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Cardiovascular disease is one of the main causes of human mortality. Cytokines play

crucial roles in the development of cardiovascular disease. Interleukin (IL)-6 family

members are a series of cytokines, including IL-6, IL-11, IL-30, IL-31, OSM, LIF,

CNTF, CT-1, CT-2, and CLC, that regulate multiple biological effects. Experimental and

clinical evidence shows that IL-6 family members are closely related to cardiovascular

diseases such as atherosclerosis, hypertension, aortic dissection, cardiac fibrosis,

and cardiomyopathy. This review mainly discusses the role of IL-6 family members

in cardiovascular disease for the sake of identifying possible intervention targets for

cardiovascular disease prevention and treatment.

Keywords: cardiovascular diseases, IL-6 family cytokines, atherosclerosis, coronary artery disease, cardiac

remodeling

INTRODUCTION

Currently, cardiovascular diseases (CVDs) are the leading cause of human death and morbidity
worldwide. They not only threaten the safety and quality of life of patients but also place a
heavy burden on society (1, 2). Inflammation plays an important role in CVD, and markers of
inflammation can predict future CVD events (3).

The interleukin-6 family comprises IL-6, IL-11, IL-30, IL-31, and non-IL molecules, including
oncostatin M (OSM), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF),
cardiotrophin 1 (CT-1), and cardiotrophin-like cytokine (CLC). They are characterized by sharing
the common receptor subunit glycoprotein 130 (gp130) and sharing the structure of four-helices
with an up-up–down-down topology.

A large number of studies have confirmed that IL-6 has both proinflammatory and anti-
inflammatory effects via different IL-6Rs. The receptor complexes of IL-6 are composed of IL-6R or
soluble IL-6R and gp130. It seems that the proinflammatory effect mainly relies on trans-signaling
mediated by sIL-6R and that the anti-inflammatory effect mainly depends on membrane-bound
IL-6R (4–7). IL-6 induces Th17 differentiation, suppresses Treg differentiation, and stimulates
the polarization of M2 macrophages (8–10). Lymphocytes, monocytes/macrophages, adipocytes,
and hematopoietic and endothelial cells are the cellular sources of IL-6 (11). The gp130 protein is
expressed in almost all tissues (12).

IL-11 is reported as a pro- and anti-inflammatory cytokine. The signal transduction process of
IL-11 is similar to that of IL-6, and the IL-11/IL-11R complex needs to be formed before gp130 can
be activated. Additionally, there are both classic and trans-signaling pathways through IL-11R or
sIL-11R complexes (13, 14). The cellular sources of IL-11 are T cells, B cells, macrophages, cardiac
myocytes, etc. The main source of IL-11 is not clear. It can induce Th2 and Th17 differentiation,
suppress Th1 differentiation and inhibit macrophage activity (13).
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IL-30 is the p28 subunit of IL-27 but has some functions that
are independent of IL-27. IL-30 is a natural antagonist of gp130,
so IL-30 may offer a therapeutic strategy against inflammation
(15, 16). IL-30 has been shown to inhibit the differentiation
of Th1 and Th17 cells (17). IL-30 is secreted by activated
macrophages and splenocytes (18).

IL-31 is a proinflammatory cytokine that activates the receptor
complex of IL-31RA and OSMR. IL-31 induces Th1 and inhibits
Th17 differentiation in vitro (19, 20). IL-31 is secreted by T cells
and granulocytes, especially Th2 cells (21).

OSM has been shown to bind to both the gp130/OSMR
complex and gp130/LIFR complex and shows proinflammatory
effects (22–24). In vitro experiments have shown that OSM
inhibits the proliferation of Th17 cells and induces dendritic cell
(DC) maturation and Th1 polarization (25, 26). It is secreted by
activated monocytes/Møs, DCs, neutrophils, T lymphocytes, and
hematopoietic cells in the bone marrow (22).

LIF is an anti-inflammatory cytokine that binds to the
gp130/LIFR complex (27). LIF is highly produced by Treg cells in
both humans and mice. LIF inhibits inflammation by promoting
Treg differentiation and inhibiting Th17 cell differentiation (28).

CNTF binds to CNTFR and then induces heterodimerization
of gp130 and LIFR, which is involved in signal transduction (29).
The cellular source and its role in the immune response remain
to be studied.

CT-1 plays an anti-inflammatory role and binds to the
complex of gp130 and LIFR and possibly requires the CT-1R
subunit in neuronal cells (30, 31). CT-1 mRNA is expressed in
the adult human heart, skeletal muscle, ovary, colon, prostate,
and testis. CT-1 is mainly secreted by cardiac nonmyocytes
in the heart. However, the cellular source still needs to be
studied (31–33).

CLC or the heterodimeric cytokine cardiotrophin-like
cytokine:cytokine-like factor-1 (CLC:CLF-1) binds to CNTFR
and then interacts with gp130/LIFR, which subsequently has a
proinflammatory role (34–36). Evidence has shown that CLC is
secreted by circulating lymphocytes and can stimulate B cells,
activate Møs, and promote monocyte numbers (37–39).

The signaling pathways of IL-6 familymembers are similar but
distinct because of their similar but distinct receptor complexes.
One major signaling pathway is the activation of Janus kinase
(JAK) tyrosine kinase family members, leading to the activation
of the signal transducers and activators of transcription (STAT)
transcription factors, mostly STAT3. Another major signaling
pathway is the JAK-SH2 domain tyrosine phosphatase 2 (SHP2)-
mitogen-activated protein kinase (MAPK) pathway (23, 40–43).
The detailed pathways are illustrated in Table 1.

INTERLEUKIN-6 FAMILY MEMBERS AND
CARDIOVASCULAR DISEASE

Increasing evidence demonstrates that inflammation plays an
important role in the development of cardiovascular disease (51–
54). IL-6 family members modulate the immune response and
inflammatory activity and then participate in the development of
cardiovascular diseases (41, 55, 56).

Interleukin-6 Family Members and
Atherosclerosis, Coronary Artery Disease
Atherosclerosis is the leading cause of coronary artery disease
(CAD). It causes life-threatening events such as thrombosis as
well as the rupture or erosion of atherosclerotic plaques (57).
Atherosclerosis is a chronic inflammatory disease, so many
researchers have focused on the potential mediators that initiate
and maintain this vascular disease (58).

The progression of carotid atherosclerosis is positively
correlated with the elevation of IL-6 (59). IL-6 plays an important
role in regulating the downstream inflammatory responses that
contribute to the development of atherosclerosis (60, 61). IL-6
perpetuates vascular inflammation by promoting smooth muscle
cell (SMC) proliferation and migration, endothelial dysfunction
and the recruitment and activation of inflammatory mediators,
which result in atherosclerotic plaque development and plaque
destabilization (61, 62). Higher IL-6 measured at 24 h after ST-
elevation myocardial infarction (STEMI) is associated with a
larger infarct size and diminished cardiac function measured
at 4 months. IL-6 can be a potential biomarker for STEMI
prognosis and a target for improving prognosis (63). Clinical
data show that IL-6 is a biomarker of mortality from unstable
CAD (64). The increase in IL-6 levels has a strong relationship
with future cardiac events and CAD mortality in anginal
syndrome or healed myocardial infarction patients (65). The
use of tocilizumab, an IL-6 receptor antagonist, reduces the
inflammatory response in non-STEMI (NSTEMI) patients, which
may be beneficial to patients but still needs further study
(66). Canakinumab is a monoclonal antibody against IL-1β
and can modulate the IL-6 pathway to decrease the major
adverse cardiovascular event (MACE) rate (67). On the one
hand, experimental atherosclerosis studies show that treatment
with recombinant IL-6 (rIL-6) promotes early atherosclerosis
in C57Bl/6 and ApoE-deficient mice. The rIL-6-treated mice
showed higher plasma levels of proinflammatory cytokines such
as TNFα and IL-1β, which can promote the development of
fatty streaks by enhancing the accumulation of foam cells. In
addition, proinflammatory cytokines can activate macrophage-
monocytes so that cell migration into the intima, lipid uptake,
and low-density lipoprotein (LDL) oxidation are increased (68).
On the other hand, IL-6 has an atheroprotective effect because
lifetime IL-6 deficiency leads to more severe atherosclerosis
rather than inhibition of plaque formation. It is believed that
lifetime deficiency of IL-6 breaks the balance of IL-6 and IL-
10 and thus promotes the development of atherosclerosis (69,
70). OSM is expressed in atherosclerotic lesions and promotes
SMC proliferation, migration and extracellular matrix synthesis,
which may contribute to atherosclerosis progression. OSMR-β
deficiency alleviates atherosclerosis and plaque instability. Serum
OSM levels are elevated in CAD patients compared to those
without CAD (71–73). Nevertheless, chronic administration of
OSM can attenuate the development of plaques and improve
plaque severity in APOE∗3Leiden.CETP mice. The possible
mechanisms might involve regeneration of the endothelial
barrier, induction of SMC proliferation, and a reduction in
the inflammatory Ly-6CHigh monocyte subset. Patients with
higher serum OSM have increased post incident coronary heart
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TABLE 1 | The receptor complexes and pathways of IL-6 family members.

Receptors complexes Pathways Role in immune response Cellular source References

IL-6 IL-6R/sIL-6R+gp130 JAK1,JAK2,TYK2,

STAT3,STAT1, MAPK, PI3K

Induce Th17 differentiation

Suppress Treg differentiation

stimulate the polarization of

Mø

Lymphocytes, monocytes/ Mø,

adipocytes, hematopoietic and

endothelial cells

(5–11, 44–47)

IL-11 IL-11R/ sIL-11R +gp130 JAK, STAT3, MAPK, PI3K Induce Th2, Th17

differentiation Suppress Th1

differentiation Inhibit Mø

activity

T cells, B cells and other cell

types Main source is unclear

(13, 14, 48)

IL-30 gp130 STAT1,STAT3, MAPK Inhibit Th1,Th17

differentiation

activated Mø splenocytes (15–18)

IL-31 IL-31RA+OSMR STAT1, STAT3, STAT5,

PI3K, MAPK

Indude Th1, inhibit Th17

differentiation

Th cells (19, 21)

OSM gp130+OSMR or

gp130+LIFR

JAK,STAT, MAPK, PI3K,

PKCδ

Inhibit Th17 activation

induces dendritic cell

maturation and Th1

polarization

Activated Monocytes/Mø, DCs,

neutrophils,T-lymphocytes.

Hematopoietic cells in the bone

marrow

(22, 23, 25, 26)

LIF gp130+LIFR JAK1,JAK2, TYK2,

STAT1,STAT3,STAT5, PI3K,

MAPK

Prompt Treg differentiation

Inhibit Th17 differentiation

Tregs (27, 28)

CNTF CNTFR+gp130+LIFR JAK, STAT1,STAT3, MAPK,

PI3K

- - (29, 49, 50)

CT-1 LIFR+gp130 or

LIFR+gp130+CT-1R

JAK1, JAK2, TYK2, STAT1,

STAT3, STAT5, MAPK, PI3K

Inhibit M1 polarization

Prompt M2 polarization

Cardiac nonmyocytes (30–33)

CLC CNTFR+LIFR+gp130 JAK1, JAK2, TYK2, STAT1,

STAT3, STAT5, MAPK, PI3K

Stimulate B cell Activate Mø

Promote monocytes

number

circulating lymphocytes (34, 35, 37–39)

Mø, macrophages; DC, dendritic cell.

disease survival probability (74). Because OSM can activate
both gp130/OSMR receptor complex and gp130/LIFR receptor
complex. The selective inhibition of OSMR-βmight be a potential
therapeutic target. Further study is needed. In a rabbit model,
LIF can retard the progression of atherosclerosis because it
can reduce macrophages in the neointima of uninjured arteries
and can regulate iNOS activity to maintain beneficial levels of
nitric oxide (NO) (75, 76). CT-1 promotes the development
of atherosclerotic lesions because it can induce the migration
and proliferation of vascular smooth muscle cells and collagen-
1 production. It can stimulate inflammatory responses, and the
formation of foam cells is correlated with CD36 and ACAT1
upregulation in macrophages (77). ApoE and CT-1 double
knockout (DKO) mice have smaller atherosclerotic lesions
than ApoE KO mice. CT-1 deficiency induces atheroprotective
immune cells, including Bregs, Tregs and B1a cells. Moreover,
CT-1 deficiency is beneficial to plaque stability because DKO
mice have an increased collagen content in the aortic sinus, a
significant reduction in MMP9 expression and necrotic core area
and an increase in the fibrous cap thickness in atherosclerotic
roots. The present study demonstrates the inhibition of CT-
1 attenuates atherosclerosis progression and development.
But the application in patients still needed to be studied
(78). Cardiotrophin-like cytokine factor 1 (CLCF1) upregulates
scavenger receptor A 1 (SR-A1) expression, which is the major
mechanism of the increase in lipoprotein uptake, inducing
the formation of macrophage-foam cells. A murine experiment

indicated that SR-A1 deficiency decreased atherosclerotic lesions
(44, 79). Kim, Jun W et al. have engineered CLCF1 variants
that can inhibit or activate CNTFR. The application of it in
atherosclerosis might be meaningful research (80).

Interleukin-6 Family Members and
Hypertension
Hypertension is a leading cause of cardiovascular events, which
contributes greatly to mortality and disability. With the increased
understanding of immunology, evidence that the immune system
may lead to hypertension is increasing (81).

The inhibition of IL-6 attenuates the development of salt-
sensitive hypertension in rat models. IL-6 KO mice have a lower
mean arterial pressure (MAP) than WT mice. The deletion
of IL-6 can prevent the activity of the JAK2/STAT3 pathway,
which plays a role in Ang II-induced hypertension (82–84). The
circulating levels of IL-6 have a positive relationship with blood
pressure (85). Clinical data indicates that the hypomethylation
of the IL-6 gene promoter may increase the risk of essential
hypertension by upregulating the expression of IL-6 (86). CT-
1 is significantly increased in untreated hypertensive patients
compared with normotensive subjects (87, 88). SA study showed
that excess CT-1 may contribute to inappropriate left ventricular
growth in hypertension patients (89). Research on other IL-
6 family members associated with hypertension remains to
be conducted. Aortic stiffness is measured by pulse wave
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velocity (PWV) and can predict cardiovascular morbidity and
mortality in hypertension patients. Clinical data shows a positive
relationship between IL-6 and PWV (90–93). Du, Bing et al.
showed that the LDLr-/- mice had larger PWV and ex vivo
intrinsic mechanical properties, which means that LDLr-/- mice
had arterial stiffness. IL-6 from aortic perivascular adipose tissue
(PVAT) plays a critical role in promoting arterial stiffness. What’s
more, the inhibition of IL-6 can attenuate arterial stiffness, and
the treatment of IL-6 can aggravate (94).

Interleukin-6 Family Members and Aortic
Aneurysms and Aortic Dissection
Aortic aneurysms are dilations of the aorta larger than
50% of the normal aorta diameter (95). Abdominal aortic
aneurysms (AAAs) and thoracic aortic aneurysms (TAAs)
are the most common aortic aneurysms (96). Acute aortic
dissection (AD) is a rare disease but has high mortality.
The blood penetrates the aortic wall layers and creates a
so-called false lumen (FL), which is a cavity within the
medial layer. The FL and true lumen (TL) are separated
by dissection membranes. The rupture of the FL or a
second tear in the dissection membrane would cause serious
consequences (97).

The expression of IL-6 is increased in β-aminopropionitrile
(BAPN)-induced AD rat models. Circulating plasma IL-6 levels
are elevated in AAA patients. Experimental data support that
aortic aneurysms can secrete IL-6 (98–100). Paige et al. found
that selective inhibition of the IL-6 trans-signaling pathway can
decrease aortic rupture and death in 2 AAA mouse models,
which shows us a potential therapeutic target for AAA (101).
The expression of IL-6 is increased in AD rat models. IL-6 may
enhance the expression ofMMP-2 andmay promote extracellular
matrix degradation of the vascular wall, which promotes the
formation of AD (98). Lv, Xiao-Chai et al. found that plasma
IL-6 level is elevated in postoperative delirium (POD) patients
after aortic dissection surgery. Thus, plasma IL-6 values can be
used to evaluate AAD patients’ POD outcomes (102). Besides, the
high level of IL-6 and D-dimer has predictive value in assessing
the poor prognosis after acute Stanford type A aortic dissection
surgery (103). IL-11 is significantly increased in thoracic AD
and can be a potential biomarker for AD (104). OSM is a
proinflammatory mediator and is upregulated in abdominal
AD patients. Thus, it may contribute to the development of
aortic aneurysms (105, 106). The level of CT-1 is higher in
AAA tissues. CT-1 can stimulate aortic endothelial cells to
overproduce MMP-1, which leads to ECM degradation. These
mechanisms are associated with the formation and progression
of AAA (107, 108).

Interleukin-6 Family Members and Cardiac
Remodeling
Cardiac fibrosis is characterized by the excessive deposition
of extracellular matrix (ECM) proteins that results in the
expansion of the cardiac interstitium, which is a common
pathophysiologic companion of most myocardial diseases. It is
related to cardiac dysfunction, arrhythmogenesis, and adverse

outcomes (109, 110). Cardiomyopathy is a disease that weakens
the heart muscle, attenuating the heart’s ability to pump
blood and possibly leading to heart failure (HF) (111). HF
is a complex clinical syndrome that is caused by structural
or functional impairment of ventricular filling or ejection of
blood (112). Proinflammatory cytokines trigger a series of
pathological responses, such as oxidative stress, endothelial
dysfunction, induction of myocyte apoptosis, and hypertrophy,
which ultimately leads to cardiomyocyte dysfunction (113).

An experimental study showed that IL-6 plays a central
role in myocardial fibrosis that depends on the activation
of the MAPK and CAMKII-STAT3 pathways. IL-6 is a
downstream signal of hypoxia-inducedmitogenic factor (HIMF),
and its inhibition can prevent fibroblast activation (114). In
addition, the overexpression of IL-6 increases TGF-β1-mediated
MMP2/MMP3 signaling to induce myofibroblastic proliferation,
differentiation, and fibrosis (115). IL-6 KO mice had a lower
degree of cardiac fibrosis. Thus, anti-IL-6 can be a potential
therapeutic target for decreasing cardiac fibrosis (116). The
expression of IL-11 is positively related tomyofibroblast numbers
and is higher in mice with cardiac fibrosis than in wild-type mice
(117). Anti-IL-11 treatment can attenuate the profibrotic effect
on the heart of transverse aortic constriction (TAC)mouse model
(118). Interestingly, Obana et al. found that IL-11 attenuates
cardiac fibrosis in mouse models after myocardial infarction
through the activation of STAT3 (119). Thus, when faced with
different diseases, the appropriate application of IL-11 or its
antagonist is a potential therapeutic target and needs further
investigation. The antifibrotic effects of OSM are achieved by
inhibiting the TGF-β1-mediated activation of cardiac fibroblasts
in TAC mouse models (120). LIF cDNA injection was found
to attenuate cardiac fibrosis in mice after myocardial infarction
(121). Chronic administration of LIF improves the heart function
of mice (122). Therefore, LIF may be a novel treatment for
cardiac fibrosis. López et al. found that CT-1 can be a biomarker
of myocardial fibrosis (123). CT-1 is believed to promote the
development of cardiac fibrosis by upregulating Gal-3 through
the ERK 1/2 and STAT3 pathways (124).

Clinical data have demonstrated that idiopathic dilated
cardiomyopathy patients with higher serum IL-6 have
a lower ejection fraction and worse prognosis (125).
Serum IL-6 concentration is increased in patients with
takotsubo cardiomyopathy (126). IL-6 KO mice with
dilated cardiomyopathy showed better cardiac function and
less myocardial cell apoptosis than WT mice with dilated
cardiomyopathy because of the inhibition of STAT3 (127).
The inhibition of IL-6/STAT3 signaling pathway may offer a
new target for cardiomyopathy. Diabetic cardiomyopathy mice
exhibited increased OSM. Moreover, OSM-treated diabetic mice
exhibit worse cardiac function. Knockout of the OSM receptor
Oβ attenuated dilated cardiomyopathy injury by inhibiting
the B-Raf/MEK/ERK cascade (128). OSM is consistently
upregulated in dilated cardiomyopathy patients and mouse
models. OSM protects the damaged myocardium by inducing
dedifferentiation. However, prolonged stimulation with OSM
prompts the progression of HF in dilated cardiomyopathy
(129). The plasma levels of CT-1 are increased in hypertrophic
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cardiomyopathy and are associated with the severity of left
ventricular hypertrophy (130). The expression of CT-1 is
increased in the acute stage of Chagas disease (131). The
plasma level of CT-1 is increased in dilated cardiomyopathy
patients with congestive HF compared to control
subjects (132).

An observational study showed that higher IL-6 plasma
levels were found in half of HF patients and were associated
with reduced left ventricular ejection fraction (LVEF), atrial
fibrillation, and poorer clinical outcomes (133, 134). Genetic
deletion of IL-6 alleviates left ventricular dysfunction through
the STAT3 pathway in a transverse aortic constriction-
induced pressure overload-HF mouse model (135). Moreover,
the inhibition of IL-6/STAT3 by raloxifene can attenuate
inflammation in the same model (136). Higher plasma IL-11
levels predict poor outcomes in HF patients (137). Plasma OSM
levels are elevated in HF patients with reduced ejection fraction
(HFrEF) (138). Kubin, Thomas et al. found that OSM is the key
modulator of HF that induces cardiomyocyte dedifferentiation
and contractility loss through the MAPK cascade in a mouse
model of left anterior descending coronary artery (LAD) ligation
(129). LIF mRNA is elevated in the left ventricle of congestive
HF patients, and the circulating LIF level is increased with
the deterioration of congestive HF (139, 140). Moreover, the
upregulation of LIF in the ventricle was reproduced in the Dahl
salt-sensitive (DS) rat chronic HF model (141). Myocardial and
circulating CT-1 levels are increased in HF patients and are
positively correlated with HF patient mortality, which can be
used as a biomarker for determining prognosis (124, 142–144).
CT-1 upregulates galectin-3 (Gal-3) via the ERK 1/2 and STAT3
pathways to promote cardiac fibrosis and hypertrophy, which
are involved in the development of HF (124). López, Natalia
et al. illustrate that LIFR is downregulated in spontaneously
hypertensive rats HF model that attenuates the cytoprotection
of CT-1. The upregulation of LIFR might be a potential
target (145).

Interleukin-6 Family Members and Atrial
Fibrillation
Atrial fibrillation (AF) is the most common cardiac arrhythmia
and leads to detrimental consequences. Increasing evidence
supports that inflammation plays a crucial role in the
pathophysiology of AF (146, 147). Thus, the process of
inflammation is a potential therapeutic target for AF.

Amdur et al. found that elevated levels of IL-6 are associated
with an increased risk of AF in chronic kidney disease (CKD)
patients, which suggests that IL-6 can serve as an inflammatory
biomarker for AF in CKD patients (148). Also, IL-6 levels are
associated with AF in CAD patients (149). Elderly patients
who received recombinant human IL-11 were observed to
have an increased incidence of AF (150). OSM is increased in
atrial tissue of AF patients with thrombus (151). Patients with
higher levels of CT-1 have more frequent AF relapse (152).
The correlation between the IL-6 family and AF still needs
further study.

TABLE 2 | The expression of IL-6 family members on cardiovascular diseases.

Disease IL-6 IL-11 OSM CT-1 Reference

AS Increase - Increase Increase (59, 71, 78)

CAD Increase - Increase - (63, 73)

Hypertension Increase - - Increase (85, 87, 88)

AA, AD Increase Increase Increase Increase (98–100, 104, 105,

108).

Cardiomyopathy Increase - increase Increase (126, 129, 131, 132)

AF Increase Increase Increase Increase (148, 151, 152)

Myocarditis - - - Increase (158)

AS, atherosclerosis; CAD, coronary artery disease; I/R, ischemic-reperfusion; AA, arterial

aneurysm; AD, aortic dissection; AF, atrial fibrillation.

Interleukin-6 Family Members and
Myocarditis
Myocarditis is an uncommon but potentially life-threatening
heart disease (153). Myocarditis induces a broad range of
pathological immune processes in the heart, which causes
structural and functional abnormalities (154).

IL-6 plays a key role in the development of autoimmune
heart disease, possibly by upregulating complement C3. IL-6
KO mice with autoimmune myocarditis showed a reduction
in inflammatory responses, the proliferation of autoreactive
CD4+ T cells, and the expression of ICAM-1 and VCAM-1,
which reduced myocarditis susceptibility (155). IL-6 is crucial
for Th17 differentiation through the induction of retinoic acid
receptor-related orphan nuclear receptor, which is a critical
event in the onset of experimental autoimmune myocarditis
(EAM). The blockade of IL-6R inhibits the initiation of EAM
(156). Adequate levels of IL-6 attenuate the damage from
viral infection in the early stage of inflammation. Nevertheless,
overexpression of IL-6 aggravates viral myocarditis (157). CT-1
is expressed in cardiac myocytes infected with Coxsackievirus B3
(CVB3) and induces pathologic responses in acute myocarditis.
However, the early expression of CT-1 might have a protective
effect on cardiac myocytes by inhibiting TNF-α and IL-1α
expression (158).

Interleukin-6 Family Members and Cardiac
Ischemia Reperfusion Injury
Reperfusion of the myocardium can induce further
cardiomyocyte apoptosis after cardiac ischemia, such as
occurs with myocardial infarction or heart transplantation
(159). Many studies have shown that myocardial apoptosis
mediated by inflammation is one of the crucial processes of
ischemia-reperfusion (I/R) injury (160, 161).

IL-6 prompts the development of infarction after cardiac I/R
injury, whereas IL-6 deficiency attenuates I/R injury. However,
the beneficial effects cannot be explained bymodification of other
inflammatory mediators, coagulation activation, or neutrophil
influx. The related mechanisms need to be further explored
(162). The administration of IL-11 has a protective effect on
the heart from I/R injury via the STAT3 pathway. Thus, it
can be a potential therapeutic target against I/R injury (163,
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TABLE 3 | Regulation of IL-6 family members on cardiovascular disease.

Disease IL-6 IL-11 OSM LIF CT-1 CLC Reference

AS Aggravate - Controversial Alleviate Aggravate Aggravate (44, 60, 71, 74, 75, 77)

CAD Aggravate - Alleviate - - - (65, 74)

Hypertension Aggravate - - - Aggravate - (83, 89, 135)

AA, AD Aggravate - Aggravate - Aggravate - (98, 101, 105–108)

Cardiac fibrosis Aggravate Controversial - Alleviate Aggravate - (114–117, 121, 122,

124)

Myocarditis Aggravate - - - Controversial (155, 156, 158)

Cardiomyopathy - - - - Controversial (129)

I/R Aggravate Alleviate Alleviate Alleviate Alleviate (162–170)

AS, atherosclerosis; CAD, coronary artery disease; I/R, ischemic-reperfusion; AA, arterial aneurysm; AD, aortic dissection; AF, atrial fibrillation.

FIGURE 1 | The relationship between IL-6 and atherosclerosis, MI, and vascular calcification. The IL-6 trans-signaling activates the JAK/STAT pathway that leads to

chronic inflammation. It increases the adhesion molecules in the vasculature, endothelial dysfunction, the recruitment of monocytes/macrophages, and SMC

migration. Monocytes uptake LDL and transform into foam cells that accelerate the progression of atherosclerosis. These pathological processes cause lipid

deposition, plaque development, and plaque destabilization. With increasing severity of atherosclerosis, the plaque ruptures, and thrombosis result in myocardial

infarction. IL-6 upregulates RUNX2 and RANKL/RANK, which induces the differentiation of VSMC to osteoblast and then induces the calcium-phosphate complexes

deposition. JAK, Janus Kinase; STAT, Signal transducers and activators of transcription; LDL, Low-density lipoprotein; RUNX2, Runt-related transcription factor 2;

RANKL, Receptor activator of NF-κB ligand; SMC, Smooth muscle cell; VSMC, Vascular smooth muscle cell.

164). OSM is thought to be an important factor for tissue
repair after cardiac I/R injury because it upregulates monocyte-
chemoattractant-protein (MCP-1) expression and stimulates the
proliferation of fibroblasts (165). Experimental data show that
OSM protects the heart against cardiac I/R injury through
the regulation of mitochondrial biogenesis, cardiomyocyte
apoptosis, and insulin sensitivity in diabetic mice (166). OSM

can alleviate cardiac dysfunction and reduce the infarct size
in mice partly through the Notch3/Akt and AMPK/PGC-
1α pathways (167). Pretreatment with LIF has a protective
effect on the heart against cardiac I/R injury (168). The
significant protective effect that CT-1 has on the heart after
I/R injury depends on the activation of the p42/p44 MAPK
pathway (169, 170).
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Interleukin-6 Family Members and Other
Cardiovascular Diseases
IL-6 family members are also associated with other
cardiovascular diseases, such as ventricular fibrillation,
congenital heart disease (CHD), and vascular calcification.

Elevated IL-6 serum levels are correlated with the
occurrence of spontaneous ventricular tachyarrhythmia and
ventricular fibrillation in implantable cardioverter-defibrillator
(ICD)-recipient patients with CAD and idiopathic dilated
cardiomyopathy (171). The IL-6 variant rs1800795 is associated
with CHD among Chinese Han people (172). Moreover, serum
IL-6 levels are higher in CHD groups than in control groups
(173, 174). Myocardial IL-11 and IL-6 levels are elevated in CHD
children and downregulate the microRNA-199a-5p-mediated
unfolded protein response through the STAT3 pathway (175).
CT-1 is induced in CHD patients and is negatively correlated
with arterial oxygen saturation (176). Clinical data show serum
IL-6 levels are elevated in hemodialysis patients and chronic
kidney disease patients with vascular calcification (177–180). IL-
6 promotes vascular calcification by inducing the differentiation
of VSMCs into osteoblast-like cells. IL-6/STAT3 pathway
upregulates RUNX2 gene expression, which is an important
transcription factor of the differentiation of osteoblast (181).
The activation of IL-6-mediated receptor activator of NF-κB
ligand(RANKL) plays a crucial role in the development of
vascular calcification. And the anti-IL-6 treatment can reduce
the SMC calcification (182–184). Moreover, Lee, Guan-Lin et
al. also showed the inhibition of IL-6 can attenuate the VSMC
calcification (185).

CONCLUSION

This review describes the molecular receptors of the IL-6 family
members, related signaling pathways, and their role in the
regulation of inflammation. IL-6 family signal transduction is
similar and is dominantly mediated by STAT3. The expression
and regulation of IL-6 family members in cardiovascular disease
are summarized in Tables 2, 3. Some family members, especially
IL-6, have both pro- and anti-inflammatory effects through
different receptors and pathways. Thus, the selective inhibition
of trans-signaling rather than global inhibition might be a
future therapeutic strategy. Cytokines affect the progression of
cardiac pathology by regulating complex signaling networks.
We illustrated the relationship between IL-6 and atherosclerosis,
MI, and vascular calcification in Figure 1. Further research is
needed to discover potential therapeutic targets and biomarkers
for cardiovascular disease.
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