invariant 
as the position of the 11-nm peak. 

Bram and colleagues have also observed a weak 18-20-nm 
reflection from nuclei and dilute fibers from erythrocytes and 
thymocytes (4, 8, 9). They conclude that the 20-nm shoulder 
arises from a coiled-coil composed of nucleosomes stacked into 
a 10-nm fibril that is helically coiled with a major pitch of 
40-50 rim. Such as structure is not compatible with the concen- 
tration dependence of the 40-nm peak, as noted above. We 
have no explanation for their observations that sucrose was 
required to stabilize those reflections and that the 11-nm peak 
was always absent from nuclei. Other authors who failed to 
observe an 1 l-nm reflection also failed to observe an 18-nm 
feature from nuclei in 0.25 M sucrose or in 1 M hexylene glycol 
(that is claimed to "stabilize" the nuclei) (46). Although we 
have no data from nuclei in 0.25 M sucrose, data in the 
following paper (53) demonstrate that 1 M hexylene glycol is 
an inappropriate medium for studying chromatin structure. 

We favor the hypothesis that the 18-nm shoulder is the first 
subsidiary maximum of the diffraction from cylinders of 35-40- 
nm diameter. These cylinders are, of  course, the same thick 
chromatin fibers that give rise to the 40-nm packing reflection. 
Theoretical calculations of scattering from solid cylinders of 
diameter, D, predict a subsidiary maximum in the scattering at 
an apparent spacing of  0.6 D (38). Hollow fibers are expected 
to produce a scattering maximum close to the same position 
(42). Thus 35-40-nm fibers should produce a scattering feature 
at - 2 0  nm that would depend upon the average fiber diameter. 
A study of the 30--40-, 20-, and 1 l -nm reflections in a series of 
different cells has confirmed this hypothesis (Langmore, J. P., 
and J. L. Workman, manuscript in preparation). 

There is general agreement about the origins of the higher 
angle reflections seen by others in chromatin and by us in 
nuclei. Finch and Klug (20) have provided the very reasonable 
proposal that the I l- and 6-nm maxima from fibers arise from 
the periodicity of nucleosome packing within the chromatin 
fiber. This proposal is correct, regardless of the exact internal 
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structure of the fiber, since in dilute solutions of  chromatin 
these reflections are only seen under the salt conditions that 
promote thick fiber formation. As the ionic strength is de- 
creased, the 11-nm reflection moves progressively to longer 
spacings as the nucleosomes move farther apart and the mass 
per unit length of  reconstituted fibers in vitro decreases (63). 
In the context of the solenoid model of the fiber, the 11-nm 
reflection is the helical repeat, while the 6-nm reflection is due 
to packing of the nucleosomes along the nucleofdament (20). 

Since the 3.8-, 2.7-, and 2.l-rim reflections are seen in dilute 
suspensions of  mononucleosomes (17, 26, 50), it is reasonable 
to propose that they derive their contrast from features internal 
to the nucleosomes themselves, modulated by the packing of  
nucleosomes into the chromatin fiber. The data we have pre- 
sented reveal no additional insight into the origins of  these 
reflections, only that the reflections are also present in vivo and 
in nuclei. 

The general conclusions about the origins of  the x-ray re- 
flections are summarized in Table III. 

T H E  E X I S T E N C E  O F  3 0 - 4 0 - r i m  F I B E R S  I N  V I V O  

V A L I D A T E S  T H E  S T U D Y  O F  C H R O M O S O M E  F I B E R S  I N  

DILUTE SOLUTION: The packing dimensions we observe for 
fibers in vivo are in reasonable agreement with the measured 
diameters (30-35 nm) of reconstituted or fLxed fibers in dilute 
solution (12, 33, 46, 63). In addition, the peak positions and 
relative magnitudes of  the reflections found in dilute fibers (17, 
63) resemble those we observe in nuclei. 

However, as studies of the salt-induced compaction of chro- 
matin fibers show, a family of  chromatin structures exists in 
solution, with uniform widths but various degrees of longitu- 
dinal compaction (12, 63, 66, 67). Some of  these partially 
compacted structures are expected to involve the same local 
interactions between nucleosomes that occur in the native thick 
fibers, and thus give rise to reflections such as those at 11 and 
6 nm. A quantitative comparative study of the relative magni- 
tudes and breadths of  both the low and high angle reflections 
of fibers in nuclei and in dilute solution is needed before we 
could conclude that the isolated fibers possess totally "native" 
structure. 

T H E  D I F F E R E N C E S  B E T W E E N  D I F F R A C T I O N  F R O M  

C E L L S  A N D  F R O M  C O N C E N T R A T E D  G E L S  R E V E A L  T H E  

D I F F I C U L T I E S  I N  I N T E R P R E T I N G  D I F F R A C T I O N  F R O M  

CHROMATIN GELS: The distinct differences between our 

TABLE Ill 

Structural Repeats in Chromatin 

Reflection Source Observed in 

30-40 nm Packing of thick fi- Chicken erythrocytes 
bers (400 A) 

Mouse lymphocytes 
(320 ,g,) 

HeLa nuclei (380 ,~) 
HeLa mitot ic chro- 

mosomes (320 A) 
18.5 nm Structure of thick fi- Nucleated erythro- 

ber; probably re- cy tesonly  
lated to fiber di- 
ameter 

11.0 rim, 6.0 nm Internal structure of All cells studied 
fiber; packing of 
nucleosomes into 
thick f iber 

3.7 nm, 2.7 nm, 2.1 Internal structure of All cells studied 
nm fiber: substructure 

of nucleosome 
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"native" diffraction patterns and those from concentrated gels 
are in the width and position of the reflections (e.g., compare 
the diffuse patterns of Fig. 1 to the patterns of reference 6 or 
48). The fact that concentrated intact H 1-depleted chromatin 
produces sharper reflections than do chromosomes in undis- 
rupted cells and nuclei strongly suggests that the gels have been 
compressed to the point that artificial long range order has 
been produced. By this, we mean that the nucleosomes from 
different fibers might begin to stack next to each other in long 
rows or sheets, perhaps in a manner similar to that in crystals 
of  nucleosome core particles (21). Although the diffraction 
patterns from concentrated gels might be useful in determining 
how nucleosomes can interact with other nucleosomes in par- 
tinily dehydrated conditions, those patterns probably do not 
arise from the 30-40-nm chromatin fibers found in nature. If, 
as we suspect, the concentrated gels do not contain thick fibers, 
then analyses of  diffraction patterns of such material (2, 15) 
can not give information about the internal structure of  the 
chromatin fiber. There is, in fact, indirect evidence that fibers 
do not exist in concentrated gels, namely that we found that 
the gels whether prepared by ultracentrifugation or by partial 
dehydration of  whole nuclei or isolated chromatin do not give 
the 30--40-nm peak characteristic of  packed chromosome fibers 
(data not shown). Of course, direct evidence of the presence or 
absence of  fibers in these gels would be provided by electron 
microscopy of thin sections of embedded gels. Unfortunately, 
we do not know of  any attempts to examine the gels by 
microscopy. 

In summary, this study has determined some important 
parameters of  chromosome fiber structure in vivo. The differ- 
ences in the very low angle diffraction pattern among different 
cells, nuclei, and metaphase chromosomes illustrate the variety 
of ways in which chromosome fibers can be packed. The 
similarities in the higher angle diffraction from these sources 
of  chromatin illustrate a common theme to the local packing 
of nucleosomes within the thick fibers. Our results provide 
both a standard for judging the quality of isolated nuclei, 
chromosomes and chromatin, and the basis for further experi- 
ments on chromosome fiber structure in vitro. 
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