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Abstract: Our aim is to assess the optimal levels of oxygen and carbon dioxide for the prognosis
of favorable neurologic outcomes in survivors after extracorporeal cardiopulmonary resuscitation
(ECPR). We obtained the mean levels of PaCO2 and PaO2 in arterial blood gas samples 72 h after ECPR.
The primary outcome was the neurological status, according to the Cerebral Performance Categories
(CPC) scale, upon discharge. Of 119 (48.6%) survivors, 95 (38.8%) had favorable neurologic outcomes
(CPC 1 or 2). There was a U-shaped relationship between mean arterial blood gas tensions and poor
neurological outcomes. The risk of poor neurological outcome was lowest in patients with the second
tertile of mean PaCO2 (30–42 mm Hg) and PaO2 (120–160 mm Hg). In a multivariable analysis, third
tertile of mean PaCO2, third tertile of mean PaO2, age, shockable rhythm, out of hospital cardiac
arrest, duration of cardiopulmonary resuscitation, and ECPR at cardiac catheterization lab were found
to be significantly associated with poor neurologic outcomes. Additionally, hypercapnia and extreme
hyperoxia were found to be significantly associated with poor neurological outcomes after ECPR.
Therefore, maintaining adequate arterial levels of oxygen and carbon dioxide may be important for
favorable neurological prognoses in survivors after ECPR.

Keywords: arterial blood gas tensions; extracorporeal cardiopulmonary resuscitation; neurologi-
cal prognosis

1. Introduction

Neurological prognoses in survivors after successful cardiopulmonary resuscitation
(CPR) from cardiac arrest are of the utmost importance [1]. To improve these prognoses,
there are several recommendations in the current guidelines for post-cardiac arrest care,
including targeted temperature management, control of blood pressure and glucose level,
seizure management, oxygenation, and ventilation [2,3]. The guidelines recommend titrat-
ing inspired oxygen and ventilation to achieve normal oxygen and carbon dioxide levels
after the return of spontaneous circulation [2–5].
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Aberrant oxygen levels may be associated with poor prognosis after cardiac arrest [6,7].
Hyperoxia can exacerbate oxygen free radical formation and cause subsequent reperfusion
injury [8]. Hypoxia has also been reported to be associated with hospital mortality in
survivors after cardiac arrest [6]. Hypercapnia can provoke cerebral vasodilatation and
increased cerebral blood flow (CBF), while hypocapnia can lead to cerebral vasoconstriction
and decreased CBF [9]. In survivors of cardiac arrest, neurological recovery is related to
rapid improvement of CBF to meet the metabolic needs of the brain [10]. Therefore, it is
hypothesized that oxygen and carbon dioxide levels may be closely connected with clinical
outcomes in survivors after cardiac arrest.

It remains unknown whether the optimal target of arterial blood gas tension after
extracorporeal cardiopulmonary resuscitation (ECPR) is similar to that of conventional
CPR. In survivors after ECPR, brain recovery may be related to CBF autoregulation, native
circulatory restoration, and amount of extracorporeal membrane oxygenation (ECMO)
support [1,11]. However, it is not known in detail how the continuous flow of ECMO
affects the autoregulation of CBF [11]. To date, no studies have determined the optimal
levels of oxygen and carbon dioxide considering the changes in CBF autoregulation by
ECMO. Therefore, in the present study, our aim is to assess the optimal levels of oxygen
and carbon dioxide for favorable neurologic outcomes after ECPR.

2. Materials and Methods
2.1. Study Design and Variables

The present research comprised a retrospective, single-center, and observational study.
In this study, ECPR was defined as successful implantation of veno-arterial ECMO and
pump-on with cardiac compression during index procedure in patients with cardiac ar-
rest [1,11]. ECPR was considered with confirmed witness arrest, reversible causes of cardiac
arrest, and chest compression of 10 min or more [12]. ECPR was contraindicated with the
patients with life expectancy less than 6 months, end-stage malignancies, an unwitnessed
arrest, or chest compressions of 1 hour or more, but advanced age alone was not an absolute
contraindication [11,12]. ECPR was performed when the indications for ECPR were appro-
priate, regardless of in-hospital or out-of-hospital cardiac arrest [11]. The CPR duration
was defined as the total time from onset to halt of chest compression. Targeted temperature
management was designated by an on-site intensivist according to the protocol [13].

2.2. Study Population

Patients were 18 years or older and underwent ECPR during hospitalization between
January 2010 and December 2018 in Samsung Medical Center. All consecutive patients who
underwent ECPR during the study period were included in the study. Of these patients,
those aged below 18 years, those with Glasgow Coma Scale (GCS) > 12 on admission to
the intensive care unit, those with an inappropriate indication for ECPR, those who had
pre-existing severe neurologic disease or damage before arrest including traumatic brain
injury, major stroke, malignant brain tumor or severe dementia, and those with insufficient
medical records were excluded from the study (Figure 1). This study was approved by
the Institutional Review Board of Samsung Medical Center (approved No. 2019-10-119).
The requirement for informed consent was waived by the Institutional Review Board of
Samsung Medical Center due to the retrospective nature of the study.

2.3. Data Collection Process

An expert nurse in the ECMO team was responsible for data collection and all data
for all patients receiving ECPR were systematically recorded. We obtained the levels
of partial pressure of carbon dioxide (PaCO2) and partial pressure of oxygen (PaO2) in
arterial blood gas samples 72 h after ECPR. The sampling interval was determined by
the treating physician. The mean PaCO2 and PaO2 were calculated using entire blood
gas measurements 72 h after ECPR. The primary outcome was neurological status upon
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discharge, as assessed by the Glasgow-Pittsburgh Cerebral Performance Categories (CPC)
scale (range: 1 to 5) [1].
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Figure 1. Study flow chart. ECPR, extracorporeal cardiopulmonary resuscitation; CPC, Cerebral
Performance Categories scale.

Favorable neurological outcomes were defined as CPC scores 1 and 2, whereas poor
neurologic outcomes were defined as CPC scores of 3 to 5. Two independent intensivists
(SMH and JAR) assessed the CPC score by thoroughly reviewing the patient’s medical
records. If the investigated scales did not match with each other, the intensivists discussed
and corrected the scale.

2.4. Statistical Analyses

Continuous variables are presented as means ± standard deviations, and categorical
variables are represented as numbers with subsequent percentages. Data comparisons
were carried out using Student’s t-test for continuous variables, whereas the Chi-square
test was used for categorical variables. We classified the subjects into three groups based
on the distribution of the concentration of oxygen and carbon dioxide, using cut-off values
between the groups. All possible ranges of oxygen and carbon dioxide were grid-searched
to find the cutoffs of both variables. However, since the number of subjects with a low
level of carbon dioxide was not sufficient, the cutoff value was fixed at 30 mm Hg, i.e., the
generally accepted level [14–17]. Among all the logistic regression models that included
the generated combination of oxygen and carbon dioxide as independent variables, the
combination with the largest c-index was selected. For all analyses, multiple logistic
regression was performed to correct clinically relevant variables. Eventually, the clinically
relevant variables, including mean arterial blood gas tensions, age, first monitored rhythm,
type of cardiac arrest, CPR duration, targeted temperature management, and location of
ECMO insertion were obtained. All tests were two-sided and p values of less than 0.05 were
considered statistically significant. Statistical analyses were performed with R Statistical
Software (version 4.2.0; R Foundation for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Baseline Characteristics and Clinical Outcomes

In this study, 245 patients were analyzed (Figure 1). The mean age of the patients was
58.8 ± 15.7 years, and 176 patients (71.8%) were men. Hypertension (48.2%) and diabetes
mellitus (35.1%) were identified as the most common comorbidities. Forty patients (16.3%)
experienced out-of-hospital cardiac arrest. The mean CPR duration was 26.7 ± 20.6 min.
The baseline characteristics of the ECPR patients are presented in Table 1. Compared with
the favorable neurologic outcome group, the poor neurologic outcome group comprised
elderly patients, higher incidence of out-of-hospital cardiac arrest, initial asystole rhythm
and renal replacement therapy, lower incidence of ischemic heart disease as a cause of
cardiac arrest, ECPR at cardiac catheterization lab, and longer CPR duration.

Table 1. Baseline characteristics of patients.

Favorable
Neurological

Outcome (n = 95)

Poor
Neurological Outcome (n = 150) p-Value

Age (years) 56.6 ± 15.4 60.1 ± 15.8 0.089

Gender, male 73 (76.8) 103 (68.7) 0.215

Comorbidities

Hypertension 45 (47.4) 73 (48.7) 0.947

Diabetes mellitus 32 (33.7) 54 (36.0) 0.816

Previous myocardial infarction 22 (23.2) 34 (22.7) 0.999

Current smoker 21 (22.1) 24 (16.0) 0.302

Malignancy 13 (13.7) 30 (20.0) 0.274

Chronic kidney disease a 8 (8.4) 26 (17.3) 0.076

Dyslipidemia 15 (15.8) 17 (11.3) 0.416

CPR details

Type of cardiac arrest 0.033

Out of hospital cardiac arrest 9 (9.5) 31 (20.7)

In-hospital cardiac arrest 86 (90.5) 119 (79.3)

First monitored rhythm 0.006

Asystole 6 (6.3) 30 (20.0)

Pulseless electrical activity 47 (49.5) 74 (49.3)

Shockable rhythm (VT or VF) 42 (44.2) 46 (30.7)

CPR duration (min) 16.63 ± 14.42 33.13 ± 21.37 <0.001

Cardiac cause of arrest 0.015

Ischemic 54 (56.8) 58 (38.7)

Non-ischemic 17 (17.9) 31 (20.7)

Management in the intensive care unit

Targeted temperature management 18 (18.9) 30 (20.0) 0.970

Arctic Sun 10 (10.5) 24 (16.0)

Cooling pad 8 (8.4) 6 (4.0)

Intra-aortic balloon pump 10 (10.5) 8 (5.3) 0.205

Renal replacement therapy 26 (27.4) 83 (55.3) <0.001
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Table 1. Cont.

Favorable
Neurological

Outcome (n = 95)

Poor
Neurological Outcome (n = 150) p-Value

Location of ECPR <0.001

Cardiac catheterization lab 39 (41.1) 24 (16.0)

Intensive care unit 29 (30.5) 74 (49.3)

Emergency department 22 (23.2) 45 (30.0)

Others (operation room, general wards, etc.) 5 (5.3) 7 (4.7)
a Chronic kidney disease is defined as either kidney damage or glomerular filtration rate less than
60 mL/min/1.73 m2 for 3 months or longer. Reported are n (%) for categorical variables and mean ± stan-
dard deviation for continuous variables. CPR: cardiopulmonary resuscitation; VT: ventricular tachycardia;
VF: ventricular fibrillation; ECPR: extracorporeal cardiopulmonary resuscitation.

Among 245 patients, 119 (48.6%) survived until discharge from the hospital. Of
these, 95 (CPC 1 or 2) had favorable neurologic outcomes while 24 (CPC 3 or 4) had poor
neurologic outcomes. The entire distribution of CPC scales is shown in Figure 1.

3.2. The Relationship between Mean Arterial Blood Gas Tensions and Neurologic Outcomes

Among the three groups of mean PaCO2 and PaO2, the second tertile groups had
the highest number of patients with favorable outcomes (Table 2). There was a U-shaped
relationship between the mean arterial blood gas tensions and poor neurological outcomes.
The risk of poor neurological outcome was lowest in patients with 30–42 mm Hg of mean
PaCO2 or 120–160 mm Hg of mean PaO2 (Figure 2). Considering mean PaCO2 and PaO2
simultaneously, the risk of poor neurological outcomes was lowest in patients with the
second tertile of mean PaCO2 and PaO2 (Figure 3). In multivariable analysis, third tertile of
mean PaCO2 (adjusted odds ratio [OR]: 12.02, 95% confidence interval [CI]: 1.703–84.760),
third tertile of mean PaO2 (adjusted OR: 2.85, 95% CI: 1.043–7.804), age (adjusted OR: 1.05,
95% CI: 1.021–1.076), shockable rhythm (adjusted OR: 0.16, 95% CI: 0.047–0.555), out of
hospital cardiac arrest (adjusted OR: 3.13, 95% CI: 1.074–9.133), CPR duration (adjusted
OR: 3.57, 95% CI: 2.263–5.616), and ECPR at cardiac catheterization lab (adjusted OR:
0.17, 95% CI: 0.069–0.409) were found to be significantly associated with poor neurologic
outcomes (Table 3).

Table 2. Comparison of mean blood gas tension distribution between the favorable neurological
outcome group and poor neurological outcome group.

Mean Blood Gas Tension
(mm Hg)

Favorable Neurological
Outcome (n = 95)

Poor Neurological
Outcome (n = 150) p-Value

PaCO2 33.19 ± 4.06 36.71 ± 14.41 0.005

Tertile of mean PaCO2 <0.001

First tertile (<30) 18 (18.9) 37 (24.7)

Second tertile (30–42) 75 (78.9) 84 (56.0)

Third tertile (>42) 2 (2.1) 29 (19.3)

PaO2 131.68 ± 30.91 148.40 ± 55.19 0.003

Tertile of mean PaO2 <0.001

First tertile (<120) 32 (33.7) 49 (32.7)

Second tertile (120–160) 52 (54.7) 47 (31.3)

Third tertile (>160) 11 (11.6) 54 (36.0)
Reported are n (%) for categorical variables and mean ± standard deviation for continuous variables. PaCO2: the
mean level of arterial carbon dioxide 72 h after cardiac arrest; PaO2: the mean level of arterial oxygen 72 h after
cardiac arrest.
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Table 3. Multivariable analysis of factors associated with poor neurological outcomes.

Adjusted OR (95% CI) p-Value

Tertile of mean PaCO2

First tertile (<30 mm Hg) 1 Reference

Second tertile (30–42 mm Hg) 0.51 (0.205–1.283) 0.148

Third tertile (>42 mm Hg) 12.02 (1.703–84.760) 0.012

Tertile of mean PaO2

First tertile (<120 mm Hg) 1 Reference

Second tertile (120–160 mm Hg) 0.50 (0.223–1.107) 0.083

Third tertile (>160 mm Hg) 2.85 (1.043–7.804) 0.039

Age (years) 1.05 (1.021–1.076) <0.001

First monitored rhythm

Asystole 1 Reference

Pulseless electrical activity 0.31 (0.092–1.056) 0.058

Shockable rhythm (VT or VF) 0.16 (0.047–0.555) 0.003

Out of hospital cardiac arrest 3.13 (1.074–9.133) 0.034

CPR duration a 3.57 (2.263–5.616) <0.001

ECMO insertion in cardiac
catheterization lab 0.17 (0.069–0.409) <0.001

a CPR duration was log−transformed to reduce skewness. OR: odds ratio; CI: confidence interval; PaCO2: mean
level of arterial carbon dioxide 72 h after ECPR; PaO2: mean level of arterial oxygen 72 h after ECPR;
VT: ventricular tachycardia; VF: ventricular fibrillation; CPR: cardiopulmonary resuscitation; ECMO: extra-
corporeal membrane oxygenation.

4. Discussion

In the present study, we investigated the optimal levels of oxygen and carbon diox-
ide for the prognosis of neurologic outcomes after ECPR. The major findings were as
follows: First, the risk of poor neurological outcomes was lowest in the second tertile
groups: 30–42 mm Hg of mean PaCO2 and 120–160 mm Hg of mean PaO2. Second, in
our multivariable analysis, the third tertile of mean PaCO2, the third tertile of mean PaO2,
age, shockable rhythm, out-of-hospital cardiac arrest, CPR duration, and ECPR at cardiac
catheterization lab were found to be significantly associated with poor neurologic outcomes.
Finally, there was a U-shaped relationship between the mean arterial blood gas tensions
and poor neurological outcomes, but low to normal levels of PaCO2 or PaO2 demonstrated
no independent association with poor neurological outcomes. In contrast, hypercapnia
and extreme hyperoxia were found to be independently associated with poor neurological
outcomes after ECPR.

Aberrant arterial blood gas tensions have been reported to be associated with poor
neurological outcomes after cardiac arrest, and the impact probably depends on the extent
and duration of exposure [7]. Hypocapnia has been demonstrated to be independently
associated with poor clinical outcomes [7,15]. Hypocapnia can lead to vasoconstriction,
decreased CBF, and cerebral ischemia in neurocritically ill patients [18]. In addition, hypoxia
has been reported to be independently associated with hospital mortality after cardiac
arrest [6]. In the present study, we observed a U-shaped relationship between mean arterial
blood gas tensions and poor neurological outcomes, but hypocapnia and low to normal
levels of PaO2 demonstrated no independent association with poor neurological outcomes
after ECPR. The ECPR survivors with simultaneous low levels of PaCO2 and PaO2 had
favorable neurological outcomes. They had a low incidence of chronic renal disease and
high incidences of in-hospital cardiac arrest and ECPR at the cardiac catheterization lab
compared with other patients.
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Extreme hyperoxia was found to be independently associated with poor neurological
outcomes after ECPR in the present study. Survivors after ECPR may experience severe
hyperoxia because oxygenated blood can be easily obtained through the oxygenator of
ECMO [19]. Hyperoxia leads to the generation of noxious oxygen radicals and cerebral vaso-
constriction, and this mechanism has been reported to provoke brain ischemia [18,20,21].
Early hyperoxia can lead to severe vascular failure, refractory circulatory shock, and ex-
acerbating reperfusion injury after ECPR [22–24]. In addition, it is possible to obtain fully
oxygenated blood through an oxygenator at the right radial arterial line if the survivor’s
native cardiac function is severely depressed after ECPR. Therefore, hyperoxia may reflect
markedly impaired cardiac function in such patients. It has been proposed that hyperoxia
may be associated with poor neurological outcomes in survivors after ECPR [22–24].

A few studies have reported that hypercapnia may be associated with a greater
likelihood of favorable outcomes [7,25]. However, hypercapnia may lead to cerebral
vasodilatation and increased CBF, and might provoke cerebral edema in patients with
impaired CBF autoregulation [9]. Another study reported that hypercapnia was common
after cardiac arrest and demonstrated an independent association with poor neurological
outcomes after resuscitation from cardiac arrest [15]. Therefore, further studies are needed
to demonstrate whether hypercapnia during postcardiac arrest care improves the clinical
outcome [14].

In our previous study, old age (>65 years) and prolonged CPR duration (>30 min) were
related to poor neurologic outcomes after ECPR [1]. There was a significant interaction
between age and CPR duration in predicting neurological outcomes after ECPR [1]. Despite
initial hypoxic-ischemic injury, the considerable reserve and tolerance of young brains to
hypoxic-ischemic injury may lead to favorable neurological outcomes [26]. In addition,
age-induced altered cerebral hemodynamics may affect neurologic recovery after cardiac
arrest [1]. In the present study, ECMO insertion in cardiac catheterization lab was associated
with favorable neurologic outcomes. This may be associated with short ECMO pump-on
time. A catheterization lab is the best place for ECPR in a short time; ECMO insertion
can be safe and highly effective in this setting [27,28]. In our previous studies, we found
that initial arrest rhythm and low-flow time may be associated with neurological outcome
after ECPR [1,29]. Notably, shockable rhythm was associated with favorable neurological
outcomes after ECPR [1,29]. ECPR patients after in-hospital cardiac arrest may have
more favorable outcomes than those after out-of-hospital cardiac arrest [30]. Patients may
have more prolonged arrest to ECMO pump-on time after out-of-hospital cardiac arrest
compared with after in-hospital cardiac arrest.

This study has several limitations. First, it was conducted over a long period. In the
meantime, post-cardiac arrest management may have evolved, which may have affected
the clinical outcomes during the study period. Second, the effects of continuous ECMO
flow on cerebral autoregulation were unclear in this study. Lastly, it is hypothesized that
extreme hyperoxia may be obtained in ECPR patients with a markedly impaired heart.
Extremely high oxygen levels in the right radial artery may mainly be caused by the flow
of ECMO. It is unclear whether the poor clinical outcomes were related to hyperoxia
itself or impaired heart function. Although the present study provides valuable insights,
prospective large-scale studies are needed to evaluate the optimal levels of oxygen and
carbon dioxide for favorable neurologic outcomes after ECPR.

5. Conclusions

In this study, we observed a U-shaped relationship between poor neurological out-
comes and mean arterial blood gas tensions in the first 72 h after ECPR. However, hypocap-
nia, normocapnia, hypoxia, and normoxia demonstrated no relationship with poor neu-
rological outcomes, whereas hypercapnia and extreme hyperoxia were found to be sig-
nificantly associated with poor neurological outcomes. Therefore, it is proposed that
maintaining adequate arterial levels of oxygen and carbon dioxide may be important for
favorable prognoses of neurological outcomes in survivors who underwent ECPR.
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