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Abstract

Atlantic salmon (Salmo salar) is the most valuable farmed fish globally and there is much

interest in optimizing its genetics and rearing conditions for growth and feed efficiency.

Marine feed ingredients must be replaced to meet global demand, with challenges for fish

health and sustainability. Metabolic models can address this by connecting genomes to

metabolism, which converts nutrients in the feed to energy and biomass, but such models

are currently not available for major aquaculture species such as salmon. We present SAL-

ARECON, a model focusing on energy, amino acid, and nucleotide metabolism that links

the Atlantic salmon genome to metabolic fluxes and growth. It performs well in standardized

tests and captures expected metabolic (in)capabilities. We show that it can explain

observed hypoxic growth in terms of metabolic fluxes and apply it to aquaculture by simulat-

ing growth with commercial feed ingredients. Predicted limiting amino acids and feed effi-

ciencies agree with data, and the model suggests that marine feed efficiency can be

achieved by supplementing a few amino acids to plant- and insect-based feeds. SALARE-

CON is a high-quality model that makes it possible to simulate Atlantic salmon metabolism

and growth. It can be used to explain Atlantic salmon physiology and address key chal-

lenges in aquaculture such as development of sustainable feeds.

Author summary

Atlantic salmon aquaculture generates billions of euros annually, but faces challenges of

sustainability. Salmon are carnivores by nature, and fish oil and fish meal have become

scarce resources in fish feed production. Novel, sustainable feedstuffs are being trialed

hand in hand with studies of the genetics of growth and feed efficiency. This calls for a

mathematical-biological framework to integrate data with understanding of the effects of

novel feeds on salmon physiology and its interplay with genetics. We have developed the

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010194 June 10, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zakhartsev M, Rotnes F, Gulla M, Øyås O,

van Dam JCJ, Suarez-Diez M, et al. (2022)

SALARECON connects the Atlantic salmon genome

to growth and feed efficiency. PLoS Comput Biol

18(6): e1010194. https://doi.org/10.1371/journal.

pcbi.1010194

Editor: Aleksej Zelezniak, Chalmers University of

Technology: Chalmers tekniska hogskola,

SWEDEN

Received: September 8, 2021

Accepted: May 10, 2022

Published: June 10, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010194

Copyright: © 2022 Zakhartsev et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The model and

scripts that reproduce our results can be found at

gitlab.com/digisal/salarecon.

https://orcid.org/0000-0002-1702-7379
https://orcid.org/0000-0002-5680-4855
https://orcid.org/0000-0001-6990-0339
https://orcid.org/0000-0001-5845-146X
https://orcid.org/0000-0002-9551-9280
https://orcid.org/0000-0002-9143-9726
https://orcid.org/0000-0001-8172-8981
https://orcid.org/0000-0001-5597-8397
https://orcid.org/0000-0002-9361-3687
https://orcid.org/0000-0002-4391-3411
https://orcid.org/0000-0002-7778-4515
https://doi.org/10.1371/journal.pcbi.1010194
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010194&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010194&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010194&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010194&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010194&domain=pdf&date_stamp=2022-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010194&domain=pdf&date_stamp=2022-06-23
https://doi.org/10.1371/journal.pcbi.1010194
https://doi.org/10.1371/journal.pcbi.1010194
https://doi.org/10.1371/journal.pcbi.1010194
http://creativecommons.org/licenses/by/4.0/
https://gitlab.com/digisal/salarecon


SALARECON model of the core salmon metabolic reaction network, linking its genome

to metabolic fluxes and growth. Computational analyses show good agreement with

observed growth, amino acid limitations, and feed efficiencies, illustrating the potential

for in silico studies of potential feed mixtures. In particular, in silico screening of possible

diets will enable more efficient animal experiments with improved knowledge gain. We

have adopted best practices for test-driven development, virtual experiments to assay met-

abolic capabilities, revision control, and FAIR data and model management. This facili-

tates fast, collaborative, reliable development of the model for future applications in

sustainable production biology.

Introduction

Salmonid aquaculture has grown in volume and economic importance over the past several

decades, and Atlantic salmon (Salmo salar) has become the world’s most valuable fish com-

modity [1]. This is largely thanks to selective breeding, which has improved both growth rate

and feed efficiency [2]. The increase in fish farming has also increased demand for feed, and

insufficient marine resources has led to a switch to plant-based ingredients [3]. This has

reduced production costs and exploitation of fish stocks, but salmon are not adapted to eating

plants and current plant-based feeds have a negative impact on fish health and the environ-

ment [4, 5]. Also, plant-based feeds are complex, the ingredient market is fluctuating, and feed-

ing trials are demanding. Thus, developing feeds that minimize cost and environmental

impact while providing necessary nutrients to the fish is an important challenge [6].

The metabolic network of a cell or organism converts nutrients that are present in the envi-

ronment to the energy and building blocks that are required to live and grow. It consists of

metabolites that are interconverted by metabolic reactions, most of which are catalyzed by

enzymes that are encoded by the genome, and it can be translated to a metabolic model, which

allows mathematical analysis of network functionality through methods such as flux balance

analysis (FBA) [7]. Specifically, metabolic models allow prediction of growth and metabolic

fluxes (steady-state reaction rates) that are linked to the genome through logical gene-protein-

reaction (GPR) associations, making them promising tools for addressing challenges in aqua-

culture such as breeding for feed efficiency and sustainable feed development [8]. Large data-

bases of metabolic reactions and models [9–11] and methods for metabolic network

reconstruction from annotated genomes [12, 13] have made such models available for organ-

isms ranging from microbes to animals [14]. However, there are still very few metabolic mod-

els of fish available [15–18] and none of Atlantic salmon or other important farmed fish

species.

Here, we present SALARECON: a metabolic model built from the Atlantic salmon genome

[19] that predicts growth and metabolic fluxes. It has been manually curated to ensure flux

consistency and focuses on energy, amino acid, and nucleotide metabolism. SALARECON is a

high-quality model according to community-standardized tests, and it captures expected met-

abolic (in)capabilities such as amino acid essentiality. Using oxygen-limited growth under

hypoxia as an example, we show that model predictions can explain salmon physiology in

terms of metabolic fluxes that are, in turn, tied to genes and pathways. Furthermore, we dem-

onstrate an important application for aquaculture by predicting growth-limiting amino acids

and feed efficiencies for commercial feed ingredients in agreement with data.
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Methods

Building the metabolic model

We manually built a draft model focusing on Atlantic salmon energy, amino acid, and nucleo-

tide metabolism using the genome [19] with annotations from KEGG [11] and the software

Insilico Discovery (Insilico Biotechnology, Stuttgart, Germany). Pathways were added or

edited one by one with information about reactions obtained from databases and literature (S1

Fig). After adding or editing a pathway, the energy and redox balances and topological proper-

ties of the model, e.g. flux consistency, were checked. Based on the results from these analyses,

the pathway was either kept or modified. Before final acceptance of a pathway, FBA was per-

formed to ensure that the model was able to predict growth and metabolic fluxes. We used

WoLF PSORT [20] with default settings through SAPP [21] to assign metabolites and reactions

to six different compartments (cytosol, mitochondrion, inner mitochondrial membrane, extra-

cellular environment, peroxisome, and nucleus). Exchange reactions were added to allow

metabolite import (negative flux) and export (positive flux).

After finishing the draft model, we converted the model to the BiGG [10] namespace and

used COBRApy [22] to iteratively curate it. We added and removed metabolites, reactions,

and genes, mapped genes to reactions using AutoKEGGRec [23], and added a salmon-specific

biomass reaction. We also added annotations from MetaNetX [9], KEGG [11], UniProt [24],

and NCBI [25]. To infer GPR associations for reactions, we mapped Atlantic salmon genes to

human homologs and copied GPR associations from the most recent human model [26]. If no

GPR association could be inferred for a reaction, we used an OR relation between genes

mapped to that reaction. To build the biomass reaction, we estimated the fractional composi-

tion of macromolecules in 1 g dry weight biomass (gDW) from Atlantic salmon whole-body

composition [27]. We mapped macromolecules to metabolites and estimated the fractional

composition of amino acids in proteins and nucleoside triphosphates in nucleic acids from

proteome and genome sequences [19], respectively. We finalized the model by alternating

semi-automated annotation and curation with quality evaluation (as decribed below), iterating

until we saw no further opportunities to improve the model without expanding its scope

beyond energy, amino acid, and nucleotide metabolism. The final model was exported to Sys-

tems Biology Markup Language (SBML) format [28].

Evaluating the quality of the metabolic model

First, we compared the reaction contents in SALARECON to other models of multicellular

eukaryotes available in the BiGG [10] namespace (Danio rerio [17], Mus musculus [29], Crice-
tulus griseus [30], Homo sapiens [26], and Phaeodactylum tricornutum [31]). Considering only

intracellular metabolic reactions in compartments shared by all models (cytoplasm, mitochon-

drion, and peroxisome), we clustered the models based on their reaction contents using all

suitable dissimilarity measures (16) and agglomerative hierarchical clustering methods (5)

available through SciPy [32]. For each measure and method, we evaluated the resulting den-

drogram by computing the cophenetic correlation coefficient (CCC) [33]:

CCC ¼
P

i<jðxði; jÞ � �xÞðtði; jÞ � �tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
P

i<jðxði; jÞ � �xÞ2Þð
P

i<jðtði; jÞ � �tÞ2Þ
q ; ð1Þ

where x(i, j) and t(i, j) are Euclidean and dendrogrammatic distance between observations i
and j, respectively, with averages �x and �y. The CCC indicates how well the dendrogram pre-

serves pairwise dissimilarities.
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Second, we tested SALARECON’s consistency and annotation using the community stan-

dard MEMOTE [34] and its metabolic (in)capabilities using tasks defined for mammalian cells

[35]. We adapted tasks to Atlantic salmon by moving metabolites from compartments not

included in SALARECON to the cytoplasm and by modifying the expected outcomes of

amino acid synthesis tests to match known essentiality [27, 36].

Third, we used the model to predict growth in the absence of individual amino acids. We

allowed both uptake and secretion of all extracellular metabolites, disabled uptake of each

amino acid separately, and maximized growth rate using FBA. Amino acids were classified as

essential if they were required for growth and non-essential otherwise, and the predicted

essentiality was compared to experimental data [27, 36].

Finally, we evaluated the ability of SALARECON to capture fish-specific metabolism by

comparing metabolite uptake and secretion to the most recent human model [26]. Specifically,

we enumerated minimal growth-supporting uptake and secretion sets for both models using

scalable metabolic pathway analysis [37]. We required non-zero growth rate, uptake of oxygen

and essential amino acids, and secretion of carbon dioxide as well as ammonia, urea, or urate.

We enumerated minimal uptake sets first and then allowed uptake of all metabolites found in

uptake sets before enumerating minimal secretion sets.

Analyzing oxygen-limited growth

We used parsimonious FBA (pFBA) [38] to find maximal growth rates and minimal flux dis-

tributions for 1,000 randomized conditions and 50 logarithmically spaced oxygen uptake rates

in the range r 2 (0, rmax) where r is oxygen uptake rate and rmax is the minimal oxygen uptake

rate at maximal growth. For each condition, we uniformly sampled random ratios (1–100) of

nutrients in a minimal feed (essential amino acids and choline) that were used as coefficients

in a boundary reaction representing feed uptake. We always normalized feed uptake to the

same total mass (g gDW−1 h−1) to ensure that conditions were comparable. The absolute value

was selected to be large enough to ensure feed uptake was not limiting but otherwise arbitrary

as only relative predictions were needed. We allowed unlimited uptake of phosphate and dis-

abled all other uptakes as well as secretion of feed nutrients. We did not allow uptake of any

other compounds than essential amino acids, choline, phosphate, and oxygen under any

condition.

To account for uncertainty in relative flux capacities and ensure that no single set of reac-

tions was always growth-limiting, we also sampled random bounds for all reactions for each

condition. The flux bound b of an enzymatic reaction is determined by the turnover number

kcat and total enzyme concentration [E]:

b ¼ kcat½E�: ð2Þ

Approximately lognormal distributions have been observed for both kcat [39] and [E] [40], and

the product of two lognormal random variables is also lognormal. We therefore sampled b
from a lognormal distribution with mean 0 and standard deviation 2 for the natural logarithm

of b. We kept the original reaction reversibilities and sampled bounds for reversible reactions

separately for each direction.

For each oxygen uptake rate, we computed mean growth rate with 95% confidence band

from bootstrapping with 1,000 samples. We fit the means to experimental data [41–44] by

assuming a simple piecewise linear relationship between water oxygen saturation (x) and
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relative oxygen uptake rate:

r
rmax
¼

0 x � x0

x � x0

x1 � x0

x 2 ðx0; x1Þ

1 x � x1

;

8
>>>><

>>>>:

ð3Þ

where x0 and x1 are the oxygen saturations at which the relative growth rate is 0 and 1, respec-

tively. We estimated x0 and x1 by least-squares fitting of

m

mmax
¼ f

r
rmax

� �

; ð4Þ

where μ is growth rate, μmax is maximal growth rate when oxygen is not limiting, and f is a

function that linearly interpolates the metabolic model predictions. We also fit a logistic model

with asymptotes -1 and 1,

m

mmax
¼

2

1þ ekðx0 � xÞ
� 1; ð5Þ

where k is the logistic growth rate, and a Monod model extended with an x-intercept,

m

mmax
¼

x � x0

Ks þ x � x0

; ð6Þ

where Ks + x0 is the saturation at which m ¼ 1

2
mmax.

To test the effect of random sampling on predictions and parameter estimates, we also

repeated the analysis above with 100 randomly sampled feeds and default flux bounds as well

as with a fish meal feed (Table 1) and default flux bounds. The fish meal feed includes non-

Table 1. Amino acid compositions of feed ingredients. Mass percentage of each amino acid relative to total mass of

amino acids in feed ingredients used in simulations [57].

Amino acid Fish meal Soybean meal Insect meal

Ala 6.82 4.43 7.05

Arg 7.19 7.54 5.34

Asn/Asp 10.02 11.87 10.07

Cys 0.93 1.74 0.62

Gln/Glu 13.98 18.74 11.12

Gly 6.88 4.19 6.67

His 2.62 2.69 3.32

Ile 4.64 4.61 4.86

Leu 7.91 8.02 7.76

Lys 8.31 6.44 6.19

Met 3.07 1.45 2.06

Phe 4.29 5.22 4.31

Pro 4.45 5.08 6.39

Ser 4.29 4.13 4.71

Thr 4.57 3.67 4.29

Trp 1.13 1.58 1.61

Tyr 3.40 3.60 6.85

Val 5.48 5.00 6.79

https://doi.org/10.1371/journal.pcbi.1010194.t001
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essential amino acids that were not present in the randomly sampled minimal feeds and we

also allowed unlimited uptake of the lipid precursor choline. This gave a non-zero maximal

growth rate in the absence of oxygen, which we subtracted from predicted growth rates in the

presence of oxygen to get purely aerobic growth rates suitable for comparison to the other

growth rate predictions. We identified limiting reactions with and without random sampling

of feeds and flux bounds by comparing predicted fluxes to their corresponding non-zero lower

and upper flux bounds. A reaction was identified as limiting if the distance between predicted

flux and one of its non-zero flux bounds was within the numerical tolerance of the solver.

To identify reaction contributions to oxygen-limited growth, we took the absolute value of

the pFBA fluxes (with randomly sampled feeds and flux bounds), normalized each flux by its

maximum value within each condition, and used Ward’s minimum variance method to cluster

the resulting absolute relative fluxes by Euclidean distance. We mapped reactions from the top

eight clusters to genes and used g:Profiler [45] to identify enriched pathways from KEGG [11].

We used the genes in the model as background, considered pathways with adjusted p� 0.05 to

be enriched, and discarded pathways outside the model’s scope (xenobiotics and drug

metabolism).

Predicting growth-limiting amino acids in feeds

We obtained ratios of amino acids in three commercial feed ingredients: fish, soybean, and

black soldier fly larvae meal (Table 1). For each feed, these ratios were used as coefficients for

amino acids in a boundary reaction representing feed consumption. Mass was divided equally

between amino acids that were combined in the feed formulation (Asn/Asp and Gln/Glu). For

each feed ingredient, we deactivated import of amino acids via other boundary reactions, fixed

the growth rate to the same value (arbitrary, as we were interested in generated biomass rela-

tive to consumed feed), and normalized feed uptake to the same total mass (g gDW−1 h−1)

before minimizing feed uptake flux. To simulate growth limitations from protein synthesis

rather than energy generation, we also allowed unlimited uptake of glucose. This is supported

by evidence that reducing feed amino acid levels has a negative effect on feed intake regardless

of dietary energy level [46]. We multiplied molecular mass with reduced cost in the optimal

solution for each amino acid exchange reaction and identified the one with largest negative

value as limiting [47]. To supplement the feed with the limiting amino acid, we set the bounds

of its exchange reaction to only allow import, and we penalized supplementation by adding

the exchange reaction to the objective with coefficient equal to molecular mass (S2 Fig). We

repeated the steps above until all limiting amino acids had been found for each feed.

Results

We built a metabolic model of Atlantic salmon (SALARECON) from its genome [19], meta-

bolic reaction and model databases, and literature (Fig 1). The model focuses on energy,

amino acid, and nucleotide metabolism and covers 1,133 genes, which amounts to 2% of the

47,329 annotated genes in the genome and 50% of the 2,281 Atlantic salmon genes that are

associated with metabolic reactions in KEGG [11]. The genes are mapped through gene-pro-

tein-reaction (GPR) associations to a metabolic network of 718 reactions and 530 metabolites

(Fig 2a) with node degree distributions that are typical for metabolic and other biological net-

works [48] (S3 Fig). Reactions and metabolites are divided between six compartments: cytosol,

mitochondrion, inner mitochondrial membrane, extracellular environment, peroxisome, and

nucleus (Fig 2b). The compartments are connected by 175 transport reactions that allow

metabolite exchange through the cytosol, and 86 boundary reactions allow metabolites to

move in and out of the system through the extracellular environment. There are 357 unique
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metabolites when those occurring in multiple compartments are counted once. A salmon-spe-

cific biomass reaction based on whole-body composition [27] allows growth rate prediction by

accounting for production of the proteins, lipids, carbohydrates and nucleic acids that consi-

tute biomass from metabolites supplied by the metabolic network (Fig 2c).

To investigate whether SALARECON is likely to be an accurate representation of Atlantic

salmon metabolism, we first compared it to the only existing high-quality metabolic model of

a fish as well as all models of multicellular eukaryotes currently available in the BiGG database

[10] (Fig 3a, S4 and S5 Figs). Specifically, we hierarchically clustered the reaction contents of

SALARECON and models of zebrafish (Danio rerio) [17], mouse (Mus musculus) [29], chinese

hamster ovary (CHO; Cricetulus griseus) [30], human (Homo sapiens) [26], and the diatom

Phaeodactylum tricornutum [31]. We combined 16 different dissimilarity measures with five

different methods for agglomerative hierarchical clustering, and we evaluated the agreement

between the resulting dendrograms and the underlying dissimilarities using the cophenetic

correlation coefficient (CCC) [33] (S4 Fig). Across measures and methods, we found that

models tended to cluster by phylogeny with fish and, to some extent, mammals forming dis-

tinct clusters and the diatom being an outlier. As shown in S4 Fig, salmon and zebrafish

formed a cluster in 57/80 trees (71%), the mammals formed a cluster in 36/80 trees (45%), and

the diatom was an outlier in 69/80 trees (86%). This is largely consistent with the hypothesis

that the models capture organism-specific metabolism, suggesting that SALARECON captures

Fig 1. Model construction. SALARECON was built from the annotated Atlantic salmon genome, metabolic reaction and model

databases, and literature. The procedure involved (1) manual metabolic network reconstruction using Insilico Discovery (Insilico

Biotechnology, Stuttgart, Germany), (2) semi-automated annotation and curation using COBRApy [22], and (3) quality evaluation using

the standardized metabolic model testing tool MEMOTE [34] and metabolic tasks [35]. Steps 2 and 3 were iterated until quality criteria

were satisfied. Illustration of metabolic tasks from Richelle et al. [35].

https://doi.org/10.1371/journal.pcbi.1010194.g001
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salmon- or at least fish-specific metabolism. However, there are also significant discrepancies

between trees built with different measures and methods, and it is important to note that the

clusters likely reflect large differences in model scope as well as organism specificity (S5 Fig).

Fig 3a shows the tree obtained for Jaccard distance, which is the most common metric for mea-

suring metabolic model dissimilarity [49], with the “average” method (CCC = 0.95).

SALARECON performed well in community-standardized MEMOTE tests [34], which

evaluate model consistency and annotation (Fig 3b). It achieved an overall MEMOTE score of

96% (best possible score is 100%) with subscores of 100% for Systems Biology Ontology (SBO)

annotation, 98% for model consistency, 94% for metabolite annotation, 87% for reaction

annotation, and 71% for gene annotation. We also evaluated the ability of SALARECON to

perform 210 metabolic tasks grouped into seven metabolic systems (Fig 3c) and 73 metabolic

subsystems (S6 Fig). These tasks were originally defined for mammalian cells [35] but we

changed the expected outcomes of amino acid synthesis tests to match known essentiality in

Atlantic salmon [27, 36]. SALARECON correctly captured all expected metabolic (in)capabili-

ties for the three metabolic systems within the scope of the model (energy, amino acid, and

nucleotide metabolism). It also succeeded in 44% of vitamin and cofactor tasks, 43% of carbo-

hydrate tasks, and 15% of lipid tasks, reflecting the fact that these parts of metabolism are sim-

plified in the model. The only system completely outside the scope of SALARECON was

glycan metabolism, in which no tasks were successfully performed. In total, SALARECON

Fig 2. Model contents. (a) SALARECON contains 1,133 genes (2% of all genes and 50% of Atlantic salmon genes mapped to reactions in KEGG [11]), 718

reactions (175 transporting metabolites between compartments and 86 exchanging metabolites with the extracellular environment), and 530 metabolites

(357 when metabolites occuring in multiple compartments are only counted once). (b) Metabolites and reactions are divided between five compartments

(mitochondrion includes the inner mitochondrial membrane). Transport reactions are counted multiple times (once for each compartment of exhanged

metabolites). Boundary reactions in cytosol are sink or demand reactions [12]. The inset shows how many unique metabolites can be transported between

the cytosol and the other compartments (indicated by their initials). (c) Biomass composition of Atlantic salmon estimated from measured whole-body

composition [27]. The inset summarizes each class of macromolecules. Carbohydrates and lipids are represented by glycogen and phosphatidylcholine

(PC), respectively. ATP serves both as energy for protein synthesis and as a building block in RNA synthesis.

https://doi.org/10.1371/journal.pcbi.1010194.g002
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succeeded in 66% of all metabolic tasks, notably all tasks related to amino acid essentiality

(Fig 3d).

Finally, to test the ability of SALARECON to capture basic fish physiology, we compared it

to one of the latest human models, RECON3D [26], by computing minimal sets of metabolite

uptakes and secretions that allow growth [37] (Fig 3e). In addition to oxygen and essential

amino acids, SALARECON required uptake of choline, a lipid precursor, and phosphate, an

essential nutrient for fish that is supplemented in salmon feeds [50]. The only secretions

needed to support growth were carbon dioxide and ammonia. Notably, we found that secre-

tion of urea was also possible, but not sufficient to support growth without secretion of ammo-

nia. In line with this, ammonia is the major nitrogenous waste product in fish and urea is a

comparatively minor contributor [51]. RECON3D is much larger than SALARECON and

therefore allowed for a wider range of lipid precursors (27 options). It also required secretion

Fig 3. Model quality evaluation. (a) Hierarchical clustering of SALARECON and metabolic models of other multicellular eukaryotes based on Jaccard

distance between reaction contents and the “average” method. Atlantic salmon (Salmo salar) is closer to zebrafish (Danio rerio) [17] than mouse (Mus
musculus) [29], chinese hamster ovary (CHO; Cricetulus griseus) [30], human (Homo sapiens) [26], and the diatom Phaeodactylum tricornutum [31]. (b)

Model score and subscores from MEMOTE [34]. Subscores evaluate Systems Biology Ontology (SBO) annotation, model consistency, and database

mappings for metabolites, reactions, and genes. (c) Ability of SALARECON to perform metabolic tasks [35]. Tasks are grouped by metabolic system and

classified as successful if model predictions reflected expected metabolic (in)capabilities. (d) Essential amino acids predicted by SALARECON match

observations [27, 36]. (e) Minimal growth-supporting sets of metabolite uptakes and secretions for RECON3D [26] and SALARECON. Arrows indicate

uptake and secretion. Metabolites that are only used or produced by human or salmon are indicated by blue and red, respectively, and metabolites that are

used or produced by both are indicated in purple. Uptake of oxygen and essential amino acids was required, as well as secretion of carbon dioxide and

ammonia, urea, or urate. Ammonia secretion can be replaced by urea or urate secretion in human but not in salmon. The number of alternative metabolites

is given in parentheses where applicable.

https://doi.org/10.1371/journal.pcbi.1010194.g003
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of a carboxylic acid (11 options) and a lipid byproduct (132 options) in addition to carbon

dioxide and a nitrogenous waste product. Urea is the major nitrogenous waste in mammals,

but RECON3D could grow while secreting only ammonia or urate. In general, RECON3D

captures a much larger space of possible growth-associated metabolic activities than SALARE-

CON due to the large difference in model scope (S5 Fig). However, SALARECON specifically

captures the key metabolic activities of a fish.

In our first application of SALARECON, we predicted oxygen-limited growth rates under

hypoxia on a minimal feed containing essential amino acids and choline, using random sam-

pling to account for uncertainty in feed nutrient ratios and flux capacities (Fig 4a and S7 Fig).

Supporting the hypothesis that SALARECON captures fish-specific metabolism, we found that

the major secretion products across all oxygen levels and sampled conditions were CO2 and

NH3 (S8 Fig). Urea had the third highest secretion flux but this was much smaller than the

secretion flux for NH3, and the secretion fluxes of all other secreted metabolites combined was

vanishingly small. Assuming that relative oxygen uptake rate is a linear function of water oxy-

gen saturation (percent air saturation), we fit our predictions to experimental data [41–44]

along with a logistic model and an extended Monod model (Fig 4b). The choice of a linear

model for the metabolic fit was motivated by the fact that diffusive oxygen uptake in fish gills

is governed by Fick’s law and therefore proportional to the oxygen gradient [52]. Also, replac-

ing the linear model by a Michaelis-Menten model would make the metabolic and Monod fits

virtually identical because the Monod and Michaelis-Menten equations have the same form.

We found that the metabolic, logistic, and extended Monod models fit the data about equally

well (R2� 0.6) but they differed in their parameter estimates (Fig 4b). All the models estimated

the minimal oxygen saturation required for growth, but the logistic estimate was low with high

standard error (x0 = 0.11 ± 0.16) and the Monod fit was high with low standard error (x0 =

0.45 ± 0.04). The metabolic model gave an intermediate estimate and standard error (x0 =

0.31 ± 0.10), and it also allowed estimation of the minimal oxygen saturation required for max-
imal growth (x1 = 1.37 ± 0.15). The metabolic fit was closer than the two other fits to the

expected relationship between water oxygen saturation and growth rate [52], both in terms of

the shape of the fitted curve and the estimated parameter values. The SALARECON estimates

were within one and two standard errors, respectively, of the values x0� 0.3 and x1� 1.2 sug-

gested by Thorarensen et al. [52]. The logistic estimate was within two standard errors of the

suggested x0, but this confidence interval also included zero.

Repeating our oxygen-limited growth analysis with default rather than randomly sampled

flux bounds, we found similar growth predictions and parameter estimates for 100 randomly

sampled feeds as well as a feed based on fish meal (S9 Fig). However, random sampling of

feeds allowed us to account for a much larger selection of potentially limiting reactions, show-

ing that our results were robust to uncertainty in flux capacities as well as feed compositions

(S10 Fig). With randomly sampled feeds and bounds, 310 different reactions were limiting in

at least one solution, compared to 25 with the default bounds (for both randomly sampled and

fish meal feeds). Growth was always limited by the flux capacities of internal reactions (and

oxygen uptake) rather than by the feed uptake reaction.

In contrast to the simple growth models, SALARECON is mechanistic and makes it possi-

ble to explain predictions in terms of metabolic fluxes (Fig 4d). Assuming that organisms have

generally evolved to grow as efficiently as possible, we used parsimonius flux balance analysis

(pFBA) [38] to minimize overall flux through the metabolic network while requiring maximal

growth rate for each randomly sampled condition and oxygen level. We identified eight clus-

ters of reactions whose pFBA fluxes made distinct contributions to oxygen-limited growth

(Fig 4e). Connecting clusters to the Atlantic salmon genome and databases through GPR
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associations and their annotation, we found enriched metabolic pathways among the genes

associated with each cluster (Fig 4f).

In one cluster, fluxes were perfectly correlated with relative growth rate, indicating that

they contained reactions that were always necessary for growth. Indeed, this cluster was

enriched in lipid metabolism, which directly produces a biomass precursor, and pathways

related to NAD(P)H metabolism. The fluxes of two other clusters both increased rapidly at the

Fig 4. Oxygen-limited growth analysis. (a) SALARECON predictions of relative growth rate under oxygen limitation as a function of relative oxygen

uptake rate. Feed composition and flux capacities were randomized 1,000 times (light blue) and the mean across conditions is shown with 95%

confidence band from bootstrapping with 1,000 samples (dark blue). (b) Metabolic, logistic, and extended Monod model fits to experimental data from

Berg and Danielsberg [41] (circles), Bergheim et al. [42] (triangles), Hosfeld et al. [43] (squares), and Hosfeld et al. [44] (diamonds). SALARECON

predictions were fit by assuming a linear relationship between relative oxygen uptake rate and water oxygen saturation. (c) Coefficient of determination

(R2), minimal oxygen saturation required for growth (x0), and minimal oxygen saturation required for maximal growth (x1) from fitted models. Error

bars indicate two standard errors of the estimates. (d) Minimal flux distributions for metabolic model predictions from parsimonious flux balance

analysis (pFBA) [38]. Rows are reactions, columns are flux distributions sorted by relative oxygen uptake rate, and each cell shows absolute flux

normalized by maximum value for each condition. Rows are clustered by Euclidean distance using Ward’s minimum variance method and divided into

eight clusters indicated by colors. (e) Mean absolute relative flux with 95% confidence bands from bootstrapping with 1,000 samples for the eight

clusters. Relative growth rate is indicated by a dashed line. (f) Enrichment of metabolic pathways from KEGG [11] for the eight clusters with size

reflecting the fraction of genes in each pathway that are found in a cluster (recall).

https://doi.org/10.1371/journal.pcbi.1010194.g004
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very lowest oxygen levels before plateauing at higher oxygen levels, in one case decreasing

slightly after the initial increase. These clusters were enriched in pathways such as the tricar-

boxylic acid (TCA) cycle, glycolysis, oxidative phosphorylation, pyruvate, and thiamine metab-

olism, indicating that energy generation from glucose was maximized at low oxygen levels

while other energy-generating pathways were activated at higher oxygen levels. Four of the five

remaining clusters increased slightly less than the clusters enriched in energy generation from

glucose at low oxygen levels but kept increasing at higher oxygen levels. These clusters were

enriched in pathways related to metabolism of fatty acids and amino acids, suggesting that

these compounds become important energy sources after saturation of glucose catabolism at

low oxygen levels. Nitrogen metabolism, which includes amino acid biosynthesis and disposal

of nitrogenous waste products, was also overrepresented. The final cluster consisted of reac-

tions with no or very little flux, even at the highest oxygen levels, and was enriched in metabo-

lism of pyrimidines, β-alanine, and essential amino acids.

Finally, to demonstrate the potential of SALARECON to address key challenges in aquacul-

ture, we used it to predict growth-limiting amino acids and feed efficiencies for three commer-

cial feed ingredients: fish, soybean, and insect meal (Table 1 and Fig 5a). For each feed

ingredient, we iteratively identified and supplemented the most limiting amino acid until all

Fig 5. Growth-limiting amino acids in commercial feed ingredients. (a) Amino acid composition of SALARECON biomass, fish meal, soybean meal,

and insect meal [57]. (b) Order of amino acid limitations in feed ingredients based on soybean and fish meal. Amino acids that are closer to the top left

and bottom right corners were more limiting in soybean meal and fish meal, respectively, as indicated by size. (c) Order of amino acid limitations in

feed ingredients based on insect and fish meal. Amino acids that are closer to the top left and bottom right corners were more limiting in insect meal

and fish meal, respectively, as indicated by size and color. (d) Feed efficiency after successive supplementation of the most limiting amino acid for fish,

soybean, and insect meal. The baseline feed efficiency of fish meal is indicated by a dashed blue line, and ranges observed by Kolstad et al. [53] and

Dvergedal et al. [54] are highlighted in gray.

https://doi.org/10.1371/journal.pcbi.1010194.g005
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amino acid limitations had been lifted, computing feed efficiency at each iteration (S2 Fig).

Comparing predicted limiting amino acids in fish meal to soybean and insect meal, we found

that lysine and threonine were more limiting in both soybean and insect meal, methionine was

more limiting in soybean meal, and arginine was more limiting in insect meal (Fig 5a and 5c,

and S11 Fig). The feed efficiency predictions suggest that the baseline feed efficiency of fish

meal can be achieved by supplementing one and three amino acids for soybean and insect

meal, respectively (Fig 5d). For soybean meal, major increases in feed efficiency were predicted

for lysine, threonine, and methionine supplementation, while lysine had the largest impact on

insect meal (S11 Fig). The predictions from SALARECON agree well with expected baseline

feed efficiencies [53, 54] as well as reports that lysine, methionine, threonine, and arginine are

more limiting in plant-based feeds than in marine feeds [55, 56].

Discussion

SALARECON is the first metabolic model of a production animal, bridging the gap between

production and systems biology and initiating a framework for adapting Atlantic salmon

breeding and nutrition strategies to modern feeds. By explicitly representing connections

between metabolites, reactions, and genes, it connects the genome to metabolism and growth

in a way that can be tuned to specific genetic and environmental contexts by integration of

domain knowledge and experimental data [8]. Thus, SALARECON forms a transdiciplinary

framework for diverse disciplines and data sets involved in Atlantic salmon research and aqua-

culture. Tools developed for constraint-based modeling of microbes and well-studied plants

and animals can now be applied in production biology, providing a sharper lens through

which to interpret omics data by requiring consistency with flux balances and other known

constraints. This enables clearer analysis than classical multivariate statistics, which does not

incorporate such mechanistic knowledge.

Although laborious and time-consuming, our bottom-up manual reconstruction of the

Atlantic salmon metabolic network was necessary to make SALARECON a high-quality pre-

dictive model. Automatically built models work well for microbes but are still outperformed

by models that are built by manual iteration, and reconstruction of eukaryotes is more chal-

lenging due to larger genomes, less knowledge, and compartmentalization [12, 13]. However,

semi-automated annotation and curation combined with automated MEMOTE tests [34] and

metabolic tasks [35] allowed faster iteration, and future reconstructions of related species [58]

can benefit from our efforts by using SALARECON as a template. MEMOTE and metabolic

tasks were instrumental in the development of SALARECON, and we highly recomend inte-

grating testing in model development. Tests help catch mistakes that arise when modifying a

model and do triple duty by specifying what it should be capable of, identifying broken func-

tionality, and forming a basis for comparison with other models, e.g. new versions or models

of different tissues or species. Clearly formulated tests also make the model more accessible to

non-modelers, speaking the same language as nutritionists or physiologists. Such experts can

point out missing or ill-formulated tests, which in turn contribute to improvement.

We have strived to make SALARECON an accurate model of Atlantic salmon metabolism

and growth, but it does not aim to capture salmon physiology exhaustively or perfectly. It cov-

ers 2% of the genes in the genome, which amounts to 50% of Atlantic salmon genes mapped to

reactions in KEGG [11], and its focus is on core metabolism generating energy and biomass.

This covers pathways that connect feed to fillet, which is a primary focus of research and aqua-

culture, but obviously excludes many other interesting processes such as synthesis of long-

chain polyunsaturated fatty acids. Still, SALARECON performs very well according to all of

our metrics: it is more similar to the latest zebrafish model [17] than to any other multicellular
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eukaryote for which a model is available in BiGG [26, 29–31], achieves a MEMOTE score of

96%, which is better than all models in BiGG [10] (although many BiGG models could pre-

sumably be annotated and curated to reach a comparable score with reasonable effort), and

performs all metabolic tasks within the scope of the model (amino acid, nucleotide, and energy

metabolism). It also correctly classifies amino acids as essential [27, 36] and captures basic fish

physiology, e.g. aerobic growth with uptake of essential amino acids, choline, and phosphate,

and secretion of carbon dioxide and ammonia.

The extensive annotation of genes, metabolites, and reactions is a key strength of SALARE-

CON that facilitates use with existing models, tools, and data. In particular, identifiers from

BiGG [10] make it easy to compare and combine SALARECON with state-of-the-art models

[59, 60], e.g. to predict interactions between Atlantic salmon and its gut microbiota. It also

allows direct application of implemented methods such as evaluation of metabolic tasks [35].

The salmon-specific biomass reaction enables prediction of growth and related fluxes and is

based on organism-specific data [27], making SALARECON a more realistic representation of

salmon metabolism than a network reconstruction [12]. As demonstrated for Atlantic cod

[18], even getting to this stage is challenging for non-model animals.

Our analysis of growth under oxygen limitation shows that phenotypes predicted by SAL-

ARECON can be fit to experimental data and produce detailed mechanistic explanations of

Atlantic salmon physiology. Specifically, SALARECON explained hypoxic metabolism and

growth in terms of metabolic fluxes with implications for fish welfare and productivity in

aquaculture. The growth predictions depend on unknown environmental conditions and flux

capacities, but SALARECON can be used to account for such uncertainty through random

sampling. Average growth predictions from SALARECON fit the available data [41–44] as well

as simple growth models and gave accurate estimates of critical water oxygen saturations in

agreement with observations [52]. The predicted metabolic fluxes defined clusters of reactions

with distinct pathway enrichments and contributions to hypoxic growth, notably suggesting

that energy generation from glucose becomes saturated at low oxygen levels and that amino

and fatty acids become more important energy sources with increasing oxygen. Predictions

contrasting growth-limiting amino acids in three commercial feed ingredients also agreed well

with data [55, 56] and showed that SALARECON can be used to evaluate the efficiency of sus-

tainable feeds, a key challenge for modern aquaculture. Feed efficiencies predicted by SALAR-

ECON lie within reported ranges [53, 54] and suggest that the feed efficiency of fish meal can

be achieved by supplementing one amino acid for insect meal and three for soybean meal.

This shows that SALARECON can be used to evaluate both current and novel feeds, poten-

tially reducing the need for expensive fish experiments in vitro or in vivo.

In future work, we will expand SALARECON to cover more processes such as lipid and car-

bohydrate metabolism in full detail, and we will tailor it to gut, liver, muscle, and other tissues

using omics data and metabolic tasks [35]. We will also leverage automated metabolic recon-

struction tools for microbes to build models of the Atlantic salmon gut microbiota [59]. By

coupling tissue-specific models to each other and to gut microbiota models, we can make

detailed and partially dynamic whole-body models [61]. This would be a major leap from

available dynamic models [62] and provide a mechanistic alternative to state-of-the-art bioen-

ergetics models [63], opening up new possibilities for understanding fish physiology and ratio-

nal engineering of feeds, conditions, and genetics.

Conclusion

SALARECON covers half of the annotated metabolic genes in the Atlantic salmon genome

and can predict metabolic fluxes and growth with a salmon-specific biomass reaction. It has
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been extensively annotated, curated, and evaluated, and it can be used to tackle research ques-

tions from fish physiology to aquaculture. In particular, SALARECON is a promising new tool

for predicting breeding strategies and novel feeds that optimize for production parameters

such as feed efficiency and impact on fish health and environment. Future work will expand

SALARECON and integrate it with omics data to make tissue-specific and partially dynamic

whole-body models. SALARECON should facilitate systems biology studies of Atlantic salmon

and other salmonids, and we hope that it will be widely used by modelers as well as biologists.

Supporting information

S1 Fig. Draft model construction. Flowchart showing the procedure used to add new path-

ways to the draft model or edit pathways already in the draft model. Pathways were added or

edited one by one with information about reactions obtained from databases and literature.

After adding or editing a pathway, the energy and redox balances and topological properties of

the model, e.g. flux consistency, were checked. Based on the results from these analyses, the

pathway was either kept or modified. Before final acceptance of a pathway, FBA was performed

to ensure that the model was able to predict growth and metabolic fluxes.

(TIFF)

S2 Fig. Adding nutritional supplements to a feed uptake reaction. Feed uptake reactions are

similar to biomass reactions, but supply metabolites rather than consuming them. The ratios

between feed components are represented stoichiometrically, and scaled to sum to 1 g feed per

mol uptake, so that one gram of the feed in the figure is equivalent to 2 mol A, 3 mol B and 1.4

mol C. With a fixed growth rate, the minimization of feed uptake is used as the objective of

FBA. Surplus of metabolites in the feed uptake reactions are allowed to be exported via

exchange reactions to avoid blocking the feed uptake reaction. Limiting metabolites can be

identified from the reduced costs of the FBA solution. To avoid large molecules being favored,

the reduced cost should be multiplied by the molecular mass (M) of the metabolite. Other fac-

tors such as price, CO2 equivalents, or environmental cost could be taken into account in this

step. The boundaries of the limiting exchange reaction are reversed to allow uptake, and the

reaction is scaled by molecular mass and added to the objective. In this case, the cost of supple-

ments is assumed to be equivalent to mass, but the cost could also be set to be higher than the

other feed ingredients, which could be more realistic.

(TIFF)

S3 Fig. Model degree distributions. (a) Distribution of number of metabolites converted by

reactions. Boundary reactions exchange one metabolite with the extracellular environment

and transport reactions usually exchange an even number of metabolites between compart-

ments. (b) Distribution of number of genes associated with reactions. Transport and boundary

reactions lack annotation and are not associated with any genes. Most metabolic reactions

(95%) are associated with one or more genes. (c) Cumulative distribution of number of reac-

tions associated with genes and metabolites (number of genes or metabolites associated with k
or more reactions for all k). Most genes and metabolites are associated with a few reactions but

some metabolites are highly connected hubs. Power law fits are shown for genes and metabo-

lites.

(TIFF)

S4 Fig. Dendrograms for models of multicellular eukaryotes. Dendrograms from agglomer-

ative hierarchical clustering of reaction contents of metabolic models of Salmo salar (SS),

Danio rerio (DR) [17], Mus musculus (MM) [29], Cricetulus griseus (CG) [30], Homo sapiens
(HS) [26], and Phaeodactylum tricornutum (PT) [31]. We combined 16 different dissimilarity
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measures with five different clustering methods and computed the cophenetic correlation

coefficient (CCC) [33] for each measure and method. SS and DR are highlighted in red.

(TIFF)

S5 Fig. Reaction contents of models of multicellular eukaryotes. Reaction contents of meta-

bolic models of Salmo salar, Danio rerio [17], Mus musculus [29], Cricetulus griseus [30],

Homo sapiens [26], and Phaeodactylum tricornutum [31]. Each row is an organism, each col-

umn is a reaction, and a dark cell indicates a reaction that is found in the model of that organ-

ism. Rows are clustered by Jaccard distance using the “average” method and the number of

reactions is given for each organism.

(TIFF)

S6 Fig. Metabolic task results by subsystem. Ability of SALARECON to perform metabolic

tasks [35]. Tasks are grouped by metabolic subsystem and classified as successful if model pre-

dictions reflected expected metabolic (in)capabilities.

(TIFF)

S7 Fig. Conditions and growth rates from oxygen-limited growth analysis. (a) Feed coeffi-

cients of amino acids and choline in conditions used to predict oxygen-limited growth (1,000

samples). The coefficients were randomly sampled from a uniform distribution. (b) Pairwise

Pearson correlations between metabolites of feed coefficents shown in a. (c) Flux bounds for

conditions used to predict oxygen-limited growth (1,000 samples). Flux bounds were ran-

domly sampled from a lognormal distribution. (d) Pairwise Pearson correlations of flux

bounds shown in a. (e) Predicted absolute growth rates as a function of absolute oxygen uptake

rates for the 1,000 randomly sampled conditions. The absolute growth rates were not intended

to be realistic and only relative growth rates were used in the analysis (normalized by maxi-

mum growth rate without oxygen limitation).

(TIFF)

S8 Fig. Secreted metabolites in oxygen-limited growth analysis. Secretion flux relative to

growth rate from oxygen-limited growth simulations. Fluxes are shown for CO2, NH3, urea,

and all other secreted metabolites combined. Mean relative flux across 1,000 randomly sam-

pled conditions is shown with 95% confidence bands from bootstrapping with 1,000 samples.

(TIFF)

S9 Fig. Effect of sampling on results from oxygen-limited growth analysis. Results from

oxygen-limited growth analysis with (a–c) 1,000 randomly sampled feeds and flux bounds, (d–

f) 100 randomly sampled feeds with default flux bounds, and (g–i) a fish meal feed (Table 1)

with default flux bounds. See legend for Fig 4a–4c.

(TIFF)

S10 Fig. Effect of sampling on limiting reactions in oxygen-limited growth analysis. Limit-

ing reactions in oxygen-limited growth analysis with (a) 1,000 randomly sampled feeds and

flux bounds, (b) 100 randomly sampled feeds with default flux bounds, and (c) fish meal feed

(Table 1) with default flux bounds. Rows are reactions, columns are flux distributions sorted

by condition and relative oxygen uptake rate, and a dark cell indicates that a reaction is limit-

ing in a solution (i.e. has flux equal to a non-zero flux bound). Rows are clustered by Euclidean

distance using Ward’s minimum variance method.

(TIFF)

S11 Fig. Growth-limiting amino acids in commercial feed ingredients. Feed efficiency as a

function of number of supplemented amino acids, measured in mg feed ingredient and

PLOS COMPUTATIONAL BIOLOGY SALARECON connects the Atlantic salmon genome to growth and feed efficiency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010194 June 10, 2022 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010194.s011
https://doi.org/10.1371/journal.pcbi.1010194


supplemented amino acids consumed / gDW biomass produced for (a) fish meal, (b) soybean

meal, and (c) black soldier fly larvae meal. Amino acids are indicated by color and ordered

from most limiting (left) to least limiting (right). Each bar represents the fed amount of amino

acid sources, with one amino acid supplemented per step towards the right. Limiting amino

acids were supplemented until all feed protein had been replaced.

(TIFF)
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