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Abstract

Canonical correlation analysis (CCA), a multivariate approach to identifying correla-

tions between two sets of variables, is becoming increasingly popular in neuroimag-

ing studies on brain-behavior relationships. However, the CCA stability in

neuroimaging applications has not been systematically investigated. Although it is

known that the number of subjects should be greater than the number of variables

due to the curse of dimensionality, it is unclear at what subject-to-variable ratios

(SVR) and at what correlation strengths the CCA stability can be maintained. Here,

we systematically assessed the CCA stability, in the context of investigating the rela-

tionship between the brain structural/functional imaging measures and the behav-

ioral measures, by measuring the similarity of the first-mode canonical variables

across randomly sampled subgroups of subjects from a large set of 936 healthy sub-

jects. Specifically, we tested how the CCA stability changes with SVR under two dif-

ferent brain-behavior correlation strengths. The same tests were repeated using an

independent data set (n = 700) for validation. The results confirmed that both SVR

and correlation strength affect greatly the CCA stability—the CCA stability cannot be

guaranteed if the SVR is not sufficiently high or the brain-behavior relationship is not

sufficiently strong. Based on our quantitative characterization of CCA stability, we

provided a practical guideline to help correct interpretation of CCA results and

proper applications of CCA in neuroimaging studies on brain-behavior relationships.
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1 | INTRODUCTION

One of the ultimate goals of neuroimaging studies is to identify rela-

tionships between the human brain and the human behavior which

can be evaluated by a variety of methods such as Pearson's correla-

tion, multiple regression, and canonical correlation analysis (CCA).

Although all these methods aim to examine relationships between dif-

ferent variables, different method fits in different situation. Pearson's

correlation analysis is for examining the relationship between two sin-

gle variables. Multiple regression analysis is for examining relation-

ships between a single variable (i.e., the dependent variable) and a set

of variables (i.e., the independent variables). CCA, firstly introduced by
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Hotelling in 1936 (Hotelling, 1936), is for examining relationships

between two sets of variables and can be seen as an extension of

correlation analysis and multiple regression analysis (Haigh, Johnson, &

Wichern, 1988; Hardoon, Szedmak, & Shawe-Taylor, 2004; Hotelling,

1936; Kettenring, 1971; Muller, 1982; Skinner & Anderson, 1985). To

evaluate the relationship between two sets of variables, CCA seeks

the maximal correlation of linear combinations of variables between

two sets, and therefore identifies pattern correlations between two

sets of variables (Misaki, Wallace, Dankner, Martin, & Bandettini,

2012). CCA is a very appealing method for evaluating the relation-

ships between the human brain and the human behavior because it

has several advantages compared with Pearson's correlation analysis

and multiple regression analysis. First, both brain imaging measures

and behavioral measures are multidimensional in nature, and thus

evaluating their relationships naturally requires a multivariate analysis

method that can handle multidimensional data on both sides. Indeed,

our brain includes many regions that are both correlated and distinct

structurally and functionally, and our behavior is also manifested in

many correlated but also distinct aspects. Simple one-to-one correla-

tion analyses cannot capture their complex relationships on a system-

atic level. Second, CCA is particularly useful when there are high

inter-correlations between variables of the same set (Lambert, Wildt, &

Durand, 1988), which is exactly the case for both brain imaging mea-

sures and behavioral measures. Third, similar to the principal compo-

nent analysis (PCA) (Jolliffe, 1986), CCA decomposes the relationship

between two sets of variables into a series of pattern correlations

between pairs of canonical variables (i.e., modes of co-variation)

with each mode being a particular linear combination of variables in

each set, while ensuring that modes are orthogonal between pairs.

Fourth, CCA also allows the identification of variables contributing

the most to each mode based on variable loadings, and thus allows a

simple and direct interpretation of each mode (Davis, Pierson, &

Finch, 2011).

Due to these advantages, CCA is becoming increasingly popular

in the identification of relationships between brain imaging measures

and behavioral measures in both health (Davis et al., 2011; Perry

et al., 2017; Shen et al., 2016; Smith et al., 2015; Tsvetanov et al.,

2016; Vidaurre, Smith, & Woolrich, 2017; Wee et al., 2017; Will,

Rutledge, Moutoussis, & Dolan, 2017) and diseases (Ball et al., 2017;

Cai et al., 2019; Drysdale et al., 2017; Kottaram et al., 2019; Lin et al.,

2018; McAnulty et al., 2013; Rodrigue et al., 2018; Viviano et al.,

2018). For example, using CCA, Smith et al. identified a strong

positive–negative mode of population co-variation linking brain

resting-state functional connectivity and human behaviors/

demographics, showing that subjects were predominantly spread

along a single “positive–negative” axis linking lifestyle and psychomet-

ric measures to a specific pattern of brain connectivity (Smith

et al., 2015). Vidaurre et al. identified two distinct metastates of

resting-state brain network activity—one for sensorimotor and one for

higher-order cognitive functions—and they further used CCA to reveal

that the time spent in each metastates related to individual behaviors,

particularly cognitive performance and satisfaction (Vidaurre et al.,

2017). CCA has also been used to link functional connectivity and

clinical symptoms and identified four neurophysiological biotypes of

depression (Drysdale et al., 2017). Due to the increasing popularity of

CCA in neuroimaging studies, a few review and tutorial papers intro-

ducing this method have also been published very recently (Wang

et al., 2020; Zhuang, Yang, & Cordes, 2020). All these studies indicate

that CCA is an important technique that allows a systematic delinea-

tion of brain-behavior relationships and helps us better understand

the neural foundations of human behaviors.

Despite the great potential of CCA in examining brain-behavior

relationships shown in these previous studies, the stability issue in this

type of neuroimaging studies has not yet been fully investigated. In

univariate analyses such as voxel-wise comparisons of neuroimaging

measures between different experimental conditions or groups in

neuroimaging studies (Nature Publishing Group, 2013), concerns

about result reliability and reproducibility have been raised increas-

ingly, showing that numerous multiple comparisons and low statistical

power often lead to spurious and unreliable results (Button et al.,

2013; David et al., 2013; Ioannidis, 2005). Although the multiple com-

parisons problem is not much of a concern here, the use of multivari-

ate analysis techniques such as CCA may still not be used without

restraints. A major concern is the ultra-high dimensionality of the

imaging data due to the commonly known problems of “over-fitting”
and “the curse of dimensionality” (Wang et al., 2020). Indeed, the

number of imaging variables (i.e., voxels or connections) is far more

than the number of subjects in most scenarios, and consequently, it is

often necessary to reduce the dimensionality of the imaging data and

sometimes also the behavioral data before performing CCA even

though this dimension reduction may result in information loss, so

that a high subject-to-variable ratio (SVR) can be achieved (Wang

et al., 2020; Zhuang et al., 2020). However, given an available number

of subjects, how much the data dimensionality should be reduced to

obtain a good stability of CCA results is unclear. Furthermore, the

CCA stability might be also affected by whether the two sets of vari-

ables of interest (i.e., the brain imaging data and the behavioral data)

are strongly or weakly correlated with each other. However, it is also

unclear how the stability of CCA results changes with the correlation

strength between brain imaging data and behavioral data. Addressing

these questions is crucial for correct applications of this promising

technique in investigations of brain-behavior relationships.

Therefore, in the present study, we aimed to test the stability of

CCA between brain imaging (including structural and functional mea-

sures) and subject measures (including demographic and behavioral

assessments) data by examining whether similar results could be

obtained when using randomly sampled subjects from a homogeneous

population for different data dimensionalities and brain-behavior cor-

relation strengths. More specifically, we used PCA, the most com-

monly used dimension reduction method in CCA studies (Zhuang

et al., 2020), to reduce the brain imaging data to a series of dimension-

alities for a fixed number of subjects (i.e., a series of SVRs) before

CCA. In addition, we created a “strong correlation” scenario and a

“moderate correlation” scenario by including or excluding a few sub-

ject measures which showed strong correlations with the brain imag-

ing data. Then, CCA was performed to evaluate the relationship
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between brain structural (i.e., voxel-based gray matter volume) or

functional (i.e., voxel-based regional homogeneity) measures and a set

of subject measures using different subgroups of subjects (n = 468 for

each subgroup) sampled from a large data set of healthy young adults

(n = 936). As the whole data set from which each subgroup is sampled

is homogeneous, the CCA results obtained based on each subgroup

are expected to be similar if the results are stable. Considering that

subject overlapping rate may influence the similarity of the CCA

results between different subgroups due to inter-subject differences,

subjects in each subgroup were sampled using a pseudorandom man-

ner to obtain a series of subject overlapping rates between subgroups.

Therefore, for each SVR, correlation strength scenario, and subject

overlapping rate, the CCA stability was assessed by the similarity of

the first CCA mode between randomly sampled subgroups from three

aspects: the similarity of canonical correlation coefficients (CCC), the

consistency of the statistical significance, and the similarity of canoni-

cal variables. Importantly, we further validated our findings by repeat-

ing the same analyses in another independent data set (n = 700) from

the Human Connectome Project (HCP). Note that real data were used

to test the CCA stability in the present study as it is very difficult to

mimic all aspects of a real data set using simulated data. For example,

the variables within each variable set are likely to be related to each

other in a very complex manner which is very difficult, if possible at

all, to be captured using simulated data. In addition, although a

ground-truth CCC may be predefined and thus available in simulated

data, it is difficult to use it to practically guide real data analysis as the

true correlation strength between two sets of variables is unknown in

real situations.

2 | MATERIALS AND METHODS

2.1 | Data sets

2.1.1 | Tianjin data set

Subjects

A total of 1,104 healthy right-handed participants (508 males) aged

between 18 and 30 years (mean = 23.8, SD = 2.4) were included in

the Tianjin data set. Further exclusion criteria include MRI contraindi-

cations, non-Han Chinese, left-handedness or ambidexterity, more

than 20 cigarettes smoked by the time of enrollment, history of exces-

sive drinking, drug abuse or dependence, women in pregnancy or

menstruation, neuropsychiatric disorders or major physical diseases in

present or past, any current medication (include birth control pills),

color blindness or color discrimination disorder, brain lesions or struc-

tural abnormalities. All participants were recruited from two sites in

Tianjin, China, including Tianjin Medical University General Hospital

and Tianjin Medical University Cancer Institute and Hospital. From

each participant, we collected the structural and functional MRI data

along with a series of assessments including basic demographical,

environmental, and cognitive questionnaires. Ethical approval was

obtained from the medical ethics committee of Tianjin Medical

University General Hospital and the medical ethics committee of Tian-

jin Medical University Cancer Institute and Hospital prior to the study

and written informed consent was obtained from each participant

before enrollment.

Data acquisition

MRI was performed on 3 -Tesla GE Discovery MR750 scanners using

an eight-channel head-receiving coil at Tianjin Medical University

General Hospital and Tianjin Medical University Cancer Institute and

Hospital. T1-weighted MRI data were acquired using the following

parameters: repetition time (TR) = 8.16 ms, echo time (TE) = 3.18 ms,

inversion time (TI) = 450 ms, slice thickness (ST) = 1 mm, flip angle

(FA) = 12�, field of view (FOV) = 256 × 256 mm2, and voxel

size = 1 × 1 × 1 mm3. Resting-state fMRI data were acquired using a

gradient-echo planar imaging (EPI) sequence with TR = 2,000 ms,

TE = 30 ms, ST = 3 mm, spacing between slices = 4 mm, FA = 90�,

number of slices = 36, and matrix size = 64 × 64. The resting-state

fMRI scan lasted 6.17 mins, resulting in 185 volumes.

Personal information and assessments were also collected for

each participant and there are 91 items in total including demo-

graphics (e.g., gender, age, education years), cognitive and behavioral

performances (e.g., California word learning test II, virtual ball-tossing

game, n-back working memory task, go-no go task) and natural and

social environmental measures (e.g., childhood trauma questionnaire,

urbanization scores). These 91 items are referred to as “subject mea-

sures” hereafter, as opposed to “imaging measures.”

Image processing

Gray matter volume. The structural T1-weighted images were

processed to extract voxel-wise gray matter volume (GMV) using the

Voxel-Based Morphometry toolbox (VBM8, http://www.neuro.uni-

jena.de/vbm8) (Ashburner & Friston, 2000) in the Statistical Paramet-

ric Mapping software package (SPM12; Wellcome Department of

Imaging Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk) run-

ning on Matlab platform (the MathWorks Inc., Natick, Massachusetts).

More specifically, a structural brain template was firstly generated

based on the same group of subjects using the high-dimensional Dif-

feomorphic Anatomical Registration Through Exponentiated Lie Alge-

bra (DARTEL) algorithm (Ashburner, 2007) implemented in SPM12,

and then the structural brain images were spatially normalized to this

template and were segmented into the gray matter (GM), white mat-

ter (WM) and cerebrospinal fluid (CSF). The normalized gray matter

images were modulated for nonlinear transformations to obtain voxel-

wise GMV corrected for global brain volume. The modulated GMV

images were then spatially smoothed with a 5 mm full width at half

maximum (FWHM) Gaussian kernel. To reduce computational load,

the smoothed GMV images were downsampled into a lower resolu-

tion of 3 mm × 3 mm × 3 mm3 voxel size and only the voxels within a

gray matter mask (threshold of gray matter density: 50%) were

entered into the subsequent CCA analyses.

Resting-state regional homogeneity. The resting-state fMRI data of each

subject were preprocessed using Data Processing Assistant for
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Resting-State fMRI (DPARSF; http://rfmri.org/dparsf) software (Yan

& Yufeng, 2010) using the following procedure. The first five volumes

were discarded for allowing the stabilization of signal and the adapta-

tion of subjects to the scanning environment. Slice timing and spatial

realignment were performed to adjust acquisition time differences

across different slices and to adjust head motion between different

volumes during scanning, respectively. The images were subsequently

coregistered with the high-resolution T1-weighted image and then

spatially normalized into the Montreal Neurological Institute (MNI)

standard space using the unified segmentation-normalization proce-

dure (the same template as in the VBM analysis was used) and the

voxel size of images was resampled to 3 × 3 × 3 mm3. The time

course of fMRI signals of each voxel was then denoised using the fol-

lowing steps: linear detrending, regressing out 24 head motion param-

eters (Friston, Williams, Howard, Frackowiak, & Turner, 1996), WM

signal, CSF signal and the global signal, data scrubbing with framewise

displacement (FD) ≥ 0.3 mm (spline interpolation) (Power, Barnes,

Snyder, Schlaggar, & Petersen, 2012, 2013), and temporal filtering

(0.01–0.08 Hz). Finally, regional homogeneity (ReHo) was calculated

in a voxel-wise manner and the resultant ReHo map was standardized

(with unit mean) and spatially smoothed with an 8mm FWHM Gauss-

ian kernel for each subject. Similar to GMV images, only the voxels

within the gray matter mask were entered into the subsequent CCA

analyses.

Data quality control

Of 91 subject measures, 4 variables had more than 200 missing values

and 9 variables had little variance across subjects as more than

800 subjects had exactly the same value, and thus these 13 subject

measures were discarded in the subsequent analyses. Among the

remaining 78 subject measures, missing values still existed in 168 sub-

jects and thus these 168 subjects were also discarded. Finally, 78 sub-

ject measures of 936 subjects were used in the subsequent CCA

analyses. Note that, although data normality is desirable, CCA can

accommodate any metric variable without strict dependence on nor-

mality (Wang et al., 2020). Therefore, categorical variables (e.g.,

gender) were also included in the subsequent CCA analysis, as in pre-

vious studies (Ball et al., 2017).

2.1.2 | HCP data set

Subjects

A total of 1,113 healthy participants (aged between 22 and 37 years)

with 3-Tesla T1 anatomical MRI data from the Human Connectome

Project (HCP) (Van Essen et al., 2013) were used as an independent

data set for results validation.

Data acquisition

Data acquisition details can be found in (https://db.humanconnect

ome.org). In brief, all participants were scanned at Washington

University, using a Siemens MR scanner with a 32-channel receiving

head coil. Structural T1-weighted MRI data were acquired using the

following parameters: TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms,

FA = 8�, FOV = 224 × 224 mm2, and voxel size = 0.7 × 0.7 × 0.7 mm3.

Subject measures, including 494 variables in total, were also collected

for each participant, including demographics (e.g., gender, age, education

years) and cognitive and behavioral performances (e.g., picture sequence

memory task, dimensional change card sort task, Flanker task, oral read-

ing recognition task).

Image processing

The image processing procedure for extracting GMV values for the

HCP data set was the same as used for Tianjin data set with only one

exception that the T1 template used in the spatial normalization was

the European template included in VBM8.

Data quality control

Of 494 subject measures, 19 variables had more than 200 missing

values, 103 variables had little variance across subjects as more than

800 subjects had exactly the same value, 60 variables were the raw

options for each item of the Neuroticism/Extroversion/Openness

Five-Factor Inventory (NEO-FFI), 10 variables were used to assess

menstruation in women and missing in all men, 2 variables were bed-

time and getting-up time, 2 variables were zygosity-related indicators

and 8 variables were hormone-related endocrine indicators, and thus

these 204 variables were discarded in the subsequent analyses.

Among the remaining 290 subject measures, missing values still

existed in 413 subjects and thus these 413 subjects were discarded.

Finally, 290 subject measures of 700 subjects were used in the subse-

quent CCA analyses.

2.2 | Canonical correlation analysis and its stability
assessment using Tianjin data set in a “strong
correlation” scenario

CCA is designed to seek the maximal correlation of linear combina-

tions of variables in two sets (Hotelling, 1936). Given the two sets of

variables, X (e.g., the imaging measures) and Y (e.g., the subject mea-

sures), CCA seeks two transformation vectors A1 and B1 such that

the new variables U1 = A1TX and V1 = B1TY are maximally correlated,

where A1 and B1 are often called the first pair of canonical vectors or

weights and the superscript T indicates the operator “transpose”. The
new variables U1 and V1 are called the first pair of canonical variables.

The Pearson correlation coefficient between the canonical variables

U1 and V1 is called the canonical correlation coefficient (CCC) of the

first pair. And this maximal canonical correlation pattern is called the

first mode of CCA. Then the second pair of canonical variables U2 and

V2 that is orthogonal to the first pair can be similarly obtained. And

this procedure can continue until up to p pairs of canonical variables

are identified where p is the maximum number of variables between

the two sets. Therefore, the first mode represents the pattern with

the maximal canonical correlation between two variable sets. In addi-

tion, to determine the relationship between each original variable and

the canonical variable, the loading of each original variable is often
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calculated as the correlation coefficient between the original variable

and the corresponding canonical variable (i.e., U1/V1). For each set,

the loadings of all variables compose the loading vector. The variables

with the highest loadings can be interpreted as most strongly associ-

ated with, and thus have the most contributions to, the canonical cor-

relation pattern (i.e., the mode) between the two sets of variables (Ball

et al., 2017; Cai et al., 2019; Davis et al., 2011; Smith et al., 2015).

The procedure of the stability assessments for CCA results

is illustrated in the workflow chart in Figure 1 and also as a

pseudocode in Figure S1. In detail, to assess the stability of CCA

results, before performing CCA, the whole Tianjin data set (n = 936)

was pseudorandomly split into two subgroups (n = 936/2 = 468 for

each subgroup, that is, the largest possible sample size of each group

allowing zero overlapping subject between the two subgroups) while

controlling the subject overlapping rate of the two subgroups.

Although there are usually no overlapping subjects in real situations,

to test how robust the CCA results would be when the sampled sub-

jects were different, we generated pairs of subgroups with a series

of subject overlapping rates ranging from 0 to 450 overlapping sub-

jects with an increment of 50 in each step using the following proce-

dure. To generate two subgroups with 0 overlapping subjects,

468 subjects were randomly selected to form one subgroup and the

remaining 468 subjects were used to form the second subgroup; and

this procedure was repeated 1,000 times, resulting in 1,000 pairs of

subgroups with 0 overlapping subjects. To generate two subgroups

with 50 overlapping subjects, 50 subjects were randomly selected

and assigned to both subgroups, and 418 subjects (468–50 = 418)

were randomly selected from the remaining 886 subjects

(936–50 = 886) and assigned to the first subgroup and another

418 subjects were randomly selected from the remaining 468 sub-

jects (936–50−418 = 468) and assigned to the second subgroup; and

this procedure was repeated 1,000 times, resulting in 1,000 pairs of

subgroups with 50 overlapping subjects. Similarly, we also generated

1,000 pairs of subgroups with 100, 150, up to 450 overlapping sub-

jects. To avoid over-fitting problem, PCA was applied to imaging

data (GMV/ReHo) and subject measure data separately to reduce

the data dimensionality. Note that, each variable of the brain imaging

data and the subject measure data was standardized to Z score (with

zero mean and unit variance) before PCA, and the obtained PCs

were standardized to Z scores again before entering CCA. To test

how dimensionality affects the CCA stability, we reduced the imag-

ing data to a series of dimensionalities ranging from 50 to 450 with

an increment of 50, while the dimensionality of the subject measure

data was fixed to 50 since there were only 78 variables in total. This

resulted in a series of SVRs from 9.36 (i.e., 468/50) to 1.04

(i.e., 468/450). Here, the SVR was calculated based on the dimen-

sionality of the imaging measures as the dimensionality of the sub-

ject measures was kept fixed.

F IGURE 1 The workflow of CCA implementation in the “main procedure.” The whole Tianjin data set was pseudorandomly split into two
subgroups while controlling the subject overlapping rate of the two subgroups ranging from 0 to 450 in increments of 50. To avoid the over-
fitting problem and to test how the number of dimensions affects the CCA results, we reduced the imaging data to a series of dimensionalities
ranging from 50 to 450 in increments of 50 using PCA. After PCA, for a given subgroup of subjects, CCA was applied to identify the relationship
between brain imaging measures (IM) and subject measures (SM), resulting in the first-mode CCC, its statistical significance (determined by
permutation tests), and two loading vectors (one for brain imaging measures and one for subject measures). Three assessments were performed
to test the stability of the CCA results: the differences in CCC (Assessment 1), the consistency of statistical significance (Assessment 2), and the
correlation between the loading vectors for each variable set (Assessment 3) between two paired subgroups. This procedure was repeated 1,000
times for each combination of overlapping rate and dimensionality
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After PCA, for a given subgroup of subjects, CCA was applied to

identify the relationship between brain imaging measures and subject

measures. Only the first mode, corresponding to the maximal correla-

tion between the two types of variables and thus the most important

and the most commonly reported results in a CCA study, was used for

the subsequent CCA stability assessments to avoid excessively com-

plicated analyses. The statistical significance of the first-mode CCC of

each subgroup was determined by permutation tests (n = 100, in

order to reduce the computational load). Here, as the two subgroups

of subjects in each pair were randomly selected from a homogeneous

F IGURE 2 The results of
CCA stability assessments using
the Tianjin data set in the “main
procedure” with all 78 subject
measures (i.e., the “strong
correlation” scenario). Panel
(a) shows the magnitudes of
CCCs obtained from 2,000 CCAs
for all combinations of subject
overlapping rate and data
dimensionality. Panel (b) shows
the absolute differences in CCCs
of 1,000 pairs of CCA. Panel
(c) shows the consistency of the
statistical significance of CCCs
between two subgroups of 1,000
pairs of CCAs. Panels (d) and
(e) show the correlation
coefficients of the loading

vectors between two subgroups
of 1,000 pairs of CCAs
corresponding to brain imaging
measures and those
corresponding to subject
measures, respectively. The
abscissa of all subgraphs
represents the dimensionality of
imaging measures (i.e., the
number of kept PCs, ranging from
50 to 450 with a step of 50) and
the corresponding SVR (i.e., the
ratio of the sample size to the
dimensionality of the imaging
measures, ranging from 9.36 to
1.04). The subject overlapping
rates between two subgroups of
each pair (ranging from 0 to
450 with a step of 50) are color
coded. In all bar plots, the height
of the bars indicates the mean
and the error bars indicate the
SD. IM, brain imaging measures;
SM, subject measures
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data set, the CCA results (i.e., CCC, its statistical significance, and

canonical variables) were expected to be similar if they are stable.

Therefore, the stability of CCA results was assessed as the similarity

between the CCA results obtained from two randomly selected sub-

groups of subjects in each pair for each subject overlapping rate and

each data dimensionality from the following three aspects: (a) the sim-

ilarity of the first-mode CCCs obtained from two paired subgroups

(Assessment 1): it was measured by the absolute difference of the

CCCs obtained from the two subgroups for each pair, and then the

mean and the SD of the absolute differences in CCC across the 1,000

pairs were calculated; (b) the consistency of the statistical significance

of the first-mode CCCs obtained from two paired subgroups (CCCs

were considered to be significant when p < .05) (Assessment 2): there

are three possible outcomes when comparing the statistical signifi-

cance of CCCs between the two subgroups for each pair—both were

significant, both were insignificant, and one significant but the other

insignificant—and the percentage of each outcome was calculated

over the 1,000 pairs of subgroups; (c) the similarity of the canonical

variables of the first modes (i.e., U1/V1) obtained from two paired

subgroups, assessed for brain imaging measures and subject measures

F IGURE 3 The results of
CCA stability assessments using
the Tianjin data set in the “main
procedure” with all 78 subject
measures (i.e., the “strong
correlation” scenario) when there
are no overlapping subjects
between the two subgroups of
1,000 pairs of CCAs. Panel
(a) shows the magnitudes of
CCCs obtained from 2,000 CCAs
for all data dimensionalities. Panel
(b) shows the absolute
differences in CCCs of 1,000
pairs of CCA (lower part) and the
consistency of the statistical
significance of CCCs between
two subgroups of 1,000 pairs of

CCAs (upper part). Panels (c) and
(d) show the correlation
coefficients of the loading
vectors between two subgroups
of 1,000 pairs of CCAs
corresponding to brain imaging
measures and those
corresponding to subject
measures, respectively. The
abscissa of all subgraphs
represents the dimensionality of
imaging measures (i.e., the
number of kept PCs, ranging from
50 to 450 with a step of 50) and
the corresponding SVR (i.e., the
ratio of the sample size to the
dimensionality of the imaging
measures, ranging from 9.36 to
1.04). In all smoothed violin plots,
the sample median (black dotted
line) and quartiles (white dotted
line) are superimposed. IM, brain
imaging measures; SM, subject
measures
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separately (Assessment 3): it was measured by the absolute correla-

tion coefficient of the loading vectors between the two subgroups for

each pair and then their mean and the SD across the 1,000 pairs were

calculated. Note that, the similarity of the first modes of the two sub-

groups in each pair (i.e., the above third aspect) cannot be directly

assessed by calculating the correlation coefficient between the U1/V1

of the first subgroup and the U1/V1 of the second subgroup because

the direction of U1/V1 is dependent of the order of the subjects

included in a particular subgroup but there is no correspondence

between the subjects of the two subgroups. Calculating the correla-

tion coefficient between the loading vectors of the two subgroups

avoids this problem because the loading vectors are composed of vari-

ables (which are the same for the two subgroups) rather than subjects

(which are different for the two subgroups).

2.3 | Re-assessment of stability of CCA results
using Tianjin data set in a “moderate correlation”
scenario

As it will be shown in the Results section (Figures 2a and 3a), the CCCs

were generally high for all subject overlapping rates (~0.89 for GMV

and ~ 0.82 for ReHo when dimensionality = 50 for each variable set, that

is, SVR =9.36), indicating a strong relationship between the above used

brain imaging measures and subject measures. We noticed that three

subject measures (gender, height and weight) had very large loadings

(Figures S2B and S3B), indicating that these three subject measures had

major contributions to the first-mode correlation between brain imaging

measures and subject measures. To further test whether the correlation

strength between the two sets of variables also affects the stability of

CCA results and whether the above observations also hold when there is

only a moderate correlation between brain imaging measures and subject

measures (Lin et al., 2018; Rodrigue et al., 2018), we removed these

three subject measures and repeated all the above analyses to re-assess

the stability of CCA results.

2.4 | Validation using HCP data set

We repeated the same analysis procedure described in Section 2.2

using HCP data set with the following exceptions: as the total number

of the subjects was 700 after quality control, each subgroup was com-

posed of 350 subjects, and the subject overlapping rate changed from

0 to 315 with an increment of 35 and the dimensionality changed

from 35 to 315 with an increment of 35.

2.5 | Control procedure: Removing possible
contributions of PC inconsistency to CCA stability
assessment

Note that, PCA was applied to each subgroup (rather than the whole

group of 936 subjects in the Tianjin data set) before CCA in the above

procedure (denoted as “main procedure” hereafter). Although the sub-

jects of each subgroup were randomly sampled from a homogeneous

population, the obtained PCs for the two subgroups within each pair

may not be the same because the subjects composing each subgroup

were not the same (Holmes, Huber, & Martin, 2019; Nguyen &

Holmes, 2019). Therefore, the inconsistency between the PCs

obtained from each subgroup within each pair could be a source of

the instability of CCA results. To further test the stability of CCA

results without the contribution of the PC inconsistency between

subgroups within each pair, we also adopted another procedure (den-

oted as “control procedure” hereafter)—most analysis steps in the

“control procedure” were the same as in the “main procedure” except
that, in the control procedure, PCA was first applied to the brain imag-

ing data (GMV/ReHo) and to the subject measures of the whole group

of subjects (i.e., 936 subjects), and then the whole group of subjects

(in the form of PC scores) was split into two subgroups of subjects;

then the subsequent CCA was performed based on the resultant PC

scores within each subgroup. The “control procedure” is also illus-

trated as a pseudocode in Figure S1. In this way, we ensured that the

PCs had perfect correspondence across all subgroups and thus we

removed the PC inconsistency between subgroups when assessing

the stability of CCA results.

3 | RESULTS

3.1 | Stability assessment using Tianjin data set in
a “strong correlation” scenario

The obtained CCCs are shown in Figure 2a and the results of the CCA

stability assessment are shown in Figures 2b–e from three aspects—

the similarity of CCCs (Assessment 1; Figure 2b), the consistency of

the statistical significance (Assessment 2; Figure 2c) and the correla-

tion between loading vectors (Assessment 3; Figures 2d,e). Figure 2

shows all results for every subject overlapping rates and for every

data dimensionality in the “strong correlation” scenario. To show

more clearly the variances of the results across the 1,000 pairs of sub-

groups, we also presented the results when there was no overlapping

subjects between two subgroups within each pair (i.e., overlapping

rate = 0) separately in Figure 3 in a different form. All results are pres-

ented for GMV (the left columns of Figures 2 and 3) and ReHo (the

right columns of Figures 2 and 3) separately.

3.1.1 | CCC

For each of the 9 data dimensionalities (i.e., the number of PCs, rang-

ing from 50 to 450 in step of 50) and each of the 10 subject over-

lapping rates (ranging from 0 to 450 in step of 50), 1,000 pairs of

subgroups were created and thus CCA between imaging measures

(GMV/ReHo) and subject measures was performed 2,000 times

(resulting in 2,000 first-mode CCCs), one for each subgroup. The

mean and the SD of the 2,000 first-mode CCCs for all combinations
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of data dimensionality and subject overlapping rate are shown in

Figures 2a and 3a. It shows that, for both GMV (left column) and

ReHo (right column), the CCCs were considerably high (all mean CCCs

>0.89 for GMV and > 0.82 for ReHo). As expected, the CCC magni-

tudes gradually increased with the increase of the data dimensionality;

in fact, the CCC reached 1 when the data dimensionality reached

400 (i.e., SVR = 1.17) for both GMV and ReHo.

3.1.2 | Similarity of CCCs (Assessment 1)

The absolute difference of the two CCCs within each of the 1,000

pairs of subgroups was then calculated, and their mean and SD across

the 1,000 pairs are shown in Figures 2b and 3b. It shows that the

absolute differences in CCCs between two randomly sampled sub-

groups, along with thier variances, were very small (<0.08) given that

all CCCs were high for both GMV (left column) and ReHo (right col-

umn). We also found that, in general, the absolute differences in CCCs

between two randomly sampled subgroups, along with their variances,

gradually decreased with the increase of the subject overlapping rate

and with the increase of the data dimensionality.

3.1.3 | Consistency of the statistical significance of
CCCs (Assessment 2)

The consistency of the statistical significance of CCCs was represen-

ted by the percentages of the three possible outcomes (both were

significant, both were insignificant, and one significant but the other

insignificant) over the 1,000 pairs of subgroups shown in the pie

charts in Figure 2c and in the upper part of Figure 3b. Note that, the

most stable results would be consistently significant for all 1,000

pairs or consistently insignificant for all 1,000 pairs. We found that,

for GMV (Figure 2c, left column), for all subject overlapping rates

(i.e., all rows), the CCCs were consistently significant for data dimen-

sionalities ranging from 50 to 300 and were consistently insignificant

when data dimensionality increased to 450 but the inconsistency of

the statistical significance started to appear when the data dimen-

sionality increased to 350 and became obvious when the dimension-

ality increased to 400. Similar results were observed for ReHo

except that the inconsistency of the statistical significance started to

appear when the data dimensionality increased to 300 and became

obvious when the dimensionality increased to 350 and 400 (almost

half of the 1,000 pairs had inconsistent significance for the dimen-

sionality of 350).

3.1.4 | Correlation between loading vectors
(Assessment 3)

The similarity of the canonical variables of the first modes (i.e., U1/V1)

obtained from the two subgroups within each of the 1,000 pairs was

measured by the absolute correlation coefficient of the loading

vectors between two subgroups for brain imaging measures and sub-

ject measures separately. Their mean and SD across the 1,000 pairs

for all combinations of data dimensionality and subject overlapping

rate are shown in Figures 2d and 3c for brain imaging measures and in

Figures 2e and 3d for subject measures. It shows that, for both brain

imaging measures and subject measures and for both GMV (left col-

umn) and ReHo (right column), the correlation coefficients between

loading vectors for all subject overlapping rates were generally high

(> 0.6) when the data dimensionality was less than 400 but decreased

dramatically, along with increased variance, when the dimensionality

further increased (i.e., ≥ 400). Especially from Figures 3c,d, we can see

that the range of the correlation coefficients was extremely wide,

varying from 0 to nearly 0.8 when the data dimensionality equals

400, for both brain imaging measures and subject measures. We also

found that the values of the correlation coefficients between loading

vectors increased with the increase of the subject overlapping rate for

all data dimensionalities, for both brain imaging measures (Figure 2d)

and subject measures (Figure 2e) and for both GMV (left column) and

ReHo (right column). To examine how the loadings themselves chan-

ged with the change of data dimensionality, we also presented the

loadings of each variable and the absolute differences in loadings of

each variable between two paired subgroups across the 1,000 pairs

(presented in the form of mean and SD) when the subject overlapping

rate was 0 in Figures S2A and S3A (for brain imaging measures) and

Figures S2B and S3B (for subject measures). We found that, for both

brain imaging measures and subject measures, the loadings and the

absolute differences in loadings between paired subgroups were fairly

stable when the data dimensionality was less than 400 for GMV or

less than 350 for ReHo; however, the absolute values of loadings dra-

matically decreased and the variance of loadings and the absolute dif-

ferences in loadings dramatically increased when the dimensionality

reached 400 for GMV or 350 for ReHo. To further examine whether

the same voxels (i.e., brain areas) were detected to have robust load-

ings in both subgroups of each pair, we also tested the consistency of

the significance of the voxel loadings between the two subgroups of

each pair. The significance of the voxel loadings was determined using

bootstrap testing and the detailed procedure is provided in the Sup-

plemental Methods (Additional Analysis 1). This additional analysis

was performed using the GMV data of the Tianjin data set for each

SVR. We found that, only for low data dimensionalities (i.e., < 150) in

the “strong correlation” scenario, some voxels showed consistently

significant loadings in both subgroups and these voxels were mainly

located in the bilateral thalamus, bilateral caudate and cerebellum

(Figure S4).

3.2 | Re-assessment of CCA stability using Tianjin
data set in a “moderate correlation” scenario

In the above analyses which showed a strong correlation between

brain imaging measures and subject measures (~0.89 for GMV

and ~0.82 for ReHo when dimensionality = 50 for each variable set),

we noticed that three subject measures (gender, height and weight)
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had very large loadings (absolute values > 0.75; Figures S2B and S3B)

and all other subject measures had much smaller loadings (absolute

values < 0.2), indicating that these three subject measures had major

contributions to the first-mode correlation between brain imaging

measures and subject measures. Figures 4, 5, S5, and S6 show the

results of stability assessment after removing gender, height and

weight from the subject measures (analogue to Figures 2, 3, S2, and

S3). After removing these three subject measures, we observed a clear

decrease of CCCs especially for the dimensionalities lower than 200—

for example, the CCCs decreased from ~0.89 to ~0.65 for GMV and

F IGURE 4 The results of
CCA stability assessments using
the Tianjin data set in the “main
procedure” with 75 subject
measures (i.e., the “moderate
correlation” scenario). Panel
(a) shows the magnitudes of
CCCs obtained from 2,000
CCAs for all combinations of
subject overlapping rate and
data dimensionality. Panel
(b) shows the absolute
differences in CCCs of 1,000
pairs of CCA. Panel (c) shows
the consistency of the statistical
significance of CCCs between
two subgroups of 1,000 pairs of
CCAs. Panels (d) and (e) show
the correlation coefficients of
the loading vectors between

two subgroups of 1,000 pairs of
CCAs corresponding to brain
imaging measures and those
corresponding to subject
measures, respectively. The
abscissa of all subgraphs
represents the dimensionality of
imaging measures (i.e., the
number of kept PCs, ranging
from 50 to 450 with a step of
50) and the corresponding SVR
(i.e., the ratio of the sample size
to the dimensionality of the
imaging measures, ranging from
9.36 to 1.04). The subject
overlapping rates between two
subgroups of each pair (ranging
from 0 to 450 with a step of 50)
are color coded. In all bar plots,
the height of the bars indicates
the mean and the error bars
indicate the SD. IM, brain
imaging measures; SM, subject
measures
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from ~0.82 to ~0.64 for ReHo when there was no overlap between

paired subgroups for the dimensionality of 50 (Figures 4a and 5a).

Similar to before, we also found that the values of CCCs increased

with the increase of the data dimensionality and reached 1 when the

data dimensionality reached 400 for both GMV and ReHo.

We found that, after removing the three subject measures,

although many trends of how these stability measures change with

the subject overlapping rate and with the data dimensionality

remained the same, several differences between the two sets of

results (Figures 4, 5, S5, and S6 vs. Figures 2, 3, S2, and S3) are also

clearly noticeable. First, the absolute differences of CCCs between

paired subgroups and their corresponding variances (across the 1,000

pairs) were generally larger in the “moderate correlation” scenario

(Figures 4b and 5b) than those in the “strong correlation” scenario

(Figures 2b and 3b)—taking the GMV results under the condition of

the overlapping rate of 0 with a dimensionality of 50 as an example,

the mean of the absolute differences was ~0.008 and ranged from

0 to 0.04 in the “strong correlation” scenario (Figure 3b) whereas the

mean of the absolute differences was about 25 times larger (~0.02,

ranging from 0 to 0.09) in the “moderate correlation” scenario

F IGURE 5 The results of
CCA stability assessments using
the Tianjin data set in the “main
procedure” with 75 subject
measures (i.e., the “moderate
correlation” scenario) when there
are no overlapping subjects
between the two subgroups of
1,000 pairs of CCAs. Panel
(a) shows the magnitudes of
CCCs obtained from 2,000 CCAs
for all data dimensionalities. Panel
(b) shows the absolute
differences in CCCs of 1,000
pairs of CCA (lower part) and the
consistency of the statistical
significance of CCCs between
two subgroups of 1,000 pairs of

CCAs (upper part). Panels (c) and
(d) show the correlation
coefficients of the loading
vectors between two subgroups
of 1,000 pairs of CCAs
corresponding to brain imaging
measures and those
corresponding to subject
measures, respectively. The
abscissa of all subgraphs
represents the dimensionality of
imaging measures (i.e., the
number of kept PCs, ranging from
50 to 450 with a step of 50) and
the corresponding SVR (i.e., the
ratio of the sample size to the
dimensionality of the imaging
measures, ranging from 9.36 to
1.04). In all smoothed violin plots,
the sample median (black dotted
line) and quartiles (white dotted
line) are superimposed. IM, brain
imaging measures; SM, subject
measures
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(Figure 5b). Second, in contrast with the results in the “strong correla-

tion” scenario showing that CCCs were consistently significant for

lower dimensionalities ranging from 50 to 300 and their significance

only started to become inconsistent when the dimensionality

increased to 350 (i.e., SVR = 1.33), CCC's significance was inconsis-

tent even for the lowest dimensionality (i.e., dimensionality = 50,

SVR = 9.36) for both GMV and ReHo in the “moderate correlation”
scenario (Figure 4c). To test whether the observed inconsistency of

CCC significance was caused by nonoptimal estimation of null distri-

butions due to a relatively small number of permutations (n = 100),

we repeated the same analyses for GMV using 10,000 permutations.

We observed similar results, shown in Figure S7, indicating that incon-

sistent significance of CCCs could still exist for a very large number of

permutations. Third, in contrast with the results in the “strong correla-

tion” scenario showing that the correlations between loading vectors

were generally high when the dimensionality was less than 400 (i.e.,

SVR = 1.17), the correlation between loading vectors became much

weaker with a much larger variance in the “moderate correlation” sce-
nario (Figures 4d,e and 5c,d)—taking the loadings of GMV under the

condition of the overlapping rate of 0 with a dimensionality of 50 as

an example, the mean of the correlation coefficients was ~0.84 and

ranged from 0.79 to 0.86 in the “strong correlation” scenario

(Figure 3c) whereas the mean of the correlation coefficients was

~0.32 and ranged from 0 to 0.62 in the “moderate correlation”
scenario (Figure 5c). Fourth, for both brain imaging measures and sub-

ject measures, the loadings were less stable (i.e., larger mean and vari-

ance of the differences in loadings between paired subgroups across

the 1,000 pairs) especially for the variables with relatively large load-

ings for all data dimensionalities in the “moderate correlation” sce-

nario (Figures S5 and S6) compared with those in the “strong
correlation” scenario (Figures S2 and S3). Furthermore, in Additional

Analysis 1 for the "moderate correlation" scenario, no voxels showed

consistently significant loadings between paired subgroups, which is

also in contrast with the "strong correlation" scenario. To test

whether more stable results will be obtained if the dimensionality of

the imaging measures was further reduced, four extra dimensionalities

(10, 20, 30, and 40) of the imaging data were tested and the

corresponding results are shown in Figures S8-S10. We found that

the CCA results were still instable even for these extremely low

dimensionalities.

3.3 | Validation using HCP data set

All the above analyses were repeated using the HCP data set in a

“strong correlation” scenario as well as a “moderate correlation” sce-

nario (only GMV was used because very similar stability assessment

results were observed for GMV and ReHo when using Tianjin data

set). When using all subject measures, we observed very similar

results with those obtained using Tianjin data set in the “strong corre-

lation” scenario (Figures 6 and 7, left column; Figure S11): (a) there

was a strong correlation between brain imaging measures and subject

measures (all mean CCCs > 0.85 for GMV) and the CCC magnitudes

gradually increased with the increase of the data dimensionality

(Figures 6a and 7a, left column); (b) the absolute differences in CCCs

between two randomly sampled subgroups, along with their variances,

were very small (Figures 6b and 7b, left column); (c) for all subject

overlapping rates, the CCCs were consistently significant for data

dimensionalities ranging from 35 to 210 and were consistently insig-

nificant when data dimensionality increased to 315 but the inconsis-

tency of the statistical significance appeared when the data

dimensionality increased to 245 (Figure 6c, left column); (d) for both

brain imaging measures and subject measures, the correlation coeffi-

cients between loading vectors for all subject overlapping rates were

generally high (> 0.6) when the data dimensionality was less than

245 but clearly decreased, along with increased variance, when the

dimensionality further increased (i.e., ≥ 245) (Figures 6d,e and 7c,d,

left column). Then, we also created a “moderate correlation” scenario
for the HCP data set by only retaining 246 subject measures with

loadings less than 0.2 in the “strong correlation” scenario, as did with

Tianjin data set. We found that the CCCs decreased clearly (~0.68 for

the overlapping rate of 0 and dimensionality of 35; Figures 6a and 7a,

right column), and the stability of the CCA results was also dropped

clearly (Figures 6b–e and 7b–d, right column; Figure S12): (a) the

absolute differences of CCCs between paired subgroups and their

corresponding variances were generally larger (Figures 6b and 7b,

right column) than those in the “strong correlation” scenario

(Figures 6b and 7b, left column); (b) CCC's significance was inconsis-

tent even for the lowest dimensionality (i.e., dimensionality = 35,

SVR = 10) (Figures 6c and 7b, right column); (c) the correlations

between loading vectors became much weaker with a much larger

variance (Figures 6d-e and 7c-d, right column).

3.4 | Stability assessment using the control
procedure

When controlling for the possible contribution of PC inconsistency to

the CCA stability assessment in the “control procedure” using Tianjin

data set, we found almost identical results in the “strong correlation”
scenario (Figures S13-S16, as compared with Figures 2, 3, S2, and S3).

Removing the three subject measures with the highest loadings

(i.e., gender, height and weight) resulted in a moderate correlation

(Figures S17A and S18A), and the results of the CCA stability assess-

ments (Figures S17-S20) were very similar (i.e., generally instable) with

those obtained in the “moderate correlation” scenario in the “main

procedure,” although a few differences were also noticeable. For

example, for GMV, the consistency rate of the statistical significance

of CCCs and the correlation between loading vectors increased in the

“control procedure” for the dimensionality of 50. For ReHo, the con-

sistency rate of the statistical significance of CCCs and the correlation

between loading vectors decreased in the “control procedure” for the
dimensionality of 50. To test whether more stable results could be

obtained if the dimensionality was further reduced in the “control
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procedure,” four extra dimensionalities (10, 20, 30, and 40) of the

imaging data were also tested and the corresponding results are

shown in Figures S21-S23. We found that the CCA results were still

instable even for these extremely low dimensionalities, which was

very similar to what we observed in the “main procedure.”

4 | DISCUSSION

Despite the growing popularity of CCA in neuroimaging studies to

investigate the relationship between brain and behavior in humans,

the stability of the results in such applications has not yet been fully

F IGURE 6 The results of
CCA stability assessments using
the HCP data set in the “main
procedure” with 290 subject
measures (i.e., the “strong
correlation” scenario; the left
column) and with 246 subject
measures (i.e., the “moderate
correlation” scenario; the right

column). Panel (a) shows the
magnitudes of CCCs obtained
from 2,000 CCAs for all
combinations of subject
overlapping rate and data
dimensionality. Panel (b) shows
the absolute differences in
CCCs of 1,000 pairs of CCA.
Panel (c) shows the consistency
of the statistical significance of
CCCs between two subgroups
of 1,000 pairs of CCAs. Panels
(d) and (e) show the correlation
coefficients of the loading
vectors between two subgroups
of 1,000 pairs of CCAs
corresponding to brain imaging
measures and those
corresponding to subject
measures, respectively. The
abscissa of all subgraphs
represents the dimensionality of
imaging measures (i.e., the
number of kept PCs, ranging
from 35 to 315 with a step of
35) and the corresponding SVR
(i.e., the ratio of the sample size
to the dimensionality of the
imaging measures, ranging from
10.0 to 1.11). The subject
overlapping rates between two
subgroups of each pair (ranging
from 0 to 315 with a step of 35)
are color coded. In all bar plots,

the height of the bars indicates
the mean and the error bars
indicate the SD. IM, brain
imaging measures; SM, subject
measures
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characterized. In the present study, we examined how similar the CCA

results were between subgroups of subjects randomly sampled from a

large homogeneous data set (n = 936) when changing data dimension-

ality, correlation strength between brain imaging measures and sub-

ject measures, and subject overlapping rate. The stability of the CCA

results was assessed systematically from three aspects: the similarity

of the first-mode CCC (Assessment 1), the consistency of the

corresponding statistical significance (Assessment 2) and the similarity

of the first-mode canonical variables (Assessment 3) between paired

subgroups. Importantly, we repeated all analyses using two different

brain imaging measures (i.e., a structural measure GMV and a func-

tional measure ReHo) and also in a second independent data set

(n = 700) to validate the results. We observed similar results using

structural (i.e., GMV) and functional (i.e., ReHo) imaging measures in

two independent data sets, with and without the possible confound

of PC inconsistency. The main findings are summarized as follows.

First, both the data dimensionality (i.e., the SVR) and the correlation

strength between brain imaging measures and subject measures affect

the CCA stability considerably—the stability of CCA results decreased

with the increase of data dimensionality and with the decrease of the

F IGURE 7 The results of
CCA stability assessments using
the HCP data set in the “main
procedure” with 290 subject
measures (i.e., the “strong
correlation” scenario; the left
column) and with 246 subject
measures (i.e., the “moderate
correlation” scenario; the right

column) when there are no
overlapping subjects between the
two subgroups of 1,000 pairs of
CCAs. Panel (a) shows the
magnitudes of CCCs obtained
from 2,000 CCAs for all data
dimensionality. Panel (b) shows
the absolute differences in CCCs
of 1,000 pairs of CCAs (lower
part) and the consistency of the
statistical significance of CCCs
between two subgroups of 1,000
pairs of CCAs (upper part). Panels
(c) and (d) show the correlation
coefficients of the loading
vectors between two subgroups
of 1,000 pairs of CCAs
corresponding to brain imaging
measures and those
corresponding to subject
measures, respectively. The
abscissa of all subgraphs
represents the dimensionality of
imaging measures (i.e., the
number of kept PCs, ranging from
35 to 315 with a step of 35) and
the corresponding SVR (i.e., the
ratio of the sample size to the
dimensionality of the imaging
measures, ranging from 10.0 to
1.11). In all smoothed violin plots,
the sample median (black dotted
line) and quartiles (white dotted
line) are superimposed. IM, brain

imaging measures; SM, subject
measures
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correlation strength between the two sets of measures. Specifically,

when the correlation strength was strong (Tianjin data set: ~0.89 for

GMV and ~ 0.82 for ReHo at a SVR of 9.36; HCP data set: ~0.85 for

GMV at a SVR of 10), the CCA results were generally stable as long as

the data dimensionality was considerably below the sample size

(Tianjin data set: SVR > 468/350 = 1.34 for GMV and SVR > 468/

300 = 1.56 for ReHo; HCP data set: SVR > 350/245 = 1.43); how-

ever, the stability of CCA results cannot be guaranteed if the correla-

tion between the two sets of variables was only moderate (Tianjin

data set: ~0.65 for GMV and ~0.64 for ReHo at a SVR of 9.36;

HCP data set: ~0.68 for GMV at a SVR of 10) even for a very high

SVR (> 10: 468/40 = 11.7, 468/30 = 15.6, 468/20 = 23.4, 468/10 =

46.8)—in our case, for a sample size of 468 of Tianjin Data set, the

CCA results were still instable when the dimensionality of imaging

measures was no higher than 50 with the dimensionality of subject

measures being fixed to 50. In other words, the CCA results are

expected to be stable only when the SVR is high and, at the same

time, the correlation between the investigated brain imaging measures

and subject measures is strong. Second, if the above stability require-

ments (i.e., high SVR and strong correlation strength) were not met,

even just a slight change of subjects in the data to be analyzed could

change the CCA results greatly; that was, for an insufficient SVR or a

moderate correlation, the CCA results could still be instable even if

the subjects in the two subgroups were highly overlapped

(e.g., Tianjin data set: 450 of 468 subjects were identical, see the

upper row of Figure 4c; HCP data set: 315 out of 350 subjects were

identical, see the upper row of the right column in Figure 6c). Third,

the CCC, as expected, gradually increased with the dimensionality in

all analyses, highlighting the fact that the absolute magnitude of CCC

does not unbiasedly reflect the actual relationship between brain

imaging measures and subject measures especially when the SVR

is low.

4.1 | The stability of CCA results is affected by the
SVR and the correlation strength between two sets of
variables

We found that the stability of CCA results changed mainly as a func-

tion of the SVR (i.e., the data dimensionality when the sample size is

fixed) and the correlation strength between the two sets of variables

of interest (here, the brain imaging measures and the subject

measures).

Regarding the correlation strength between brain imaging mea-

sures and subject measures, we found that CCA results were generally

stable (i.e., small differences in CCC, consistent statistical significance

and strong correlation between loading vectors) for a range of higher

SVRs (Tianjin data set: SVR > 1.34 for GMV and SVR > 1.56 for ReHo;

HCP data set: SVR > 1.43) if there was a strong correlation between

the two sets of variables (Tianjin data set: ~0.89 for GMV and ~0.82

for ReHo at a SVR of 9.36; HCP data set: ~0.85 for GMV at a SVR of

10) but became clearly instable (i.e., inconsistent statistical signifi-

cance and/or weak correlation between loading vectors) even for very

high SVRs (i.e., >10) if there was only a moderate correlation between

the two sets of variables. This result was observed for all subject over-

lapping rates (even for the highest subject overlapping rate, that is,

450 of 468 subjects were identical between two subgroups in Tianjin

data set; 315 of 350 subjects were identical between two subgroups

in HCP data set), for both the structural imaging measures (i.e., GMV)

and the functional imaging measures (ReHo), and in both data sets,

indicating that CCA is recommended only when a strong relationship

between the two sets of variables is expected. This finding is particu-

larly important as the influence of the correlation strength on the sta-

bility of CCA results has been largely overlooked in previous studies.

Indeed, many previous studies reported moderate CCCs—for example,

0.43 for a SVR of 8 (Lin et al., 2018) and 0.54 for a SVR of 9.97

(Rodrigue et al., 2018), or strong CCCs but at a relatively low SVR—for

example, 0.87 for a SVR of 3.64 (Will et al., 2017) and 0.87 for a SVR

of 4.61 (Smith et al., 2015), and the stability of their results may need

to be reevaluated.

Regarding the SVR, we found that the stability of CCA results

decreased with the increase of the SVR. This is expected and con-

firmed in both the “strong correlation” scenario and the “moderate

correlation” scenario, for all subject overlapping rates, for both struc-

tural (i.e., GMV) and functional imaging measures (ReHo), and in both

data sets. This result is also consistent with the previous findings

obtained based on simulated data showing that the power of CCA to

detect a significant canonical correlation decreased as the SVR

decreased (Mendoza, Markos, & Gonter, 1978; Naylor, Lin, Weiss,

Raby, & Lange, 2010). This issue is also known as the “curse of dimen-

sionality” and manifested as an over-fitting problem in this case where

any direction can be fitted in at least one set of variables, resulting in

a perfect canonical correlation between two sets of variables, when

the number of variables is equal to or greater than the number of sub-

jects. Therefore, for a given sample size (in practice, the available

number of subjects is also the limiting factor), the number of variables

which can be included in the CCA should be well below the sample

size. Having said this, it is also problematic if the dimensionality is too

low. For neuroimaging studies, the original dimensionality of the brain

imaging data is usually the number of voxels (or connections) of inter-

est and thus is far more than the number of subjects. Therefore, PCA

is usually a necessary step to reduce the dimensionality of the brain

imaging data before CCA. Consequently, the number of PCs that are

kept determines the dimensionality of the brain imaging data. Obvi-

ously, if too few PCs are kept, they cannot represent well the original

brain imaging data and thus the resultant CCC may not truthfully

reflect the relationship between the brain imaging data and the

behavioral data either. Therefore, the number of PCs that are kept for

CCA should be as large as possible while maintaining the stability of

the CCA results. For the two data sets used in the present study, in the

“strong correlation” scenario, the CCA results remained stable for a

wide range of relatively low dimensionalities and then became instable

as the dimensionality further increased—as shown in Figures 2c,d and

3b–d and Figures 6c–e and 7b–d (left column), when the number of PCs

in the set of brain imaging measures increased to 400 (i.e.,

SVR > 468/350 = 1.34) for GMV, to 350 (SVR > 468/300 = 1.56) for
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ReHo when using Tianjin data set and to 280 (SVR > 350/245 = 1.43)

for GMV when using HCP data set, the CCA results became clearly

instable, manifested as a clear reduction of the correlation coefficients

between loading vectors and the appearance of inconsistent statistical

significance. In contrast, in the “moderate correlation” scenario of two

data sets, stable results were observed in none of these analyses. In

practice, the number of PCs is usually determined by a predefined

percentage of the variance of the original data that can be explained

by how many PCs (i.e., if the predefined percentage of variance to be

explained is 85% and 100 PCs explain greater than 85% but 99 PCs

explain less than 85% of the original variance, 100 PCs will be kept

for CCA). Our results suggest that both the proportion of the original

variance explained and the SVR should be considered when determin-

ing how many PCs should be kept for CCA. The priority should be put

on the stability of CCA results—if the number of PCs that are required

for explaining at least 85% of the original variance is too large

to ensure a stable CCA result, the stability of CCA results must

be considered first and the representability of the PCs has to be

compromised.

We also noticed that instable results could still occur even when

the subjects included in two subgroups were mostly overlapped: even

for the largest overlapping rate (i.e., 450 of 468 subjects were identi-

cal and only 16 subjects were different, that is, over 96% overlapping

between two subgroups in Tianjin data set; 315 of 350 subjects were

identical and only 35 subjects were different, that is, 90% overlapping

between two subgroups in HCP data set), the CCA results were still

instable—inconsistent statistical significance and/or very low correla-

tion coefficients between loading vectors when the dimensionality

was high (e.g., Figures 2c–e and 3b–d, 4c–e and 5b–d, 6c–e and 7b–

d) or when the actual correlation between brain imaging measures

and subject measures was only moderate (e.g., Figures 4c–e and 5b–

d, the right column of Figures 6c–e and 7b–d). This observation sug-

gests that, if the stability requirements were not met (i.e., insufficient

SVR or correlation strength), even just a slight change of subjects in

the data set to be analyzed could change greatly the CCA results.

In addition to the above assessments of CCA stability which were

based on the similarity of the CCA results obtained from two indepen-

dent CCAs performed in two subgroups, we also assessed the CCA

stability using a different strategy—we directly applied the canonical

weights (i.e., the transformation vectors A1/B1, see Methods section)

obtained from a discovery data to a held-out data and tested whether

the statistical significance of the correlation between the resultant

pseudocanonical variables of the held-out data were consistent with

that of the discovery data. The detailed analysis procedure is provided

in the Supplemental Methods (Additional Analysis 2) and the detailed

results are shown in Figure S24. In brief, after removing the effects of

PC inconsistency between the discovery data and the held-out data,

the results of this test confirmed again that the CCA results were sta-

ble only when the SVR was sufficiently high and the canonical correla-

tion was sufficiently strong. Our results also showed that the CCA

results (i.e., the resultant CCCs and their statistical significance)

obtained from the discovery data and the held-out data were highly

inconsistent even for high SVRs in the “strong correlation” scenario if

the PCA were performed separately in each subgroup, suggesting

that, when applying identical canonical weights to the discovery data

and the held-out data, the inconsistency between the PCs obtained

separately from the two data sets (i.e., two groups of subjects) could

also be a major source of the instability of CCA results.

Furthermore, it is worth mentioning that, although only the first

CCA mode was tested in the present study to avoid excessively compli-

cated analyses, it seems reasonable to infer that the stability of the

subsequent CCA modes (i.e., U2/V2, U3/V3, etc.) would be consider-

ably worse based on the current results—the stability of CCA results is

strongly dependent on the correlation strength. Indeed, the CCCs of

the second or the third mode would be smaller than that of the first

mode by design (i.e., CCC1 > CCC2 > CCC3), and thus all subsequent

pairs of canonical variables are less likely to be stable compared with

the first pair. Similarly, we did not include a “weak correlation” scenario
in the present study because it is expected that the CCA results would

be instable when the two sets of variables are only weakly correlated.

4.2 | CCA does not offer a truthful measure of the
correlation between brain imaging data and
behavioral data

Although CCC, as designed, can measure the correlation between two

sets of variables to some degree as confirmed by the reduction of CCC

magnitude after removing three subject measures which had strong cor-

relations with brain imaging measures, our results also highlight the fact

that the CCC should not be regarded as a truthful measurement of the

relationship between brain imaging data and subject data. Indeed, our

results clearly showed that the magnitude of CCC always increased with

the data dimensionality and it was always relative to a particular SVR.

This is theoretically well established—as mentioned before, the first-

mode CCC is the maximal correlation of linear combinations of variables

between two sets of variables, and thus the first-mode CCC will inevita-

bly reach 1 when the number of variables reaches the number of sub-

jects resulting in a full-rank space (i.e., the set of variables with a full rank

can compose any direction in alignment with a particular direction identi-

fied in the other set of variables). Therefore, the CCC alone is not

interpretable—the CCC should always be considered and reported

together with the corresponding SVR. However, this issue is sometimes

overlooked in previous studies where CCCs were interpreted as strong

or weak without considering the SVRs (Davis et al., 2011; Kottaram

et al., 2019; Lin et al., 2018; Rodrigue et al., 2018; Smith et al., 2015; Will

et al., 2017). Our results suggest that the absolute magnitudes of CCCs

should be interpreted with extra caution and are not directly comparable

between different studies without properly considering the SVR.

4.3 | Guidelines for applying CCA in neuroimaging
studies to investigate the brain-behavior relationship

Based on the findings discussed above, we provide the following

guidelines if one plans to apply CCA in neuroimaging studies to
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investigate the relationship between brain imaging measures and sub-

ject measures:

• The stability of CCA results is not guaranteed and thus CCA is not

recommended if the correlation between brain imaging measures

and subject measures is not expected to be strong. In practice, we

recommend to take the SVR of 9 as a reference by selecting the

appropriate number of PCs for a given sample size and then check

the corresponding CCC—if the resultant CCC is less than 0.65, the

stability of the CCA results cannot be guaranteed.

• If the above step suggests a strong correlation between brain imag-

ing measures and subject measures (i.e., CCC > 0.8 when SVR = 9),

the number of variables (i.e., the dimensionality) in each variable

set should not be higher than two thirds (or even half, to be safer)

of the sample size as the stability of the CCA results is not

guaranteed otherwise. In practice, for a given sample size, if the

number of the original variables does not meet this criterion, it is

recommended to perform PCA on the original variable set and

select the appropriate number of PCs which can explain as much

original variance as possible.

• The SVR (or equivalent information such as the dimensionality of

each data set and the sample size) should be reported alongside

with the CCC. Interpreting the magnitude of CCC as an absolute

measure of the correlation between brain imaging measures and

subject measures should be avoided.

4.4 | Limitations

There are several limitations to the present study. First, our assess-

ment of the stability of CCA results was only focused on the first

mode to avoid excessively complicated analyses and also because it is

the most important and the most commonly reported results in CCA

studies. Although it is plausible to expect that the same principles of

CCA stability obtained from the first mode described above should

also apply to other modes, confirmation is needed in future studies.

Second, in order to reduce the computational load—one CCA need to

be performed for each of the 2,000 subgroups (i.e., 1,000 pairs of sub-

groups) for each of the 720 combinations (9 SVRs × 10 subject over-

lapping rates × 2 types of brain imaging measures [i.e., GMV and

ReHo] × 2 correlation strengths scenarios × 2 procedures [i.e., main

procedure and control procedure] = 720), leading to 1.44 × 106 CCAs

in total for just the Tianjin data set, our assessment of the statistical

significance of each first-mode CCC was determined by a relatively

small number of permutation tests (n = 100). Although it is unlikely

that the observed instable results in the “moderate correlation” sce-

nario were due to a low number of permutations as similar results

were obtained even using a much larger number of permutations

(n = 10,000; Figure S7), a higher number of permutations (n > 1,000)

is recommended in a real CCA application. Third, a few modified ver-

sions of the classical CCA, such as kernel CCA (Hardoon et al., 2004)

and sparse CCA (Witten, Tibshirani, & Hastie, 2009), have been pro-

posed. Specifically, Kernel CCA is designed to capture the complicated

nonlinear relationship between two sets of variables by mapping the

original feature space into a new feature space through a predefined

kernel function. Sparse CCA induces sparsity on canonical coefficients

by imposing the L1-norm penalty and therefore it can be used to deal

with high-dimensional variables. Future work is needed to test

whether they behave differently in terms of stability in applications in

neuroimaging studies.

5 | CONCLUSIONS

Although CCA is a promising multivariate approach which holds many

advantages in exploring the relationship between the human brain

and behavior, CCA cannot be used without restriction. The results of

our systematic investigation of CCA stability in the context of neuro-

imaging, replicated in both structural and functional imaging measures

and in two independent data sets, showed that two requirements

need to be met at the same time to ensure the stability of CCA

results: a sufficiently high SVR and a sufficiently strong correlation

between the investigated brain imaging measures and subject mea-

sures. Importantly, we characterized the CCA stability quantitatively

from three aspects using a series of SVRs in different correlation

strength scenarios and provided a guideline for proper applications of

CCA in neuroimaging studies based on our findings.
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