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ABSTRACT
Accurate behavioral state classification is critical for many research applications.
Researchers typically rely upon manual identification of behavioral state through
visual inspection of electrophysiological signals, but this approach is time intensive
and subject to low inter-rater reliability. To overcome these limitations, a diverse
set of algorithmic approaches have been put forth to automate the classification
process. Recently, novel machine learning approaches have been detailed that
produce rapid and highly accurate classifications. These approaches however, are
often computationally expensive, require significant expertise to implement, and/or
require proprietary software that limits broader adoption. Here we detail a novel
artificial neural network that uses electrophysiological features to automatically
classify behavioral state in rats with high accuracy, sensitivity, and specificity.
Common parameters of interest to sleep scientists, including state-dependent power
spectra and homeostatic non-REM slow wave activity, did not significantly differ
when using this automated classifier as compared to manual scoring. Flexible options
enable researchers to further increase classification accuracy through manual
rescoring of a small subset of time intervals with low model prediction certainty or
further decrease researcher time by generalizing trained networks across multiple
recording days. The algorithm is fully open-source and coded within a popular, and
freely available, software platform to increase access to this research tool and provide
additional flexibility for future researchers. In sum, we have developed a readily
implementable, efficient, and effective approach for automated behavioral state
classification in rats.

Subjects Animal Behavior, Bioinformatics, Neuroscience, Data Mining and Machine Learning
Keywords Sleep scoring, Machine learning, Rodent, Electrophysiology, Open source

INTRODUCTION
State-dependent differences in neuronal activity contribute to widespread changes in
information processing and conscious awareness and ultimately appear to subserve many
important functions for maintaining brain health (Hauglund, Pavan & Nedergaard,
2020; Nir et al., 2013; Quilichini & Bernard, 2012). Characterizing and identifying these
state-dependent activity patterns is therefore a critical task for addressing a diverse set of
research questions. Manual classification of behavioral state using visual scoring of the
electroencephalogram (EEG), local field potential (LFP), and/or electromyogram (EMG) is
often performed, yet has significant limitations as compared to algorithmic classifiers.
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Specifically, manual classification is time intensive and scales proportionally with the
size of a data set, ultimately relies upon subjective determinations that limit inter-rater
reliability, and requires extensively trained researchers to achieve high classification
accuracies (Gao, Turek & Vitaterna, 2016; Gross et al., 2009; Miladinović et al., 2019;
Rytkönen, Zitting & Porkka-Heiskanen, 2011; Stephenson et al., 2009).

Many promising automatic behavioral state classifiers have been developed in recent
years. Although each of these classifiers typically relies upon characteristics derived
from similar electrophysiological signals (i.e. EEG, LFP and EMG), they differ as a function
of how those characteristics are selected and combined to predict behavioral state.
Semi-automated approaches, including user defined logic rules/thresholds (Gross et al.,
2009) and principal component analyses (Gilmour et al., 2010), accurately predict
behavioral state using researcher-identified electrophysiological features. Supervised
learning algorithms similarly classify behavioral state based on handcrafted features and
expert classifications, but are able to automatically “learn” rules for combining those
features to accurately predict behavioral state. Successful supervised classifiers have
been implemented through support vector machines (Crisler et al., 2008), naïve Bayes
classifiers (Rempe, Clegern & Wisor, 2015; Rytkönen, Zitting & Porkka-Heiskanen, 2011),
decision trees and linear discriminant analysis (Brankack et al., 2010) and an ensemble
method that uses all of the above (Gao, Turek & Vitaterna, 2016). More recent supervised
approaches have utilized deep learning algorithms which use large amounts of training data
and computational power to produces predictions without the need for initial feature
selection (Barger et al., 2019; Exarchos et al., 2020; Miladinović et al., 2019; Yamabe et al.,
2019). Each of these approaches differ from unsupervised learning algorithms which find
undetected patterns in the dataset without the need for initial feature identification or
manual scoring from experts (Sunagawa et al., 2013; Yaghouby, O’Hara & Sunderam, 2016).

Despite the excellent performance of the automated behavioral state classifiers highlighted
above, many researchers are still dependent upon time-intensive manual classification.
Significant functional barriers exist for implementing these automated approaches that
typically require extensive computational resources, are constructed within proprietary
software, and/or still require significant expert specification of features. To overcome these
potential limitations, we developed an artificial neural network (ANN) algorithm for
behavioral state classification within the popular, and open-source, R software platform
(R Core Team, 2020). This supervised classifier is comprised of four consecutive feed-
forward, fully connected layers of artificial neurons. Computational weights of the network
are repeatedly adjusted during training in order to help the network ‘learn’ to classify
behavioral state using electrophysiological features of individual 4 s time intervals. This novel
ANN: (1) is easy to implement, (2) has high classification accuracy, sensitivity, and specificity
that are comparable to leading algorithms, (3) has low computational complexity thereby
enabling fast algorithm performance with minimal computational resources, and (4) affords
flexibility for individual researchers by using freely-available code that is readily
customizable in a popular open-source environment. Consequently, this tool serves as a
highly accessible and effective automated behavioral state classifier.
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MATERIALS AND METHODS
Animal care and use
All sample data were obtained from previous experiments conducted at Middlebury
College with all methods performed in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and approved by Middlebury College’s
Institution Animal Care and Use Committee (approved research protocol #316-17).
Male, Sprague-Dawley rats (3–4 months old, Charles River, Wilmington, MA, USA) were
obtained and pair-housed upon arrival in clear, plastic rodent caging (16 in. × 7.5 in. ×
8 in.; Teklad TEK-Fresh bedding, Envigo, Indianapolis, IN, USA). Food (Teklad 2020X)
and water were provided ad libitum along with in-cage enrichment objects (wooden
blocks, pvc tubing, paper towels). After an initial acclimation period (>1 week from initial
arrival to the vivarium), each rat underwent stereotactic surgery. Here, rats were
anesthetized via isoflurane (3.5% induction, 2–3% maintenance) and given pre-operative
analgesic (Meloxicam; 2 mg/kg; MWI, Boise, ID, USA) and antibiotic (Penicillin, 100,000
units/kg) treatments. During surgery, electrodes were implanted for EEG/LFP and
nuchal EMG recordings (see sample data set below for additional recording characteristics)
and were affixed to the skull using dental acrylic (Lang Dental; Wheeling, IL, USA).
A postoperative analgesic (Meloxicam, 2 mg/kg) was administered between 12–24 h after
surgery completion. For the duration of the experiment, rats were then single-housed
to minimize potential damage to implanted electrodes and the headstage preamplifier
(100× amplification, Pinnacle Technologies, Lawrence, KS, USA). Throughout the
experiment, each rat was monitored daily for overt signs of pain/distress including
immobility, poor grooming, weight loss, porphyrin staining, postural abnormalities, lack of
food/water consumption, and signs of infection around the surgical site. Observation of these
signs leads to direct consultations with the attending veterinarian and vivarium staff to
determine the appropriate course of action (e.g. treatment or euthanasia). In the present
study, no rats were euthanized prior to the conclusion of the experiment. In accordance with
the 2013 AVMA Guidelines of Euthanasia, all rats were euthanized via CO2 exposure at the
end of the experiment.

Sample data set
Uninterrupted baseline recording days (N = 50 from 11 total rats) were selected frommale,
Sprague-Dawley rats (3–4 months old). Care was taken to generate a sample of recording
days and rats that collectively comprise common recording characteristics across
rodent sleep research. Specifically, within each rat, two electrophysiological signals to
measure brain activity and one nuchal electromyogram (EMG) were recorded (sampling
rate = 250 Hz; 8401 DACS; Pinnacle Technologies, Lawrence, KS, USA). Rats used in
our sample data set had a wide range of recording locations (e.g. prefrontal cortex, motor
cortex, parietal cortex) and diverse recording modalities (2 EEGs, 1 EEG/1LFP, or 2 LFPs).
Likewise, these data differed in overall signal quality (e.g. 4.83 ± 0.56% mean daily
artifact prevalence; range: 0.15% to 13.48%). Consequently, this data set represents typical
electrophysiological recordings of rodent sleep. Of note, two rats were ultimately excluded
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from analyses because of very poor EMG signal quality resulting in a final sample data set
of 40 baseline days recorded across nine rats. Details for how EMG signal quality was
assessed are presented below as part of our description of our artificial neural network for
automated sleep classification.

Trained undergraduate sleep researchers visually scored behavioral state offline in
4 s time intervals for each baseline recording day (following conventional sleep research
terminology, 4 s time intervals will be referred to as epochs throughout the remainder
of the manuscript). Epochs were classified as waking when containing low-voltage,
high-frequency EEG/LFP activity and elevated EMG. High-voltage, low-frequency
EEG/LFP activity and an absence of EMG activity was characteristic of NREM sleep, while
REM sleep epochs were classified when low-voltage, high-frequency EEG/LFP activity and
an absence of EMG activity were observed.

Artificial neural network
To develop an effective research tool with minimal entry barriers for use, we sought to
design a freely available, open-source implementation to automatically classify behavioral
state using electrophysiological features. With this goal in mind, we chose to implement
our algorithm using R (R Core Team, 2020), a freely-available statistical computing
platform that has been widely adopted across scientific disciplines (e.g. 58% of ecological
papers published in 2017 used R as their primary analytic tool Lai et al., 2019).
Instructions for full implementation of our algorithm and source code can be found at
https://github.com/jellen44/AutomaticSleepScoringTool.

Within R, we implemented an artificial neural network (ANN) with four, fully
connected sequential layers (256, 128, 32 and 3 nodes) to automatically classify behavioral
state in freely behaving rodents. Our ANN was implemented using the Keras package
in R with a Tensorflow backend (Abadi et al., 2016). In each of the hidden layers, a
weighted sum of inputs is computed, followed by an activation function rectified linear
unit activation (ReLU) that introduces nonlinearity and regulates neuronal activation.
These weights are adjusted during the training process to improve classification
performance. The output layer of this network takes input from the last hidden layer and
outputs a vector containing three values, each representing the probability that the epoch
is one of the three sleep states. We accomplished this with the SoftMax function, which
is commonly used in multiclass classification problems because it takes a K-dimensional
vector (the final layer in our network) as an input and uses it to estimate a range of
probabilities over a given number of classes (Duan et al., 2003).

Feature extraction
Input for the artificial neural network consisted of 13 EEG-based features per EEG, two
EMG features, and two features derived from both EEG and EMG activity. To extract
EEG features, we calculated power spectra (Welch’s method, Hamming window) for each
4 s epoch. From the resultant power spectra, we calculated band-limited power (BLP)
within the following frequency bands (delta, 1–4 Hz; theta 4–7 Hz; upper theta 7–9 Hz;
alpha 8–12 Hz; beta 13–30 Hz, low gamma 30–50 Hz, medium gamma 50–75 Hz, high
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gamma 76–125 Hz). Five additional features were generated as ratios between frequency
bands: (1) beta/delta, (2) beta/low gamma, (3) beta/high gamma, (4) theta/delta, and
(5) theta/medium gamma. EMG features consisted of the root-mean square (RMS) of raw
EMG activity and EMG power. As both EMG and gamma activity (Brankack et al., 2010)
may serve as useful features for classification of REM sleep, two additional features
were generated by summing each EMG feature with medium gamma BLP. Ultimately,
all features were z-score normalized prior to input into the ANN model.

ANN training and testing
ANN models can operate as supervised learning algorithms that rely upon an initial
training set to make predictions about remaining test cases. Our ANN model requires a
small initial training set (560, 4 s epochs; i.e. 2.6% of daily total) to achieve high
classification performance (see Fig. S1). To increase the likelihood that training features are
representative of the diversity of test case activity, we first manually scored 50
pseudorandom series of 10 epochs each. Here random series were selected within the
following criteria: (1) they were derived from time points throughout the 24 h period and
(2) periods of NREM sleep, REM sleep, and waking were all included across the 50 series
selected. Due to the naturally low prevalence of REM epochs, an additional 60 REM
epochs were specifically sought out, manually scored, and incorporated into this training
set to ensure sufficient input across all three behavioral states is present for the model.
This training set was then algorithmically oversampled (minority classes resampled with
replacement) to provide a complete training set with an equal number of epochs across the
three behavioral states to be classified in order to avoid highly unbalanced classes due
to the low number of REM epochs.

During training, the ANN weights are modified to minimize a categorical cross entropy
loss function (a common loss function for discrete classification tasks). To prevent
overfitting, we implemented Ridge (L2) regularization (β = 0.01), which encourages
small-weight values by penalizing larger weight values through the loss function (Janocha
& Czarnecki, 2017). Training occurred across 100 complete passes of the training data set
(i.e. machine learning epochs) with a batch size of 10 samples. The adaptive moment
estimation (Adam) optimizer was used to minimize the loss function with a learning rate
of 0.001 to balance accuracy with training time.

Stochastic effects during model training can result in identical inputs producing
functional differences in the trained ANN. We therefore implemented an ensemble
learning approach (Sagi & Rokach, 2018), in which outputs from multiple models are
combined to improve predictive performance. For each day, the above training procedures
were repeated five times and thereby generated five similar, albeit distinct ANNs.
Electrophysiological features derived from each 4 s epoch not contained within the
training set were used as input features to test the efficacy of the ANNs for classifying
behavioral state. Behavioral state was determined as the modal predicted value for each
epoch across the five trained ANNs (i.e. most frequent prediction). By averaging prediction
certainty across the five ANNs, we also produced a final estimate of the likelihood that a
given test epoch was reflective of each behavioral state. For epochs where the mean
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classification probability across the five ANN models was under 90%, an “uncertain” label
was added to that epoch (in addition to the most likely categorical behavioral state output).
As detailed more fully in the results section below, this “uncertain” label enables
researchers to easily identify a small subset of epochs that (1) are misclassified at a higher
rate by the automated ANN and (2) as an option, can be manually rescored to increase
classification accuracy while still relying upon automated classification for the vast
majority of epochs.

As the above ANNs are trained and tested on an epoch-by-epoch basis (with no between
epoch history), these models are unable to directly incorporate sleep/wake history into
their behavioral state predictions. To overcome this limitation, once all test epochs have
been predicted, we applied a final series of simple heuristic rules to amend the ANN
behavioral state predictions to better reflect typical sleep/wake histories. Specifically, we
increased REM sleep continuity by rescoring small bouts (<=12 s) of scored waking or
NREM sleep located between otherwise continuous REM epochs as REM sleep. As direct
transitions from waking to REM sleep are exceptionally rare except under pathological
conditions (Fujiki et al., 2009; Mignot et al., 2006), we additionally rescored any epochs of
REM sleep that occurred immediately following waking as waking. Lastly, we identified
isolated 4 s epochs whose state scoring was bounded by epochs that (a) differed from the
isolated epoch and (b) were otherwise scored identically. Once identified, these isolated
epochs were rescored to match the immediately preceding/ensuing epochs.

Through the course of training and testing these ANNs across our sample data set, it
became apparent that the predictive performance of these networks for classifying REM
sleep was severely impaired in the absence of a well-functioning EMG. Consequently, prior
to training our algorithm first calculates the EMG coefficient of variation (EMG standard
deviation/mean RMS EMG). If this standardized quality metric is less than 1.67 (an
experimentally derived threshold that appears to identify poor REM sleep classification;
see Fig. S2), a warning to the user that the automated state scoring algorithm is unlikely to
successfully score the REM epochs of that particular file is generated. As indicated above,
this procedure resulted in the removal of data from two rats in our original sample set.

Analyses and statistical approaches
All analyses of model performance were conducted in Mathworks Matlab (Natick, MA,
USA) with additional statistical analyses (correlation, repeated-measures ANOVA, t-tests)
conducted in SPSS (IBM, Armonk, NY, USA). All data are presented as mean ± standard
error.

Performance of the automated sleep scoring algorithm was assessed by comparing
its predictions of behavioral state for each epoch with corresponding epochs classified
manually. Key metrics calculated include overall accuracy (% of epochs that were
scored identically by automated and manual approaches), state-dependent sensitivity
(TP/TP + FN), and state-dependent specificity (TN/TN + FP); where TP, true positive;
FN, false negative; TN, true negative, and FP, false positive. To determine the extent to
which training the ANN using data from one baseline day could generalize to (a) other
baseline days from the same rat and (b) other baseline days from different rats, we likewise
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calculated accuracy, sensitivity, and specificity of the algorithm under these conditions.
For within rat generalization, ANNs that were separately trained from each baseline day in
the data set were used to predict behavioral state for all other baseline days recorded from
that rat. For between rat generalization, ANNs that were separately trained from each
baseline day in the data set were used to each predict behavioral state for five baseline days
randomly selected from other rats.

Lastly, we calculated the effects of using ANN classification on common sleep
parameters. Power spectra were calculated for each 4 s epoch using Welch’s method
(Hamming window) and averaged across all epochs of the same behavioral state.
To account for potential differences in overall signal strength, spectra were normalized to
mean broadband power (i.e. from 0.5–125 Hz). To calculate slow wave activity (SWA), we
calculated band limited power (0.5–4 Hz) for each 4 s epoch of NREM sleep and averaged
these values across each hour of the light period. Hourly SWA values were then normalized
to the mean SWA across the light period.

RESULTS
Electrophysiological characteristics associated with behavioral state
are useful features for automated state classification
Behavioral state scoring, be it manual or algorithmic, relies upon the distinct patterns of
neuronal activity characteristic of each behavioral state. Waking epochs are typified by
low-voltage, high-frequency EEG activity and variable EMG activity. By contrast, as a
function of the large slow waves that predominate NREM sleep, EEG activity during
NREM epochs is characteristically high-voltage and low-frequency. REM sleep meanwhile,
exhibits EEG activity that is similar to that of waking, but with the complete absence of
EMG activity due to REM-associated motor atonia. While these electrophysiological
differences can typically be discerned visually in the time-domain (see Fig. 1A for example
tracings), quantification of state-dependent activity is usually performed through the
extraction of key frequency-domain features. As evident in Fig. 1B, EEG band-limited
power (BLP) likewise exhibits pronounced state dependency. For example, delta BLP
(0.5–4 Hz; i.e. low-frequency) is clearly elevated during NREM sleep while higher
frequency BLP (e.g. theta, gamma) is greater during waking and REM sleep than NREM
sleep.

State scoring algorithms consistently rely upon a collection of these electrophysiological
features to classify behavioral state (e.g. Allocca et al., 2019; Gao, Turek & Vitaterna, 2016;
Kreuzer et al., 2015; Yan et al., 2017). For example, by simply using three features
(Delta BLP, Gamma BLP and EMG-RMS), we can reliably segregate the majority of epochs
from each behavioral state (Fig. 2A). However, as this simple example also shows,
many boundary cases remain difficult to classify because a substantial proportion of
epochs from each state still overlap within the feature space. To enhance the utility of using
electrophysiological features for behavioral state classification, we implemented an
artificial neural network (ANN) to predict behavioral state from EEG/EMG features
(Fig. 2B). During model training, computational weights are continually altered to produce
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activation maps that accurately predict behavioral state from electrophysiological feature
input (see “Methods” and Fig. 2C). Once trained, the ANN can uniquely and nonlinearly
combine electrophysiological features to generate distinct activation maps characteristic of
each behavioral state. Figure 2D depicts activation maps across all four layers of our ANN
in response to feature input frommanually scored waking, NREM, and REM epochs. With
each progressive layer of the ANN, activation maps converge for epochs derived from the
same behavioral state and diverge for those derived from differing states. In doing so, the
ANN efficiently and effectively uses electrophysiological features to classify behavioral
state without researchers needing to know how to precisely combine feature input, a priori.

An artificial neural network effectively classifies behavioral state
To assess the performance of the ANN detailed above, we compared its behavioral state
predictions with manual scoring of the same electrophysiological data by trained
undergraduate researchers. Figures 3A–3B depict behavioral state hypnograms for a single
day using manual and algorithmic scoring, respectively. Here we observe that each scoring
method produces a qualitatively similar classification of behavioral state across the 24 h
day. Quantification of the model’s performance for this day reveals that the ANN predicted
behavioral state with high accuracy, sensitivity, and specificity (Fig. 3C). Across 40
recording days from nine rats (Fig. 3D), the ANN predicted behavioral state with an
overall accuracy of 90.87 ± 0.31%, high sensitivity (Wake: 89.82 ± 0.50%, NREM sleep:
92.81 ± 0.58% and REM sleep: 86.28 ± 0.99%), and high specificity (Wake: 95.18 ± 0.34%,
NREM sleep: 92.71 ± 0.41% and REM sleep: 97.18 ± 0.19%). Thus, our overall model
performance is comparable with that of other high-performing sleep scoring algorithms
despite (a) the small amount of training data needed (560, 4 s epochs; 2.6% of day’s total)
and (b) in contrast to some algorithms, the ANN predicts behavioral state for all test
epochs including those manually-scored as artifact (see Table 1). Moreover, the ANN
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accomplishes this high performance with rapid computational time (average total run time
including fast Fourier transform, feature selection, model training, and prediction
output of 223.0 ± 1.1 s when run on a 2.4 GHz Quad-Core Intel Core i5 processor with
8GB 2133 MHz LPDDR3 RAM).

Although the epochs used to train the ANNmodels characterized above were randomly
selected as described in the methods, the overall performance of these models could
nevertheless be dependent upon the specific training epochs that happened to be
selected. To address this possibility, we repeated the analyses described above five times for
each recording, each time using a different random selection of training epochs.
Random differences in training epochs selected produced minimal alterations to model
performance; between models trained on different random epochs, low average standard
errors were observed for overall accuracy (0.25 ± 0.02%), sensitivity (Wake: 0.55 ± 0.05%,
NREM sleep: 0.53 ± 0.04% and REM sleep: 1.81 ± 0.16%), and specificity (Wake:
0.51 ± 0.05%, NREM sleep: 0.46 ± 0.04% and REM sleep: 0.24 ± 0.02%). Thus, model
performance appears largely unaffected by which specific 2.6% of epochs researchers select
for model training.

Although our model compares favorably with other automated scoring approaches, its
intended purpose is to serve as a functional tool for sleep researchers. Therefore, more
direct assessments of the functional consequences of its use may additionally serve as
important metrics of performance. Consequently, across our entire data set, we compared
common sleep parameters calculated using our ANN scoring with those calculated
using manual scoring. Both scoring methods yield characteristic state-dependent power
spectra (Fig. 4A); power spectra exhibit clear 1/f power law scaling (Bédard, Kröger &
Destexhe, 2006), prominent peaks within theta frequencies during waking and REM
sleep, and pronounced slow wave activity (SWA) during NREM sleep. Overall, we
observed expected significant differences in power spectra as a function of (1) behavioral
state (F(2,16) = 47.26, p =1.9 × 10−7) and (2) frequency (F(77,616) = 72.18, p = 2.32 ×
10−260), but did not observe a significant effect of scoring method (F(1,8) = 0.07,
p = 0.79). Furthermore, we observed a canonical homeostatic decline in SWA across
the light period regardless of scoring method employed (Fig. 4B; effect of light

Figure 2 Artificial neural network reliably predicts behavioral state from EEG and EMG features. (A)
Example data from an individual rat depicts how electrophysiological features alone reliably segregate
behavioral state for most 4 s epochs, but fail to resolve ambiguity of many boundary cases. (B) Artificial
neural network architecture employed in the current study to enhance the predictive utility of EEG/EMG
features for behavioral state classification (see “Methods” for detailed characteristics of input features
used). (C) Reductions in categorical cross-entropy loss and increased prediction accuracy of training data
occur across model training. Data depict training of a single model. (D) Activation maps across the four
layers of our artificial neural network in response to EEG/EMG features. Within each layer, artificial
neurons are depicted as colored boxes with color representing the amount of activation of that neuron in
response to input features from a 4 s epoch. Each of the six rows depict activation maps from a unique 4 s
epoch from the same rat; two epochs of each behavioral state were chosen to show similarities and
differences in activation within and across data from each behavioral state. Note, activation of specific
neurons in the output layer corresponds directly with the predicted output of the model which matches
the manual scoring for each of the epochs presented above. Full-size DOI: 10.7717/peerj.12127/fig-2
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period time: F(11,88) = 12.88, p = 3.51 × 10−14; effect of scoring method: F(1,8) = 3.63,
p = 0.09). Thus, key electrophysiological characteristics of behavioral state and
homeostatic sleep are not significantly affected by the use of this ANN for behavioral state
classification. Lastly, we examined whether ANN classification altered total duration within
each behavioral state (Fig. 4C) and average episode duration (Fig. 4D). During the dark
period, the amount of time spent within each behavioral state significantly varied as expected
(F(2,16) = 618.92, p = 7.03 × 10−16), and this effect was not significantly altered as a function
of scoring method (F(2,16) = 1.97, p = 0.17). In the light period, however, observed
significant differences in state duration (F(2,16) = 481.88, p = 5.06 × 10−15) were significantly
affected by scoring method (F(2,16) = 15.83, p = 1.6 × 10−4). Post-hoc t-tests reveal that this
effect appears largely driven by a significant increase in REM sleep scored by the ANN
(24.32 ± 4.60% more light period REM) at the expense of a significant decrease in light
period waking (−9.00 ± 1.58%). Mean episode durations across the entire day, however, were
not significantly affected by scoring method (Fig. 4D; F(1,8) = 0.42, p = 0.54). Thus, the
use of this ANN for behavioral state classification does not appear to significantly affect most
common sleep parameters, with the exception of an increased prevalence of light-period
REM duration that arises at the expense of waking duration.

Optional approaches enhance scoring accuracy or reduce scoring
time
Ideally, automated sleep scoring algorithms afford significant time savings with minimal
classification error. To this end, we have shown above that our ANN scoring approach
classifies behavioral state with high accuracy, sensitivity, and specificity, while only
requiring researchers to manually score 2.6% of the day. Indeed, increasing the size of the
initial training set beyond 2.6% of the day did not appreciably increase model performance
(Fig. S1). Certain research applications, however, may necessitate enhanced accuracy
even at the expense of additional scoring time. Alternatively, analyses of very large data sets
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may benefit from reduced scoring time as long as classification performance is not severely
diminished. Below we characterize two optional approaches available with our ANN to
satisfy these contrasting needs.

In addition to producing a categorical behavioral state prediction for each epoch, our
ANN generates an estimate of the certainty of each prediction. To explore how model
certainty relates to model performance, we calculated sensitivity and specificity metrics for
each behavioral state as a function of model certainty (Fig. 5A). Model sensitivities (Wake:
r(238) = 0.80, p = 1.10 × 10−54; NREM: r(238) = 0.90, p = 8.69 × 10−88; REM: r(238) = 0.81,
p = 4.32 × 10−57) and specificities (Wake: r(238) = 0.75, p = 1.33 × 10−44; NREM:
r(238) = 0.64, p = 4.68 × 10−29; REM: r(238) = 0.83, p = 2.75 × 10−62) were all significantly

Table 1 ANN model performance as compared to previous automated sleep scoring approaches to classify rodent behavioral state.

Source Approach Overall
accuracy
(%)

Manual scoring
(% of total epochs)

Freely-available,
open source
(environment)

Include epochs
with visually-
scored artifact?

Current manuscript Artificial neural network 91 2.6 Yes (R) Yes

Current manuscript Artificial neural network 92 2.6 Yes (R) No

Current manuscript Artificial neural network
+ manual rescore

93 ~14 Yes (R) Yes

Current manuscript Artificial neural network
+ same rat generalization

89 2.6 (training day)
0 (other test days)

Yes (R) Yes

Exarchos et al., 2020 Convolution neural network 93 ~15 Yes (Google colab) Yes

Exarchos et al., 2020 Dimension reduction + clustering 89 0; unsupervised Yes (Google colab) Yes

Yamabe et al., 2019 Convolution neural network
+ long short-term Memory

97 Not reported Yes (Python) Yes

Miladinović et al., 2019 Convolution neural network
+ hidden Markov model

93–99 ~9 Yes (torch) No

Miladinović et al., 2019 Convolution neural network
+ hidden Markov model

89 ~9 Yes (torch) Yes

Barger et al., 2019 Convolution neural network
+ mixture z-scoring

97 ~1–2 Partially2 (Matlab—GUI) Yes

Allocca et al., 2019 Support vector machine 0.941 <1 Partially2 (Matlab–GUI) No

Yan et al., 2017 Threshold decision tree 91 0; Threshold No (Matlab) Yes

Gao, Turek & Vitaterna, 2016 Multiple classifier system ~95 ~9 No (Matlab) No

Kreuzer et al., 2015 Threshold decision tree 91 0; Threshold Partially2 (LabVIEW—GUI) No

Bastianini et al., 2014 Threshold decision tree 89–97 0; Threshold No (Matlab) Yes

Yaghouby, O’Hara &
Sunderam, 2016

Hidden Markov model 90 0; unsupervised No (Matlab) ~5% of epochs
excluded

Rytkönen, Zitting &
Porkka-Heiskanen, 2011

Naïve Bayes classifier 93 5 No (Matlab) Only days with
<5% artifact

Gross et al., 2009 Threshold decision tree 80 0; Threshold Partially2 (Matlab—GUI) Yes

Stephenson et al., 2009 Threshold decision tree 89 0; Threshold Yes (Spreadsheet) No

Crisler et al., 2008 Support vector machine 96 ~4 No (Matlab) No visually-scored
artifacts

Notes:
1 Alternate accuracy metric.
2 Standalone open-source tools enable algorithm implementation, but not editing.
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correlated with model certainty. Moreover, these analyses reveal that the vast majority of
epochs (88.03 ± 1.23%) were predicted with model certainty greater than 90%. These
observations raise the possibility that manually rescoring the relatively small proportion of
lower certainty epochs could greatly enhance classification performance. As evident in
Fig. 5B, manually rescoring epochs associated with lower prediction certainty provides a
focused approach that (1) increases sensitivity and specificity across each behavioral state
and (2) still affords a significant reduction in researcher time as the ANN automated
scores are used for the vast majority of epochs (see Table 1).

Lastly, although the base implementation of our algorithm only requires researchers to
manually score 2.6% of the original file, these small manual scoring requirements may
nevertheless present significant time constraints when analyzing very large datasets. Since
electrophysiological features associated with each behavioral state are likely to share
similar characteristics across recording days and subjects, our trained ANN may be
generalizable. To test this possibility, we first trained the ANN on one recording day and
then used the trained model to predict behavioral state across all other recording days from
the same rat (Fig. 6A). Under these conditions, the ANN model maintained high levels
of accuracy, sensitivity, and specificity, albeit with a small drop in performance relative to
when tested on the same day as trained. Small, but statistically significant (paired t-tests),
reductions in overall model accuracy (−1.74 ± 0.41%), NREM sensitivity (−1.95 ± 0.62%)
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and Waking/NREM specificity (−2.38 ± 0.77% and −1.24 ± 0.57%, respectively) were
observed. Waking sensitivity and REM specificity were not significantly affected, while a
more pronounced and statistically significant decrease in REM sensitivity was present
(−6.42 ± 2.17%). Collectively, these results appear to indicate that the ANN can effectively
classify multiple recording days from the same subject when trained using epochs from a
single day. We then sought to determine whether an ANN trained on data from one
rat could generalize to recordings from other rats (Fig. 6B). While the ANN still maintains
moderate performance under these conditions for most parameters of interest (e.g. overall
accuracy: 85.33 ± 0.40%), significant decreases in performance were observed relative
to ANN models trained on the same day as tested in all performance metrics except REM
specificity. REM sensitivity was particularly affected with this approach and significantly
decreased by −27.50 ± 2.52%. Thus, the ANN appears limited when generalizing to
recordings from different rats.

DISCUSSION
We have developed an artificial neural network that uses EEG/LFP and EMG features to
classify behavioral state in rats with high accuracy, sensitivity, and specificity.
Quantification of common sleep research parameters (e.g. power spectra, SWA, bout
duration, and state durations) is largely unaffected when using this ANN scoring as
compared to manual scoring. The ANN requires minimal manual classification, has low
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computational complexity, and critically is readily implementable using freely available
software. Optional features enable researchers to prioritize overall accuracy through
manual rescoring of epochs identified as low certainty or further reduce the need for
manual scoring by generalizing trained networks across multiple recording days of the
same rat. Consequently, this ANN appears to serve as a valuable research tool that
increases researcher accessibility to effective and efficient algorithmic classification of
behavioral state.

Highly accurate behavioral state classification is difficult to achieve despite playing a
critical role across a diverse set of research questions. Visual scoring of recorded
electrophysiological signals is perhaps the most common approach to solve this challenge
yet requires extensive researcher training/time and nevertheless exhibits relatively low
inter-rater reliability (83–95%; Crisler et al., 2008; Gross et al., 2009; Miladinović et al.,
2019; Rytkönen, Zitting & Porkka-Heiskanen, 2011). Recent advances in machine
learning have led to the development of algorithmic classifiers that achieve comparable
performance to manual scoring yet afford significant reductions in classification time.
Of these, deep learning algorithms have achieved the highest accuracies, yet require
extensive computational resources and large training sets (Miladinović et al., 2019; Yamabe
et al., 2019). For example, the accuracy of one of these deep learning algorithms is reduced
from 96.6% to 80.5% when the training set is reduced from 4,200 files to 500 files
(Yamabe et al., 2019). These requirements may severely diminish the utility of such
approaches for researchers who do not have access to such resources.

By combining supervised learning approaches with deep learning algorithms that utilize
simplified neural network architectures, excellent classification performance can be
achieved while significantly reducing the need for extensive computational resources as
detailed above. Indeed, this approach has previously been successfully implemented for
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classification of behavioral state in humans (Ronzhina et al., 2012; Schaltenbrand, Lengelle &
Macher, 1993). Our ANN extends this approach for the classification of behavioral state
in rats and achieves high accuracy (90.9%) despite requiring minimal manual scoring (2.6%
of daily epochs) and low computational resources. During training, ridge regularization
and oversampling were undertaken to overcome the imbalanced distribution of behavioral
states and increase classification accuracy (Janocha & Czarnecki, 2017). Z-score
normalization of feature input helped alleviate misclassification errors that could arise
from distributional shift (Barger et al., 2019). Post-training application of heuristics to
transform a subset of the ANN predictions as a function of previous sleep/wake history was
used to further improve classification accuracy. Lastly, through automated identification of
individual epochs that were predicted with <90% certainty by the ANN, our algorithm
facilitates optional manual rescoring of a subset of epochs that ultimately increases
classification accuracy to ~93%.

Although our ANN achieves high overall accuracy, its performance is more limited in
terms of REM classification; as compared to manual scoring, the algorithm predicts
significantly more REM sleep during the dark period at the expense of waking and only
obtains 86.3% sensitivity for REM epochs. Such performance mirrors that of many
different automated approaches as REM classification performance is consistently lower
than that for other behavioral states (Exarchos et al., 2020; Rytkönen et al., 2011;
Yamabe et al., 2019). Distinguishing between REM sleep and quiet wakefulness presents
a significant challenge for automated classifiers because considerable overlap of
electrophysiological features is present across these two distinct states. Maximizing feature
differences between these states, however, can improve performance. As previously
reported (Allocca et al., 2019; Barger et al., 2019; Bastianini et al., 2014), we observed that
successful classification was highly dependent upon the EMG signal quality. REM
sensitivity of our algorithm was correlated with EMG signal quality (Fig. S2) with REM
sensitivity reaching a maximum of 97.8% for an individual day. Additional features, like
heart-rate variability, may further differentiate waking and REM sleep and in doing so
improve automated classification (Chouchou & Desseilles, 2014; Herzig et al., 2018). In the
absence of clear feature differentiation, our results indicate that manual rescoring of
uncertain epochs represents a practical solution for improving performance, achieving
89.59 ± 0.66% average REM sensitivity. Despite some limitations surrounding REM
sensitivity, our ANN affords significant benefits as a functional tool for researchers.
The quantification of key characteristics inherent to sleep research, including
state-dependent power spectra and homeostatic patterns of slow wave activity, are not
significantly affected by using this automated scoring approach (Fig. 4).

Unlike most previous automated behavioral state classifiers (Barger et al., 2019; Crisler
et al., 2008; Gao et al., 2016; Gross et al., 2009; Miladinović et al., 2019; Rytkönen et al.,
2011; Yan et al., 2017), code for our ANN is not only open source but fully written within a
commonly used, freely available software environment (R Core Team, 2020). These
characteristics enable future researchers to use, and even customize, our initial ANN to
meet their specific research needs. Given the similarities in electrophysiological activity
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and behavioral state classification in rats and mice, we would expect that the current ANN
would perform well when classifying behavioral state in both species. Alternatively, the
number of neurons in the ANN output layer could be readily altered to classify additional
states characteristic of monkey and/or human sleep (Hsieh, Robinson & Fuller, 2008;
Malafeev et al., 2018), NREM-REM sleep transitions (Benington, Kodali & Heller, 1994;
Gross et al., 2009), and/or pathological states such as cataplexy (Exarchos et al., 2020).
Additionally, feature input could be amended to include novel features like heart-rate
variability (Chouchou & Desseilles, 2014; Herzig et al., 2018) to enhance classification of
states of interest. Lastly, even the base architecture of the presented classifier can be
modified; although we altered model hyperparameters (e.g. layer number, number of
neurons per layer, activation functions, etc.) during model development to enhance
classification accuracy, there may be combinations of hyperparameters that we did not test
that would yield significant improvement to the model’s predictions. Thus, the inherent
flexibility of our ANN and ease of access and implementation may enhance the utility
of this approach for addressing diverse research questions. Consequently, this ANN
represents a valuable tool that can facilitate adoption of highly efficient and accurate
automated behavioral state classification.

CONCLUSIONS
Despite recent advances in automated sleep scoring approaches, significant functional
barriers still limit their widespread adoption. Here, we present an efficient and accurate
automated sleep scoring algorithm that: (1) has minimal computational needs, (2) is freely
available, and (3) is coded within a fully open source environment. The use of this
behavioral state classifier did not significantly affect most parameters (i.e. state durations,
bout lengths, slow wave activity) commonly used in sleep research. Consequently, this
accessible and readily implementable ANN may serve as a useful tool for diverse research
dependent upon accurate behavioral state classification.
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