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Diabetic nephropathy (DN) is the most common chronic kidney disease.

Accumulation of glucose and metabolites activates resident macrophages in

kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by

releasing cytokines/chemokines, recruiting peripheral monocytes/

macrophages, enhancing renal cell injuries (podocytes, mesangial cells,

endothelial cells and tubular epithelial cells), and macrophage-myofibroblast

transition. The differentiation and cross-talks of macrophages ultimately result

renal inflammation and fibrosis in DN. Emerging evidence shows that targeting

macrophages by suppressing macrophage activation/transition, and

macrophages-cell interactions may be a promising approach to attenuate

DN. In the review, we summarized the diverse roles of macrophages and the

cross-talks to other cells in DN, and highlighted the therapeutic potentials by

targeting macrophages.
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1 Introduction

Diabetic nephropathy (DN) is a commonmicrovascular complication of diabetes and

a leading cause of chronic kidney disease (CKD) worldwide with high morbidity and

disability (1, 2). 30%-40% of patients with diabetes develop DN, of which 5%-10%

eventually progress to end-stage renal disease (ESRD). DN accounts for almost a third of

the CKD caused disability-adjusted life-years globally (3).

DN is characterized by the over deposition of extracellular matrix (ECM) which leads

to thickness of basement membrane, glomerular mesangial expansion and
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tubulointerstitial fibrosis (4, 5). Pathologically, glucose and

metabolites (e.g., reactive oxygen species and advanced

glycation end products) lead to podocyte loss, mesangial

expansion, and endothelial injuries in glomeruli, and epithelial

damage or transition in renal tubules, eventually, result cellular

inflammation, glomerulosclerosis and tubulointerstitial fibrosis

(5, 6). Macrophages (Mj), as main immune cells, are involved

into the pathogenesis of DN (7). High glucose and advanced

glycation end products (AGEs) promote expressions of adhesion

molecules, cytokines and chemokines in podocytes, mesangial

cells and epithelial cells in kidney, which recruit and activate

macrophages (8, 9). Activation of resident macrophages and

infiltrating macrophages in diabetic kidney promote renal

inflammation and fibrosis in glomeruli and tubulointerstitium

(10, 11).

This review describes roles of macrophages in patients with

DN as well as in animal models. We summarized the multiple

roles of macrophages, including the communication between

macrophages and other renal cells in DN, and the regulation of

macrophages on metabolism and inflammation in DN. We also

involved the new therapeutic strategies/findings targeting

macrophages to prevent and treat DN.
2 Dynamic changes of macrophages
in DN

Macrophages have dynamic changes in DN, e.g. macrophage

infiltration and macrophage polarization. We summarized these

findings from DN patients and animal models to preliminarily

explore the roles of macrophages in the progression of DN.
2.1 In human

Renal biopsies from patients reveal that macrophages

present in the interstitium and glomeruli at all stages of DN

(11, 12). In patients with type 2 diabetes, kidney biopsy studies

indicated that the number of macrophages in the glomeruli

transiently increases in the stage of moderate glomerulosclerosis,

but remains low at mild and advanced stages (13). The ratio of

M1/M2 macrophages is dynamically changing during the

progression of DN at different stages (14, 15). These

macrophages traditionally classified into inflammatory M1

macrophages (CD68+/iNOS+) and M2 macrophages (CD68+/

Arg-1+) (12, 14, 15). Findings from kidney biopsies showed that

M1 macrophages are recruited to the kidney during the early

stages of DN (Stages I and IIa). The ratio of M1 to M2

macrophages is highest at the early stages. M2 macrophages

predominate at the later time point (Stage III) and the M1/M2

macrophage ratio reaches to the lowest level (14). CD163+

glomerular macrophages are positively associated with DN
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severity, interstitial fibrosis and tubular atrophy, and

glomerulosclerosis while CD68+ interstitial macrophages are

associated with decreased glomerular filtration rate and

increased proteinuria (11). Studies also indicated that

macrophage infiltration in tubulointerstitium is associated with

the progression of renal impairment over the subsequent 5 years

and macrophage accumulation in kidney is a prognostic factor

for DN (11, 16). However, it is difficult to determine the dynamic

changes of renal macrophages population/subpopulation due to

the limited availability of human kidney biopsies in a time course

of DN, especially at the early stages of DN. In addition, the onset

time of the disease cannot be definitively determined and a

biopsy is seldom collected at early stage as it may not be clinically

appropriate (16).
2.2 In animals

In streptozotocin (STZ) induced type 1 diabetes mellitus

(T1DM) mouse model, CD45+ and CD68+ macrophages are the

most abundant leukocytes accumulating in glomerular and

interstitial tissues of kidneys (17). The number of

macrophages in glomeruli and tubulointerstitium is increased

at 2-week after receiving STZ, and reach to a 3-fold increase at

18-week (17). Both glomerular macrophages and interstitial

macrophages have been associated with hypertrophy,

hypercellularity, and extracelluar matrix (ECM) deposition in

glomeruli and interstitial tissues (17, 18). Consisently,

macrophages accumulate in kidneys of insulin-2 Akita mutant

mice, the spontaneous diabetic mice (19).

Db/db and ob/ob mice develop obesity and insulin resistance

due to mutations of leptin receptors and defects of leptin

production respectively. These animals are commonly used to

study the pathogenesis of type 2 diabetes mellitus (T2DM) (20).

In db/db mice with C57BL/6 background, glomerular and

interstitial CD68+ macrophages gradually increase 10-fold at

8-month old compared to age-matched normal mice (21). These

macrophages account for 90% of infiltrating leukocytes in

kidneys, which are associated with blood glucose, albuminuria,

and histology (21). Db/db mice with C57BLKS background at 3-

month-old have a 2-fold increase of CD68+ glomerular

macrophages in kidney, which are associated with the

development of proteinuria (22). In an accelerated DN model

by the uninephrectomy of C57BLKS db/db mice, there is an

sustained increase of glomerular macrophages at 6- to 24-week

old (23). In another accelerated DN model, db/db mice crossing

with endothelial NOS-deficient mice, there is a 6-fold increase in

glomerular CD68+ macrophages and a 5-fold increase in

interstitial CD68+ macrophages at 16-week old compared with

conventional db/db (24). In BTBR ob/ob mice, macrophages

activation and infiltration are found in glomerulus and

tubulointerstitium of kidney (25, 26). Depletion of

macrophages by intraperitoneal injection of clodronate
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liposomes improves proteinuria and renal function in db/db

mice (12).

Studies in human and animal models have shown that

macrophages accumulate in diabetic kidneys and this

accumulation correlates with renal injury in DN.
3 Origins and phenotypes
of macrophages

Renal macrophages include resident macrophages and

infiltrating macrophages. Renal resident macrophages include

yolk sac-derived erythro-myeloid progenitors (EMPs) derived

macrophages, fetal liver EMP-derived macrophages and

Hematopoietic stem cells (HSCs)-derived macrophages. Some

HSCs migrate into the bone marrow and spleen and are then

released into the blood as circulating monocytes that can

contribute to tissue-resident macrophages populations (27, 28).

At the initial stage of diabetic nephropathy, resident

macrophages, acting as gatekeepers to initiate or suppress

immune responses, are rapidly activated by stimuli in kidney

(28–30). High glucose induces high expression of adhesion

molecules including intercellular adhesion molecule-1 (ICAM-

1) (31) and vascular cell adhesion molecule-1 (VCAM-1) (32,

33) in vascular endothelial cells. High glucose and AGEs also

promote expression of ICAM-1 in podocytes, mesangial cells

and epithelial cells (34–36). They can adhere to circulating

monocytes (34). ICAM-1 appears to be a key molecule

promoting renal macrophage recruitment in DN (34).

Meanwhile, activated resident macrophages and renal

parenchymal cells such as glomerular podocytes, mesangial

cells and tubular epithelial cells in DN secrete chemokines

such as C-C Motif Chemokine Ligands 2 &5 (CCL2, CCL5)

(37) and macrophage colony-stimulating factor 1 (CSF-1) (38),

which induce circulating monocytes (Ly6Chigh monocytes and

Ly6Clow monocytes) to form the infiltrating macrophages in

kidney and finally contribute to pathogenesis of kidney

diseases (28).

M1 andM2 plays the opposite role in renal inflammation. At

the early stage of kidney injury, macrophages are activated by

pathogen-associated molecular patterns (PAMPs), danger-

associated molecular patterns (DAMPs), interferon-gamma

(IFN-g) and pro-inflammatory cytokines to differentiate into

proinflammatory M1 macrophages which are in response to

infection or cellular damage (39). Simultaneously circulating

monocytes (CD11b+Ly6Chigh) are recruited to the kidney to

differentiate into pro-inflammatory M1 macrophages (40, 41).

M1 macrophages have inflammatory effects with high

expression of inducible nitric oxide synthase (iNOS).M1

macrophages secrete pro-inflammatory cytokines (TNF-a, IL-
1b, IL-6) and promote tissue inflammation and damage (42). M2

macrophages are normally induced by interleukin 4 (IL-4) and
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interleukin 13 (IL-13), which suppress inflammation and

promote wound repair and fibrosis (28). M2 macrophages

have immunomodulatory, pro-fibrotic and repairing effects

with high expression of CD206, CD163, arginase-1 (Arg-1)

and mannose receptor (MR) (42) . Alternative M2

macrophages secrete anti-inflammatory (IL-10) and pro-

fibrotic cytokines (TGF-b) that promote tissue repair and

fibrosis (42). Consistently, circulating Ly6Clow monocytes are

recruited to the kidney to differentiate macrophages and play

anti-inflammatory and pro-fibrotic roles (28). The origins and

phenotypes of macrophages in the kidney are shown in Figure 1.

Majority of phenotype studies on DN focus on M1 and M2

macrophages. The key receptor that regulates macrophages

transition from M1 to M2 is CD163. Clearance of hemoglobin:

haptoglobin (Hb : Hp) complex by CD163 promotes nuclear

translocation of nuclear factor erythroid 2-related factor 2

(Nrf2), increases the expression of heme oxygenase (HO)-1

and enhances release of IL-10 (43). Nrf2/HO-1, ac as

therapeutic regulator, promotes the switch of M1 to M2 and

improves renal function in patients (43). Hyperglycemia

promotes glomerular injury by reducing the expression of

renal proximal tubule AT1 receptor-associated protein

(ATARP) , which fina l ly reduces accumulat ion of

tubulointerstitial M2 macrophages in diabetic kidney (44).

The subtype classification of macrophages are more

complicated than the traditional M1/M2 classification. Recent

single-cell sequencing studies have shown that different

macrophage populations can be more precisely described

according to their gene expression patterns (45–47). Several

single cell RNA-sequencing (scRNA-seq) studies have

investigated the roles of macrophage subpoplulations on the

pathogenesis of DN. Increased number of immune cells is shown

in the glomeruli of STZ-treated mice and proved that

macrophages are the predominant immune cells by assessing

canonical C1qa, Cd74 and Adgre1 expression (47). The roles of

different phenotype macrophages in diabetic nephropathy

remain further elucidat ion by using more precise

research methodology.
4 Crosstalks among macrophages
and renal cells in DN

Interactions among macrophages and other renal cells

(podocytes, renal tubular epithelial cells, endothelial cells, and

mesangial cells) contribute to DN.
4.1 Macrophages and podocytes

Podocytes are important parenchymal cells of the kidney. In

DN, macrophages promote podocyte injury and apoptosis. Loss
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of podocytes leads to proteinuria in DN. As podocytes have

limited regenerative capacity, podocyte injury is an important

prognostic marker for determining the severity of DN (48, 49).

In DN, high glucose (HG) activates reactive oxygen species

(ROS)-p38 mitogen-activated protein kinase (MAPK) pathway

in macrophages to release TNF-a and promote podocytes

apoptosis (50). Macrophage depletion attenuates tubular

necrosis and injury, which in turn reduces renal inflammation

and fibrosis in STZ-induced diabetic rats (50). Increased T cell

immunoglobulin domain and mucin domain-3 (Tim-3)

activates nuclear factor kB (NF-kB)/TNF-a signaling in

macrophages, which promotes podocytes injury in STZ-

induced diabetic mice and db/db mice (51). Furthermore,

polarization of macrophages also plays a role in podocytes. In

the rat model of DN, NAD-dependent protein deacetylase

sirtuin-6 (SIRT6) is decreased in macrophages under high
Frontiers in Immunology 04
glucose conditions. Overexpression of SIRT6 inhibits

apoptosis-related genes in podocytes by activating M2

macrophages and protects podocytes from injuries in vitro

(52). Vitamin D not only reduces macrophages infiltration and

inhibits M1 macrophages activation, but also enhances M2

macrophages phenotype to prevent podocyte damage (41, 53).

In microenv ironment , exosomes , as the nove l

communication media between cells, have been recently

studied. In diabetic nephropathy, miR-21-5p in macrophages-

derived exosomes promotes podocyte injury by enhancing

pyroptosis through the tumor necrosis factor alpha-induced

protein 3 (A20) (54). When promoting the switch of

macrophages to M2 subtype, M2 macrophages can ameliorate

high glucose-induced podocyte injury by inhibiting dual

specificity protein phosphatase 1 (DUSP1) expression and

activating autophagy by secreting exosomal miR-25-3p (55).
FIGURE 1

Origins and phenotypes of macrophages. Renal macrophages (Mj) are consisting of resident macrophages and infiltrating macrophages.
Resident macrophages mainly have three sources including yolk sac-derived erythro-myeloid progenitors (EMPs)-derived Mj, fetal liver EMP-
derived Mj, and hematopoietic stem cell (HSC)-derived Mj. During the initial stages of kidney injury, resident macrophages act as gatekeepers
to initiate or suppress immune responses. Actived resigent Mj and kidney cells release chemokines/cytokines to recruit circulating monocytes
to kidney tissuse (called infiltrating macrophages). Macrophages are generally classified into classic M1 and alternative M2 macrophages. M1
macrophages (CD68/iNOS) express and secrete inflammatory cytokines (TNF-a, IL-1b, IL-6) and promote tissue inflammation. M2 macrophages
(CD206/CD163/Arg-1/MR) secrete anti-inflammatory (IL-10) and pro-fibrotic cytokines (TGF-b) that promote tissue repair and fibrosis. Arg-1,
Arginase-1; EMPs, Erythro-myeloid progenitors; CCL2, C-C Motif chemokine ligand 2; HSC, Hematopoietic stem cell; ICAM-1, Intercellular
adhesion molecule-1; MR, Mannose receptor; Mj, Macrophages; VCAM-1, Vascular cell adhesion molecule-1; VECs, Vascular endothelial cell.
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Meanwhile, exosomes secreted by M2 macrophages attenuate

LPS-induced podocyte apoptosis by regulating the miR-93-5p/

toll-like receptor 4 (TLR4) axis (56).
4.2 Macrophages and renal tubular
epithelial cells

Crosstalk between Notch and NF-kB signalings in

macrophages contributes to the polarization of macrophages

and the release of inflammatory cytokines/chemokines in DN.

Among them, TNF-a activates renal tubular cells to undergo

necroptosis. At the same time, high glucose stimulation is

accompanied by the production of chemokines in renal tissue,

which further increases the infiltration of macrophages (12). In

addition, tubular epithelial cell-to-macrophage communication

could form a negative feedback loop by extracellular vesicle (EV)

to induce renal inflammation and apoptosis in DN (57).

Leucine-rich a-2-glycoprotein 1(LRG1)-enriched extracellular

vesicles derived from lipotoxic tubular epithelial cells activate

M1 macrophages, which might be via a TGFb receptor 1

(TGFbR1)-dependent manner (57). Macrophages-derived

extracellular vesicles containing tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL) lead to renal tubular

epithelial cell apoptosis in a TRAIL-Death receptor 5 (DR5)-

dependent manner (57).
4.3 Macrophages and mesangial cells

Inflammatory cytokines released by the infiltrating

macrophages promote mesangial cells to produce extracellular

matrix in kidney and aggravate renal injury in DN (12). When

exposed to high glucose, macrophages and mesangial cells can

interact to promote the secretion of inflammatory cytokines and

extracellular matrix. TGF-b activated kinase-1 (TAK1) inhibitor,
5Z-7-oxozaeenol, reduces the number of infi l trated

macrophages and extracellular matrix secretion from

mesangial cells when mesangial cells are co-cultured with high

glucose-treated macrophages. The mechanism may be related to

the inhibition of NF-kB p65 nuclear translocation, which

reduces the inflammatory response and the production of

extracellular matrix (58). Exosomes also function as the

important communication media between macrophages and

mesangial cells. Exosomes derived from high glucose-treated

macrophages induce the activation and proliferation of

mesangial cells, which causes mesangial expansion, and

inflammatory cytokines secretion. Mechanistically, the high

expression of TGF-b1 in secreted exosomes from the

macrophages activates mesangial cells to produce extracellular

matrix deposition via TGF-b1/Smad3 signaling pathway in vivo

and in vitro (59).
Frontiers in Immunology 05
4.4 Macrophages and endothelial cells

High glucose condition induces upregulation of hypoxia-

inducible factor-1a (HIF-1a)/Notch1 pathway in endothelial

cells, which in turn promotes the recruitment of M1

macrophages to the kidney, and mediates renal injury in db/

db mice (60). The inhibition of HIF-1a/Notch1 by and

peroxisome proliferator-activated receptor alpha (PPAR-a)
agonist, fenofibrate, reduces M1 macrophages recruitment to

prevent DN (60).
4.5 Macrophages-macrophages interaction

Macrophages have interactions with each other. Cytokines,

chemokines and exosomes released from activated macrophages

further recruit peripheral macrophages and activate

macrophages. In addition, macrophage-secreted exosomes may

participate the interactions. RAW 264.7 is a macrophage cell line

from a tumor in a male mouse induced with the Abelson murine

leukemia virus. High glucose induces exosome secretion in

RAW264.7 cells (61). The study also showed that exosomes

from high glucose-treated RAW264.7 cells activate macrophages

in vivo (61).
4.6 Macrophage-myofibroblast transition

Recently, macrophages are identified as the major source of

myofibroblasts when macrophages are stimulated with

adenosine and/or TGF-b (62). The newly discovered

phenomenon is firstly named as macrophage-myofibroblast

transition (MMT) in 2016 (63, 64). Persistent chronic

inflammation leads to progressive fibrosis of the kidneys by

MMT (65). It has been proved that MMT has vital role in renal

fibrosis and tumors (66, 67). Increased Adenosine level

contributed to DN via the adenosine receptors (68).

Intraglomerular monocytes/macrophages infiltration and

MMT are regulated by A2B adenosine receptors (A2BAR) in

STZ-induced DN rats (62). A2BAR antagonist, MRS1754,

attenuates symptoms of renal function decline, glomerular

fibrosis and glomerulosclerosis in DN rats by reducing

intraglomerular macrophage infiltration and inhibiting MMT

(62). The finding gives a hint for the treatment of

diabetic nephropathy.

In conclusion, studies have shown that macrophages have

multiple interactions with macrophages and renal cells to

enhance renal inflammation and fibrosis (Figure 2). Therapy

targeting macrophages could attenuate kidney injury and

improve renal function in DN.
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5 Pathogenic roles of macrophages
in DN

The major pathogenesis of diabetic nephropathy includes

abnormal metabolic reprogramming as well as inflammation

and fibrosis. Hyperglycemia and abnormal metabolites

exacerbate renal damage. Roles of macrophages in specific

pathological processes are summarized below and shown

in Figure 3.
5.1 Metabolites-mediated macrophage
reprogramming in DN

5.1.1 Glucotoxicity and macrophages
In the state of diabetes, accumulation of metabolites causes

damages of organs/tissues, such as kidney, liver, eyes, and nerves.

During gluconeogenesis, approximately 50% of the body’s
Frontiers in Immunology 06
glucose is produced, of which 50% is produced in the kidneys

(69). It reduces the occurrence of ketoacidosis and the risk of

hyperosmolar coma but also increases the glucose load on the

kidneys (70).

High glucose increases expression of glycolytic enzymes such

as hexokinase-1 (HK1), 6-phosphofructo-2-kinase/fructose-2, 6-

biphosphatase 3 (PFKFB3) and lactate dehydrogenase A

(LDHA) which promote inflammatory responses, for example,

the activation of NF-kB p65 (71). Transforming growth factor

beta-activated kinase 1-binding protein 1 (TAB1) interacting

with TAK1 activate NF-kB in high glucose-induced bone

marrow-derived macrophages (BMDMs) and regulate

macrophages activation (72, 73). Activation of NF-kB
signaling pathway upregulates HIF-1a activity and promotes

glycolytic metabolism (74). Downregulation of TAB1 inhibits

macrophages glycolysis, polarization and inflammation through

TAB1/NF-kB/HIF-1a, and further reduces albuminuria,

tubulointerstitial injury, and mesangial expansion in STZ-

induced DN mice (71).
FIGURE 2

Cross-talks among macrophages and other cells in DN. Macrophages promote injuries or deaths of renal cells (podocytes, mesangial cells
tubular epithelial cells, endothelial cells) by various mechanisms. Mesenchymal setem cells could promote macrophages transdifferentiated into
myofibroblast and contribute to tissue fibrosis. A2BAR, A2B adenosine receptor; DR5, Death receptor 5; DN, Diabetic nephropathy;DUSP1, Dual
specificity protein phosphatase 1; EV, Extracellular vesicles; HIF-1a, Hypoxia-inducible factor-1a; LRG1, Leucine-rich a-2-glycoprotein 1; MAPK,
Mitogen-activated protein kinase; MMT, Macrophage-myofibroblast transition; PGC-1a, Peroxisome proliferator-activated receptor-gamma
coactivator-1a; ROS, Reactive oxygen species; SIRT6, Sirtuin-6; TFEB, transcription factor EB; TGFbR1, TGFb receptor 1; Tim3, T cell
immunoglobulin domain and mucin domain-3; TLR4, Toll-like receptor 4; TRAIL, Tumor necrosis factor-related apoptosis-inducing ligand.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1015142
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1015142
5.1.2 Lipotoxicity and macrophages
Under physiological conditions, lipids are responsible for

maintaining intracellular metabolism, cellular communication,

and membrane structural integrity. In DN, fatty acids cause

cellular stress and lipotoxicity once fatty acid uptake and

synthesis exceed celluar demand (75). Lipotoxicity aggravates

kidney injury by activating inflammation, oxidative stress,

mitochondrial dysfunction, and cell death (76). Lipid

deposit ion in patients with DN is associated with

dysregulation of lipid metabolism genes, including

downregulation of fatty acid b-oxidation pathways, such as

PPAR-a, carnitine palmitoyltransferase 1, acyl-CoA oxidase,

and L-type fatty acid binding protein (L-FABP) (77). Lipid

accumulation in renal cells promotes macrophages recruitment

(78). In addition, lipotoxicity also directly activates

macrophages, leading to their trans-differentiation (79).

Excessive and chronic uptake of lipids by macrophages is an

aggravating factor involved in glomerular injury in patients with

chronic kidney disease (80).
Frontiers in Immunology 07
Accumulation of lipid droplets is positively associated with

renal damage in DN. Overexpression or activation of liver X

receptors (LXRs) in macrophages significantly inhibits glycated

or acetylated low-density lipoprotein (LDL) to induce cytokines

and ROS, thereby improving renal function (81). In diabetic

nephropathy, pro-inflammatory M1 macrophages participate in

the development of lymphangiogenesis by stimulating vascular

endothelial growth factor-C (VEGF-C) and transdifferentiate

into lymphat ic endothe l ia l ce l l s (82) . Attenuated

lymphoproliferation ameliorates diabetic nephropathy and

high-fat diet-induced nephrolipotoxicity, suggesting a causal

relationship between lipotoxicity and lymphoproliferation and

a link to macrophages activation to DN (82). Carbamylated-

modified serum albumin impairs macrophages cholesterol efflux

in kidneys of T2DM, which results in renal damage by

promoting lipid accumulation in macrophages and

impairment of reverse cholesterol transport (83). Myeloid-

associated protein 8 (MRP8 or S100A8) is elevated in

glomeruli of T1DM and T2DM mice (84). Macrophages are
FIGURE 3

Roles of macrophages in DN progression. Macrophages contribute progression of DN via glucotoxicity and lipotoxicity-induced injuries,
inflammation and fibrosis in kidney. DN, Diabetic nephropathy; ERK, Extracellular signal-regulated kinase; FTO, Fat mass and obesity-associated;
HIF-1a, Hypoxia-inducible factor-1a; HK1, Hexokinase-1; LDHA, Lactate dehydrogenase A; LDL, Low-density lipoprotein; LncRNAs, Long
noncoding RNAs; LXRs, Liver X receptors; MMT, Macrophage-myofibroblast transition; MRP8, Myeloid-associated protein 8; PDGF, Platelet-
derived growth factor; PFKFB3, 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3; TAB1, Transforming growth factor beta-activated
kinase 1-binding protein 1; TAK1, Transforming growth factor beta-activated kinase 1; TLR4, Toll-like receptor 4.
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the major source of MRP8 in glomeruli. Hyperlipidemia

activates circulating macrophages through TLR4-mediated

upregulation of MRP8, especially under hyperglycemic

conditions. The synergistic effects on MRP8 production in

macrophages may be mediated by fetuin A and transcription

factors AP-1 and CEBP/b. Positive feedback mediated by the

MRP8/TLR4 interaction in an autocrine manner enhances

macrophages activation. Glomerular-intrinsic cells such as

podocytes, mesangial cells, and endothelial cells can be

activated through MRP8/TLR4 by resident and infiltrated

macrophages. The activated cells contribute mesangial

expansion and podocytes damage, further result in

glomerulosclerosis, fibrosis, and proteinuria (85). Activation of

MRP8/TLR4 signaling promotes macrophages-mediated

glucolipotoxicity which is a novel mechanism in the

pathophysiology of DN.
5.2 Inflammation and macrophages in DN

The release of various cytokines and chemokines from

macrophages, lymphocytes and kidney cells activates

inflammatory signaling pathways in macrophages which

contributes to the pathogenesis and progression of DN (8, 86).

Macrophages secrete a number of cytokines, including M1-

related pro-inflammatory cytokines (including TNF-a, IL-1b,
IL-6, IL-12, IL-15, IL-18, and IL-23), chemokines (such asMCP1/

CCL2). M2 macrophages release distinct cytokine profiles

including anti-inflammatory cytokines (such as IL-10),

profibrotic cytokines (such as TGF-b) and chemokines

(CCL17, CCL18, and CCL22) (87). Myeloid dendritic cells and

CD68+ macrophages act as CCL18-producing cells (88). Among

M2 macrophages-related factors, in addition to previous marker

CD163, CCL18 is a recently novel cytokine and a potential

biomarker to predict progression of chronic kidney disease

(89). Mouse CCL8 (mCCL8) as an analog of human CCL18

shares a functional receptor with CCR8 (90). Evaluation of the

M1/M2 cytokine profile suggests that renal mCCL8 expression is

associated with downregulation of M1 cytokines and

overexpression of M2 cytokines, thus contributing to the

maintenance of chronic inflammation and renal fibrosis (87).

Depletion ofmacrophages in DN significantly reduces the level of

mCCL8 in renal tissue (12). The mechanism remains to be

explored. CCL2/CC receptor 2 (CCR2) signaling plays a crucial

role in the recruitment of macrophages to kidney in DN (91). In

db/db mice, treatment with the CCR2 antagonist RS504393

significantly reduced infiltrating macrophages, improved

insulin resistance and urinary albumin excretion and

attenuated renal injury (92). Macrophages with the depletion of

cyclooxygenase (COX) 2 present M1 phenotype, which enhances

the infiltration of immune cells and the activation of renal

macrophages, finally promotes the development of DN (93).
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Multiple innate immune pathways are involved into the

pathogenesis and progression of diabetic kidney disease (8, 86).

Macrophages are the main phagocytic cells of the innate

immune system. TLRs are activated by endogenous DAMPs

during diabetes and induce tubulointerstitial inflammatory

response via NF-kB signaling pathway (94). Tubular TLR4-

high expression in renal biopsy of T2DM patients is positively

correlated with interstitial macrophages infiltration and the level

of HbA1c, and negatively correlated with renal function (95).

Blockades of TLR2, TLR4, and TLR6 signaling by GIT27, a novel

immunomodulator that targets macrophages, alleviates

proteinuric effects when administered to db/db mice (96).

Nod-like receptor protein (NLRP)-3-mediated inflammasome

regulates inflammation via the cleavage of proinflammatory

cytokines including pro-IL-1b and pro-IL-18 into mature

forms (97). Macrophages exhibit sustained inflammasome

activity in diabetic mice (98). Bruton’s tyrosine kinase (BTK)

is activated in the kidneys of DN patients. Knockout of BTK

attenuates macrophages−induced inflammation by inhibiting

NLRP3 inflammasome activity in diabetic mice (99).

Inflammatory response regulated by macrophages is related

with activating NF-kB signaling pathway, which in turn

increases secret ion of the chemokine CCR2 (100),

inflammatory cells infiltration, and M1 macrophages

transformation. The b2-adrenergic receptor (b2AR) agonists

including metaproterenol and terbutaline hemisulfate enhance

b-arrestin2 and its interaction with IkBa, resulting in

downregulation of NF-kB in macrophages of diabetic rats.

b2AR agonists attenuate monocytes activation and

proinflammatory and profibrotic responses in diabetic kidney

and heart (101). Triggering receptor expressed on myeloid cells 1

(TREM-1) modulates macrophages phenotype towards M1

under high glucose in vitro, and consistently, TREM-1

expression in the renal interstitium is significantly associated

with DN progression in human kidney biopsies (14).
5.3 Fibrosis and macrophages in DN

The continuous stimulation of high glucose or inflammatory

cytokines/chemokines that primarily promoting tissue repair

results excessive deposition of extracellular matrix and renal

fibrosis (102). Accumulation of macrophages in diabetic kidneys

was strongly correlated with interstitial myofibroblast

accumulation and interstitial fibrosis (10, 37, 103). MMT

derived myofibroblast may play major role on renal fibrosis.

MMT cells have predominat M2 phenotype in both human and

mouse kidney fibrosis (63, 64). M1 to M2 polarization is a key

mechanism contributing to renal fibrosis in DN. M1

macrophages promote inflammation and injury, and M2

macrophages are anti-inflammatory and promote fibrosis by

producing IL-10, TGF-b, etc. (104).
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5.4 Mitophagy and macrophages in DN

High glucose plays an important role in macrophage

adhesion and migration by regulating autophagic activity in

diabetic nephropathy (105). Mitophagy is downregulated in

macrophages in STZ-induced diabetic rats. Macrophages

treated with mitochondrial inhibitor (3-MA) impair mitophagy

and tend to switch to M1 phenotype (iNOS+ and TNF-a+), but
macrophages treated by the mitochondrial activator (rapamycin)

have less high glucose-induced M1 transition and more M2

phenotype (MR+ and Arg-1+) (106). These results suggest that

mitochondria-regulated autophagy is involved in the regulation

of M1/M2 macrophages switch in diabetic nephropathy.
5.5 Epigenetic modification of
macrophages in DN

Epigenetics include DNA methylation, RNA methylation,

and non-coding RNAs, etc, affecting the stability and expression

of target genes, and then regulating related pathways and disease

progression (86). In DN, ERK regulates M1 macrophage

activation and alters exosomal miRNA expression (including

miR-193a-3p, miR-1260b and miR-3175) of the macrophage

through the NF-kB/JAK-STAT pathway (107). Increased long

noncoding RNA LINC00323 promotes M1 macrophage

polarization through PI3K/AKT signaling in DN (108).

Recently, RNA methylation, especially m6A, has been found to

contribute to the pathogenesis of DN. The m6A methylation

modification plays a crucial role in the occurrence and

development of metabolic diseases such as obesity and T2DM

by regulating glucose and lipid metabolism and immune

inflammation (109). Analysis of m6A-modified lncRNA

expression in DN reveales that M1 macrophage polarization-

related lncRNAs (LINC00342, LINC00667, and LNC00963) are

indirectly associated with the downstream demethylase fat mass

and obesity-associated (FTO) during m6A methylation

recognition and transfer. Meanwhile, m6A and RNA binding

motif protein 15 (RBM15) are involved in the immune

regulation of M1 macrophages, and there may be a potential

interaction between RBM15 and WTAP to regulate lncRNA

methylation in M1 macrophages. It suggests that m6A

methylation transfer enzymes RBM15 and WTAP and m6A

demethylase FTO affect M1 macrophages polarization and

lncRNA methylation in M1 macrophages in DN (110).
6 Therapeutic potentials of
macrophages in DN

Current clinical treatments for diabetic nephropathy are to

control symptoms (e.g., hyperglycemia, hyperlipidemia, and
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hypertension). These regimens include the use of insulin or

insulin sensitizers (eg, PPAR-agonists), insulin release

stimulators (eg, gliclazide), cholesterol-lowering statins, and

inhibitors of the renin-angiotensin-aldosterone system (RAAS)

(111). These therapies have direct effects on macrophages

activity and indirectly inhibit renal macrophages recruitment

to slow the development and progression of DN.

Immune regulation plays indisputable roles in the

development and progression of DN, such as infiltration of

immune cells, release of proinflammatory cytokines and

chemokines, and formation of immune complexes in kidney

(112, 113). The blockade of macrophages infiltration as well as

the inhibition of MCP-1 and CCR2 have beneficial effects in

clinical trials and experimental models of DN (37, 114). The

suppression of M1 polarization or induction of M2 polarization

could reduce diabetic kidney injury (115). The inhibition of

wasted exosomes or metabolites from macrophages could also

improve renal function (77)

Several compounds have been evaluated for treating diabetic

nephropathy pre-clinically. Sarpogrelate hydrochloride, a 5-

hydroxytryptamine (5-HT2A) receptor antagonist, alleviates

DN in db/db mice by inhibiting macrophage activity and

related inflammatory responses (116). Fasudil, a potent Rho-

kinase inhibitor, ameliorates DN both in db/db mice and rat

DKD model by the induction of M2 macrophage polarization

and the reduction of M1 macrophage polarization (117).

Studies also show that natural compounds have therapeutic

potential to regulate macrophage and beneficial for DN. Loganin,

an iridoid monoterpenoid, ameliorates kidney injury by

inhibiting macrophages infiltration and activation through

MCP-1/CCR2 signaling pathway in DN (118). Schisandrin C, a

dibenzocyclooctadiene lignan from Schisandra chinensis (Turcz.)

Baill, protects against DN by promotingM1 toM2 polarization of

macrophages via the polarization-dependent Swiprosin-1/IFN-g-
Rb signaling pathway (119). Paeoniflorin, a monoterpene

glycoside from Paeonia lactiflora, prevents macrophages

activation by inhibiting TLR2/4 signaling in diabetic kidney

(120). Hypericin, a naphthodianthrone from Hypericum (Saint

John’s wort), or quercetin-3-O-galactoside ameliorates mouse

DN by promoting the polarization of macrophages from M1 to

M2 phenotype and the differentiation of CD4+ T cells into Th2

and Treg populations (121).

Preclinical studies have shown the promising effects that

targeting macrophages could attenuate diabetic kidney injury.

However, the effects have to be warranted by rigorous clinical trials.

In addition, mesenchymal stem cells (MSCs) treatment has

been shown to improve DN by reducing proteinuria and

attenuating glomerular damage in vivo. Early intervention of

MSCs protects against renal injury by restoring homeostasis of

immune microenvironment and preventing renal dysfunction

and glomerulosclerosis (122). In DN mice, MSCs could mediate

the activation of transcription factor EB (TFEB) via peroxisome

proliferator-activated receptor-gamma coactivator-1a (PGC-
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1a) pathway, and subsequently restore lysosomal function and

autophagy activity in macrophages, which induces anti-

inflammatory M2 macrophage phenotype and ameliorates

renal injury (123, 124). Meanwhile, MMT is newly identified

phenomena in several diseases and inhibition of MMT is

potential to suppress the fibrosis (62, 65). It remains unclear

whether MMT contributes to DN. Macrophages stabilized by

neutrophil gelatinase-associated lipocalin (NGAL) retain them

in M2 phenotype which increases anti-inflammatory IL-10

secretion and attenuates podocyte loss (115). The clinical effect

of NGAL on DN remains unexplored. Cell therapy targeting

macrophages is also a potential trend in the treatment of DN

which needs to be further determined by clinical studies.
7 Summary

Human and animal studies suggest that macrophages play

multiple roles in the development and progression of diabetic

nephropathy (20, 125). Metabolic abnormalities (76, 77) and

immune-inflammatory responses (10) are key links in the

pathogenesis of DN. Both renal inflammation and systemic

inflammation in DN are attributed to macrophages, and their

mutual influence is indistinguishable, which needs to be

explored in the future. In DN, DAMPs, PAMPs, lipotoxic or

glucotoxic signals from the microenvironment of diabetic kidney

trigger macrophages activation or polarization, leading to the

release of inflammatory cytokines and chemokines, and

intracellular metabolic reprogramming in kidney (38). The

released cytokines or exosomes promote communication

between macrophages and renal cells (including podocytes,

mesangial cells, endothelial cells), and further accelerate the

injury of these cel ls . Meanwhile , chemokines and

inflammatory cytokines enhance recruitment of monocytes

into kidney and differentiation into infiltrating macrophages

(37). In addition, metabolic reprogramming in macrophages

disturbs glycolysis and lipid synthesis, resulting in renal

inflammation and fibrosis, and even glomerulosclerosis in DN.

Past studies have demonstrated the multiple roles and strong

plasticity of macrophages in DN. The treatments using different

strategies of targeting macrophages could suppress activation of

macrophages by reducing inflammation and metabolite wastes,
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and regulate intercellular communication, finally attenuate

diabetic kidney injury. Findings from these studies have

therapeutic potential and need to be warranted by clinical trials.
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