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Abstract
Biological morphologies of cells and tissues represent their physiological and patho-
logical conditions. The importance of quantitative assessment of morphological in-
formation has been highly recognized in clinical diagnosis and therapeutic strategies. 
In this study, we used a supervised machine learning algorithm wndchrm to classify 
hematoxylin and eosin (H&E)-stained images of human gastric cancer tissues. This 
analysis distinguished between noncancer and cancer tissues with different histo-
logical grades. We then classified the H&E-stained images by expression levels of 
cancer-associated nuclear ATF7IP/MCAF1 and membranous PD-L1 proteins using 
immunohistochemistry of serial sections. Interestingly, classes with low and high 
expressions of each protein exhibited significant morphological dissimilarity in H&E 
images. These results indicated that morphological features in cancer tissues are cor-
related with expression of specific cancer-associated proteins, suggesting the useful-
ness of biomolecular-based morphological classification.
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1 |  INTRODUCTION

It is essential to quantitate morphological and molecular fea-
tures of cells and tissues under physiological and pathological 

conditions. In particular, various cellular and noncellular com-
ponents, which may include currently unknown ones, coexist 
at the same and adjacent sites in tissues, resulting in spatio-
temporal heterogeneity. Furthermore, each cell unit possesses 
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the nucleus and cytoplasm, which structurally and functionally 
cooperate for gene expression and cellular dynamics.1,2 These 
components systematically orchestrate and dynamically change 
in a variety of disease states such as cancer.3,4 Characteristics 
of cancerous tissues derived from patients provides diagnos-
tic information regarding the tumors, and allows prediction of 
therapeutic responses5,6 and prognosis.7-9 Pathological assess-
ment of cancer specimens stained with hematoxylin and eosin 
(H&E) is primarily interpreted not only by tissue architecture 
but also by nuclear morphology of the tumor cells, which has 
been used for routine clinical diagnosis4,10 and computer-aided 
pathological diagnosis.11-13 Recently, this field has signifi-
cantly progressed to decipher clinical and biological relevance 
from such pathological images by combining molecular infor-
mation such as genomic data.14,15

Gastric cancer is one of the most common human can-
cers, and is the second leading cause of cancer-related deaths 
worldwide.16,17 As it is often associated with chronic inflam-
mation caused by Helicobacter pylori infection and chem-
icals,18 this disease is an example of human oncogenesis 
that is etiologically induced by environmental factors.19,20 
Thus, gastric cancer is heterogeneous with distinct clinical 
phenotypes at diagnosis, differing responses to treatment, 
and subsequent prognosis. Despite preventive strategies and 
many therapeutic efforts, gastric cancer is often diagnosed at 
advanced stages. Histologically, the majority of gastric can-
cers are adenocarcinomas, which stem from the glands of the 
stomach, and are classified into two major types, “differenti-
ated and undifferentiated types” and “Lauren intestinal and 
diffuse types”.21,22 It is crucial to understand the histological 
and molecular basis of gastric cancer to identify diagnostic 
and therapeutic targets involving this disease.

Mathematical instructions, including machine learning or 
deep learning algorithms, can quantitatively classify morpho-
logical features or detect histological components such as cell 
nuclei, lymphocytes and stroma in complex tissue spaces.23-25 
Although current studies have shown good correlations be-
tween morphological differences and patient prognoses, it is 
still challenging to further improve computational strategies. 
Among these, weighted neighbor distances using a compound 
hierarchy of algorithms representing morphology, shortly the 
wndchrm (weighted neighbor distances using a compound 
hierarchy of algorithms representing morphology),enables 
classification and mining of images to identify similarities 
or dissimilarities, without predefining target morphological 
features.26,27 Wndchrm computes a large number of image 
features and extracts effective ones to discriminate between 
classes by calculating Fisher Discriminant scores, together 
with measuring classification accuracy and morphological 
dissimilarity. This approach has been previously applied for 
diverse set of images: characterization of muscular deficien-
cies in physiological aging in C elegans,28 detection of mor-
phological differences of osteoporosis in human knee X-ray 

images,29 and assessment of melanoma progression by tissue 
microarrays stained with H&E.30 Using wndchrm, we have 
classified normally or abnormally reprogrammed human-in-
duced pluripotent stem (iPS) cells by measuring morpholog-
ical differences in colony formation and nuclear subdomains 
such as the promyelocytic leukemia (PML) nuclear bodies.31 
We have also measured morphological changes of the nucle-
olus and mitotic chromosomes upon depletion of the cellular 
components in cell lines.32,33

Here using wndchrm, we quantitatively investigated mor-
phological features and classification of gastric cancer tissues 
that included heterogeneous cell populations. Our results 
indicated that wndchrm reliably computes morphological 
changes of tumors with differentiation grades, and that can-
cer-associated protein-based analysis emphasized a correla-
tion between molecular expression and tissue structures.

2 |  MATERIALS AND METHODS

2.1 | Histopathological specimens

Human gastric tissue microarray, and paraffin-embedded 
gastric tumor and nontumor samples were purchased from 
BioChain Institute (catalogue number:Z7020045), ISU 
ABXIS Co., Ltd (catalog number: #112110611141), ZYMED 
Laboratories (catalog number: 75-4013), ILSbio LLC (catalog 
number: ILS34202PD2) and US Biomax, Inc (catalog num-
ber: HStm-Ade180Sur-02). There were 66 stomach adenocar-
cinoma tissues with diagnostic results. We used histological 
grading with reference to a datasheet and the classification.21,22 
Donor information is summarized in Table S1, S4, and S5. The 
formalin-fixed tumors were processed for paraffin-embedding 
and sliced to 4-µm thick sections with a microtome (Leica 
RM2125RT), and were subjected to H&E staining.

2.2 | Immunohistochemistry

Immunohistochemistry (IHC) for ATF7IP/MCAF1 and 
PD-L1 were performed with human gastric paraffin-em-
bedded tissues (ILSbio, LLC) and gastric tissue array (US 
Biomax, Inc). The array slides were deparaffinized using xy-
lene and ethanol, and then incubated in methanol with 3.0% 
hydrogen peroxide for 30 minutes to block endogenous perox-
idase activity. The tissue sections were boiled for 10 minutes 
at 120°C in an autoclave in citrate buffer (ethylenediamine-
tetraacetic acid for PD-L1) for antigen retrieval. For PD-L1 
IHC, antigen retrieval was processed before blockade of en-
dogenous peroxidase activity. The sections were immersed 
in 1.0%Block Ace (Dainippon Sumitomo Pharma Co., Ltd.) 
in phosphate-buffered saline for 60 minutes, then incubated 
with anti-ATF7IP/MCAF1 or PD-L1 antibodies overnight 
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at 4℃. The immunoreaction was visualized using Histofine 
Simple Stain MAX-PO (Nichirei Bioscience) and 3,3-diam-
inobenzidine tetrahydrochloride (DAB) (Agilent Dako). The 
slides were counterstained with hematoxylin and mounted 
with Malinol (Muto Pure Chemicals).

2.3 | Image capture and processing

Original images from H&E or IHC slides were obtained 
under a microscope (BX51; Olympus) equipped with a 
UPlan SApo 20×  objective lens through a digital camera 
(DP72; Olympus). All images were captured as 24-bit color 
and 1360  ×  1024 pixels. The color deconvolution plugin 
in Image J software (http://imagej.nih.gov/ij/) was used to 
separate H&E images into the H and E channels,30 or IHC 
images into DAB and hematoxylin channels. The mean in-
tensity per image for DAB signals was calculated with Image 
J software. The images from the DAB channel were inverted, 
and then the mean intensity per image for DAB signals was 
calculated.

2.4 | Quantitation of morphological 
differences

Morphological differences were measured with thewndchrm 
algorithm (wndchrm ver1.52).26,27 Numbers of the ratio of test 
to total images were 33% in most analyses. Images were tiled 
as −t1 (no tiling), −t2 (into 4 images), −t4 (into 16 images), 
−t6 (into 36 images), −t8 (into 64 images) and, −t10 (into 
100 images) and −t12 (into 144 images). Cross-validation 
tests were automatically repeated 20 times to validate clas-
sification performance. As described previously,34,35 dendro-
grams and morphological distances were identified using the 
Fitch-Margoliash method and calculating Euclidian distances 
(d = √Σ(A−B)2), respectively. Fisher scores were computed 
from 4,059 (24-bit color) or 2919 (8-bit gray) image features 
from the following: Chebyshev-Fourier transform (ChFT), 
Chebyshev Statistics (Ch), Combined First Four Moments 
(Cf4M), Fractal Statistics (Fra), Haralick Texture (Har), 
Multiscale Histogram (MSH), Radon (Rad), and Zernike 
(Zer), and the others (others).26,27 For evaluation of nuclear 
morphology, hematoxylin-stained images were analyzed 
with a Cellomics CellInsight with HCS studio cell analysis 
software (ThermoFisher Scientific) (Figure 3).

2.5 | Antibodies

The rabbit anti-ATF7IP/MCAF1 polyclonal antibody (used 
at 1:100)36 and rabbit anti-PD-L1 polyclonal antibody (at 
1:75, E1J2J, Cell Signaling Technology) were used for IHC.

2.6 | Data analysis

R software version 3.1.3 was used for statistical analysis, 
F-test for the equality of two variances, Student's t test, and 
Welch's t test for the means of two populations were used for 
two variances. The Pearson correlation coefficient was uti-
lized to evaluate the similarity of image features. For evalu-
ation of classification performance, the pROC-package was 
used for plotting receiver operating characteristics (ROC) 
curves and calculating area under the receiver operating char-
acteristic curves (AUCs). Sensitivity was calculated as (true 
positive)/(true positive + false negative) for cancer classifi-
cation or high expression of molecular markers, and specific-
ity was calculated as (true negative)/(true negative +  false 
positive) for instances of noncancer or low expression. We 
calculated 95% confidence intervals using binomial tests.

3 |  RESULTS

3.1 | Wndchrm-based analysis of 
morphology in noncancerous and gastric 
cancer tissues

To quantitatively assess biological morphology of cell and 
tissue conditions, we performed a machine learning analysis 
using the wndchrm algorithm, and specific image measure-
ments (Figure 1A). Image data-sets were constructed in ac-
cordance with pathological diagnosis, using tissue microarrays 
derived from human stomach adenocarcinoma patients. Fifty-
four H&E-stained tissue images of 1360 × 1024 pixels were 
collected for each class: Noncancer, Grade 1 (well differenti-
ated), Grade 2 (moderately differentiated), and Grade 3 (poorly 
differentiated) (Figure 1B, Figure S1A and Table S1). Briefly, 
wndchrm extracted image features from all images of each 
defined class, and trained a classifier to discriminate between 
the classes using training data-sets. The classification perfor-
mance was then validated with test images that were randomly 
selected, where these steps were automatically performed. We 
carried out 20 cross-validation analyses among the noncancer 
and grades 1-3 of gastric cancer (Figure 1A, left). As an initial 
step of the analysis, we examined the optimal number of im-
ages necessary for efficient classification. The results showed 
that the value of classification accuracy (CA) improved with 
increasing numbers of training images (Figure S1B), while that 
of standard errors became smaller as often seen in machine-
learning analyses.31The best classification was found with 54 
training images at CA 0.78 (the maximum CA is possibly 1.0), 
and this CA value was markedly higher than random classifica-
tion at CA 0.25. Furthermore, the relative similarities among 
the classes were visualized with dendrograms (Figure 1C). In 
addition, using 20 images in each classes, we confirmed the 
classification similarity between noncancer, chronic gastritis 

http://imagej.nih.gov/ij/
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and grades 1-3 (Figure S1C). Performance of the classification 
test was sufficient, as its specificity and sensitivity to discrimi-
nate cancer grades from noncancerous tissues was 100% and 
92%, respectively (Table S2, upper). For additional assess-
ment of morphological features, we divided each class into two 

subclasses, and measured the degree of dissimilarities of grades 
1-3 from noncancerous tissues, as indicated by morphologi-
cal distance (MD) (Figure 1D). The MD from Non-cancer_1 
showed similarity to Noncancer l_2 and dissimilarity to can-
cer tissues of three grades. Furthermore, when the images were 
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digitally tiled (see Methods), the numbers of training images in-
creased, but the overview of the tissues was lost. However, CA 
values were largely unchanged at 0.79-0.69 using these tiled 
images (Figure S1D), suggesting that local morphology as well 
as histological overview are indicators to discriminate between 
noncancer and cancer tissues.

We then performed detailed binary comparisons be-
tween noncancer samples and each grade of gastric cancer 
to evaluate the effectiveness of wndchrm using each of the 
54 images that showed sufficient CA values (Figure S1E). 
ROC curve analyses verified the accuracy of classifications, 
because AUCs were 0.99, 0.98, and 0.99 for Noncancer ver-
sus Grades 1, 2, and 3, respectively (the maximum AUC 
is 1.0, in contrast to random assignment of 0.5) (Figure 
1E). Representative lists of informative image features in 
each classification test were indicated according to rela-
tive Fisher discrimination scores (Figure 1F). Many sets of 
image features were commonly used to discriminate Grades 
1, 2, and 3 from Non-cancer (r > 0.7), although some dis-
tinct features were also involved (data not shown). Our re-
sults showed that wndchrm analyses highly recapitulated the 
human-based pathological examinations of H&E images of 
cancer tissues.

3.2 | Wndchrm-based analysis reveals 
informative features of H&E-stained images

To understand which morphological features contribute to 
classification of noncancer and cancer grades, we digitally 
deconvolved the H&E RGB (Red, Green, Blue) images into 
hematoxylin and eosin channels in gray scales (Figure 2A).30 
Cellular nuclei and cytoplasmic components are generally 
stained with hematoxylin and eosin, respectively.4,10 Using the 
deconvolved images for noncancer and grades 1-3, as shown 
in Figure 2B and Figure S2, we measured CA among non-
cancer and grades 1-3 (Figure 2C). Cross-validation tests of 
hematoxylin and eosin images indicated equivalent CA val-
ues (0.72 and 0.69, respectively). Sensitivity and specific-
ity were equally high at 82%-98% (Table S2, second from 
upper), suggesting that hematoxylin and eosin images contain 

morphological features distinguishing between cancer and 
noncancerous tissues.

A typical list of informative image features in the classifica-
tion test was created according to relative Fisher discrimination 
scores, and showed overall similarities (Figure 2D). Pearson 
correlation coefficient value was weak between hematoxylin 
and eosin images (r = 0.55), suggesting the presence of unique 
morphological characteristics in either image. Consistently, 
MDs from Non-cancer_1 in both hematoxylin and eosin images 
showed dissimilarity between noncancerous and cancer tissues 
to a similar extent (Figure 2E,F).Thus, wndchrm analyses im-
plied the presence of informative features in hematoxylin and 
eosin-stained images of cancer tissues.

3.3 | Characterization of nuclear 
morphology in gastric cancer tissues

Our classification analysis of hematoxylin-stained images 
indicated that nuclear morphologies are distinct in noncan-
cer and gastric cancers (grades 1-3), as shown by CA values 
(Figure 2C). To assess nuclear morphology, we measured two 
characteristics of the nucleus; area and total intensity (Figure 
1A, right). Using an image analysis software (Cellomics 
CellInsight), each measurement region was detected with a 
fixed size of 1024 × 1024 pixels from original tissue images 
(Figure 3A). By counting >12 000 nuclei, we found that nu-
clear area was significantly larger in cancer tissues, compared to 
noncancerous tissues (Figure 3B), and that signal intensity was 
also higher in cancer cells (Figure 3C). Because nuclei were 
densely distributed and sometimes overlapping in cancer tis-
sues, probably due to high growth activities, we then attempted 
to measure this feature, using the nuclear area that was continu-
ously stained with hematoxylin. We set the software to recog-
nize the hematoxylin-positive area which was larger than the 
defined threshold (13 200 pixels), as shown in Figure 3D. The 
area with clustered nuclei was present prominently in Grades 1 
and 2 of gastric cancers, but scarcely in Grade 3 (Figure 3E,F). 
Summary statistics for the area and total intensity are shown 
in Table S3, indicating that nuclear morphology is an advanta-
geous parameter for cancer classification.

F I G U R E  1  Wndchrm algorithm quantitatively classifies morphological differences between noncancer and gastric cancer tissues. A, The 
scheme for computational image analysis of morphology in gastric cancer tissues. Classification of tissue morphology by wndchrm (left), and 
image measurements (right). We used the histological grade in gastric cancer tissues tested, with reference to a datasheet and the classification:21,22 
Non-cancer, Grade 1 (well differentiated), Grade 2 (moderately differentiated), and Grade 3 (poorly differentiated). B, Representative H&E images 
of noncancer and gastric cancer tissues used for classification in (C-F). Scale bar, 100 µm. C, A dendrogram made with the cross-validation tests 
shows morphological similarity (n = 54 images in each class). D, Morphological distance (MD) from noncancerous gastric tissue Non-cancer_1. 
One class was randomly divided to two subclasses (for example, Non-cancer_1 and Non-cancer_2; n = 27 images in each subclass). P values were 
calculated using Student's t test or Welch's t test (*P < .001). C, ROC curves derived from the binary classification (n = 54 images in each class; 
classification accuracy shown in Figure S1D). F, Typical relative Fisher discriminant scores assigned to the 4059 features for binary classification 
in (E). Peaks represent image features that were useful for the indicated classifications. The maximum Fisher score was set to 1. Image features 
useful for classification were highly correlated among each test (r > 0.7)
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F I G U R E  2  Nuclear and cytoplasmic images are informative for morphological classification of gastric cancer tissues. A, H&E images 
were digitally split into hematoxylin- and eosin-stained image channels. B, Representative images used for wndchrm analysis in (C-F). Scale 
bar, 100 µm. C, The CA among noncancer and Grades 1-3 which were measured with hematoxylin- and eosin-stained images (n = 54 for each 
class). P values were calculated using Student's t test. D, Relative Fisher discriminant scores assigned to the 2919 features for each test in c. The 
Pearson correlation is considered to be weak (r = 0.55). E and F, MDs of each subclass from noncancerous gastric tissue (Non-cancer_1), using 
hematoxylin (E) and eosin-stained images (F). P values were calculated using Student's t test or Welch's t test (*P < .001)
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F I G U R E  3  Analysis of nuclear morphology and densities in gastric cancer tissues. A, Original hematoxylin-stained images (top), and 
automatic detection of nuclei indicated with filled yellow markers (bottom). The nuclei were recognized with CellInsight software. Scale bar, 
50 µm. B and C, Violin plot for the nuclear area (B) and total staining intensities (C). The counted nuclei were as follows; 12,193, 14,811, 15,157, 
and 16,379 for Non-cancer, Grade 1, Grade 2, and Grade 3, respectively. In the violin plot, the box bar in the center represents the interquartile, 
and the inside line and black dot show median and average values, respectively. P values were calculated using Welch's t test (*P < .001). D, 
Representative images of automatically segmented nuclear-dense areas. Massive nuclear clusters were detected as continuously hematoxylin-
positive areas which were larger than the defined threshold (>13 200 pixels and filled-green). E, The average occupancies (%) of the nuclear dense 
areas per tissue image (1024 × 1024 pixels). Error bars are standard deviation (SD). F, Number of nuclear dense areas in 54 images for each class
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3.4 | Expression levels of nuclear ATF7IP/
MCAF1 are correlated with H&E images

It has been reported that various nuclear factors37,38 and 
membrane/soluble factors39,40 are involved in morphology of 
cells and tissues. We next investigated biological links be-
tween molecular expression and morphological features in 
gastric cancer tissues, using molecular marker-based analysis 
or fact-driven analysis.

To examine how H&E images can be classified based on 
molecular expression, we chose two cancer-associated proteins: 
nuclear ATF7IP/MCAF1 and membranous PD-L1 (Figures 
4 and 5). ATF7IP/MCAF1 is an epigenetic factor involved in 
heterochromatin formation and gene regulation, which is fre-
quently overexpressed in various kinds of tumors including 
gastric cancers. ATF7IP/MCAF1 functions for either DNA 
methylation-based gene repression or the transcription factor 
Sp1-mediated gene activation.36 On the other hand, PD-L1 is 
generally produced by cancer cells to escape immune surveil-
lance, and is a molecular target for cancer immune therapy.41-43 
Previous report showed that the PD-L1gene promoter is regu-
lated by DNA methylation or Sp1 binding in cancer cells.44,45 
There is the possibility that ATF7IP/MCAF1 may control PD-
L1 expression via Sp1,as indicated by published ChIP-seq data 
of colon cancer (Figure S3A).

We performed both H&E staining and IHC using serial 
sections of tissue (Table S4). After the section slices were 
made from a paraffin block and stained, we carefully aligned 
the H&E with IHC images manually (Figure S3B-D). We 
selected 32 sites from H&E images (each 1360 × 1024 pix-
els) and the corresponding IHC images for ATF7IP/MCAF1 
expression. Gastric cancer tissue and adjacent noncancer-
ous regions showed high and low expression of ATF7IP/
MCAF1, respectively (Figure 4A, Figure S3E,F). The levels 
of IHC signals were confirmed by quantification of their sig-
nals (Figure 4B). Based on the expression levels of ATF7IP/
MCAF1, we then classified H&E images using wndchrm to 
low and high expression of this protein (CA 0.95-1.00, which 
shows high accuracy, regardless of image numbers) (Figure 
S3G), suggesting that gastric cancer tissues as tested can be 
clearly divided to these two classes. In addition, sensitivity 
and specificity of ATF7IP/MCAF1 signals were 100% and 
98%, respectively (Table S2,second from lower). To evaluate 
the CA between low and high classes of ATF7IP/MCAF1, 
we arranged subclasses in H&E images (Low 1, Low 2, 
High 1 and High 2). Low 2 had similarity with Low 1, but 
significant difference with High 1 (Figure 4C). In addition, 
alignment of relative Fisher scores indicated weak correla-
tion between the two comparisons (Figure 4D, r = 0.44), sug-
gesting the presence of feature differences. Moreover, each 
MD from Low 1 in the feature space and the dendrogram 
showed morphological dissimilarity between low and high 
classes of ATF7IP/MCAF1 (Figure 4E,F).These suggested 

that expression levels of this protein are correlated with tis-
sue morphology.

3.5 | Expression levels of cytoplasmic PD-
L1 are correlated with H&E images

We further investigated whether expression of the membra-
nous protein PD-L1 in cancer is linked to tissue morphology. 
We again performed H&E staining and IHC with anti-PD-L1 
antibodies, using serial sections of tissue microarrays in gas-
tric cancer samples (Figure 5A and Table S5). We quantified 
IHC signal levels of PD-L1 staining, grouped into low and high 
expression of this protein, and further created data-sets of the 
corresponding H&E image (1360 × 1024 pixels) (Figure 5B, 
Figure S4A,B). Furthermore, we evaluated the tumor propor-
tion score (TPS) by counting positively stained cells in 100 
cells per image and found that PD-L1 High showed signifi-
cantly higher TPS, while PD-L1 Low had very low TPS(Figure 
S4C).The H&E images were classified as Low and High PD-
L1, at CA 0.86 using 60 images (Figure S4D). Sensitivity and 
specificity of PD-L1 signals were 88% and 84%, respectively 
(Table S2, lower). We confirmed the morphological dissimi-
larity between PD-L1 Low and High subclasses as shown by 
the CA (Figure 5C).The relative Fisher discriminant scores of 
image features suggested the presence of features responsible 
for the dissimilarity (Figure 5D,r = 0.59). Each MD from Low 
1 in the feature space and the dendrogram showed morpho-
logical dissimilarities between Low and High classes of PD-L1 
(Figure 5E,F).

Collectively, these results indicated that the expression of 
ATF7IP/MCAF1 and PD-L1 is correlated with tissue char-
acteristics, suggesting that the spatial appearance of the can-
cer-associated proteins reflects morphological information of 
the pathological tissues.

4 |  DISCUSSION

In this study, we found that H&E specimens include poten-
tial biological information that distinguishes noncancer and 
gastric cancer tissues using the target-free algorithm wnd-
chrm. Our fact-driven image analysis indicated that expres-
sion levels of ATF7IP/MCAF1 and PD-L1 as determined by 
IHC correspond to tissue morphology in H&E stained im-
ages. Thus, quantitative assessments of tissue morphology 
may reflect molecular changes in cancers, while molecular 
analyses contribute to morphological evaluation of cancer 
tissues.

Previous reports indicated that the computational anal-
ysis of H&E images assists pathological diagnosis.12,13 We 
also showed that wndchrm recapitulated pathological deci-
sions, since the algorithm achieved acceptable classification 
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performance using H&E images of gastric cancers with dis-
tinct histological grades (Figure 1).

Both hematoxylin (nuclear) and eosin (cytoplasmic) 
images contributed to morphological discrimination, in-
dicating that a large quantity of digital information may 
exist in H&E images (Figure 2). Quantification of nuclear 
components represented the following characteristics: cell 
nuclei were smaller, with lower chromatin in noncancerous 
tissues, while cancer cells exhibited greater heterogeneity, 
probably due to genetic or epigenetic alterations, together 

with high nuclear density related to differentiation states 
(Figure 3). By microscopic diagnosis, it has been shown 
that nuclear abnormality is a fundamental hallmark of 
tumor cells and an indicator of patient outcomes in many 
cancer types.46,47 Observations of tissue structural atypia 
are essential for pathological diagnosis. However, our 
findings supported that nuclear shape may also be related 
to the differentiation grades of cancers. Likewise, it has 
been reported that the cytoplasmic components of cancer 
and stromal cells have significant features recognized by 

F I G U R E  4  Expression of ATF7IP/MCAF1 is correlated with tissue morphology. A, Representative immunohistochemistry (IHC) images 
with anti-ATF7IP/MCAF1 antibodies (left) and H&E (right) in serial tissue sections. Gastric cancer and adjacent noncancer regions in tissues 
showed high and low expression of ATF7IP/MCAF1, respectively. Scale bar, 100 µm. Inset shows a few ATF7IP/MCAF1 positive cells in 
Low region(scale bar, 25 µm). B, Mean intensity of ATF7IP/MCAF1 signals in the IHC image was quantified by ImageJ (n = 32 images in 
each class). P value was calculated using Welch's t test (*P < .001) (C) Comparison of CA in indicated binary classifications of H&E stained 
images. Welch's t test (*P < .001). D, Relative Fisher discriminant scores assigned to the 4059 features in binary classification (n = 16 images 
in each subclass). Specific sets of features were useful to discriminate H&E images between low and high expression of ATF7IP/MCAF1 (weak 
correlation; r = 0.44). E, MDs from Low 1 of the indicated subclasses. The values represent the average and s.d. of 20 independent cross-validation 
tests. Student's t test or Welch's t test (*P < .001). F, The dendrogram shows the morphological dissimilarities of the H&E images with different 
expression levels of ATF7IP/MCAF1
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computational analyses.48,49 Using eosin channel data dig-
itally extracted from H&E images, which represent cyto-
plasmic components, we also obtained good classification 
accuracy using wndchrm (Figure 2).

Although there are some reports that calculated morpho-
logical patterns can be ascribed to molecular features,14,50 
our fact-driven analysis is a unique strategy for understand-
ing a new framework of image examination. Because image 
data-sets are tested by distributions of protein expression, 
the resulting data indicated that molecular information is 
linked to morphological features at the tissue level. To val-
idate that molecular differences reflect the cell and tissue 
morphologies, this study showed that ATF7IP/MCAF1 and 
PD-L1 are involved in the molecular background of morpho-
logical changes in the tissues studied (Figure 4 and 5).We 
previously reported that nuclear ATF7IP/MCAF1 functions 
for heterochromatin formation and gene repression by coop-
erating with the methylated DNA-binding protein MBD1 and 
the histone methyltransferase SETDB1.51-53 Furthermore, 
ATF7IP/MCAF1 are overexpressed to maintain telomerase 
gene expression, together with the transcription factor Sp1 
in human cancer tissues such as the stomach, breast, and 

lung.36 Therefore, we assumed that ATF7IP/MCAF1 expres-
sion is correlated with changes involving chromatin in nuclei. 
Gastric cancer tissue and adjacent noncancer regions showed 
high and low expression of ATF7IP/MCAF1, respectively, 
suggesting a correlation between the expression levels of this 
protein and H&E morphology (Figure 4).

Cytoskeletal networks construct cytoplasmic structures 
and support signal transduction from the extracellular en-
vironment to gene expression and chromatin formation in 
the nucleus.2 In fact, soluble factors such as cytokines and 
growth factors affect cellular structure and function.39,40,54 
Since monoclonal antibodies against PD-L1 have been 
approved for cancer immunotherapy, it is important to in-
vestigate effective methods to predict identification of re-
sponders using IHC slides.55,56 Interestingly, the levels of 
PD-L1 expression served to classify tissue morphology in 
H&E images (Figure 5). These results may indicate that 
wndchrm quantifies unique morphological changes that 
may be induced by PD-L1 expression. Considering the 
contribution of cancer grades to the PD-L1 classification, 
we checked the proportion of the grades in PD-L1 High 
and Low groups.PD-L1 High relatively had higher grades, 

F I G U R E  5  Expression of PD-L1 is 
correlated with cancer tissue morphology. 
A, Immunohistochemistry (IHC) of PD-
L1 and H&E staining for morphological 
classification. Scale bar, 100 µm. B, 
Measurement of mean intensity of PD-L1 
signals in IHC image (n = 60 images in 
each class). P values were calculated using 
Welch's t test (*P < .001). C, Comparison 
of CA in indicated binary classifications 
of H&E stained images (n = 30 images in 
each class). Student's t test (*P < .001). 
D, Relative Fisher discriminant scores 
assigned to the 4059 features for (C) (weak 
correlation; r = 0.59). E, MDs of the 
indicated subclasses from the PD-L1 Low 
1. The values represent the mean and SD. P 
values were measured using Student's t test 
(*P < .001). F, The dendrogram shows the 
morphological dissimilarities of the H&E 
images with different expression levels of 
PD-L1
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while PD-L1 Low tended to have lower grades (Table S6), 
suggesting that histological grades may influence on the 
classification data in our analysis.

Collectively, our study emphasizes that target-free 
image classification and measurements will serve a new 
work flow to support understanding of molecular mech-
anisms underlying morphological changes in cells and 
tissues.
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