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Abstract: Analysis of the function, structure, and intracellular organization of mitochondria is
important for elucidating energy metabolism and intracellular energy transfer. In addition, basic
and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human
diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative
diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be
noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in
permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby
compromising interpretations of experimental and clinical data. These differences are explained
by the existence of the mitochondrial network, which possesses multiple interactions between the
cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria
and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial
metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ
without their isolation from the natural cellular environment. This review summarizes previous
studies and discusses existing approaches and methods for the analysis of mitochondrial function,
structure, and intracellular organization in situ.

Keywords: cardiac mitochondria; mitochondrial respiratory function; confocal fluorescent imaging;
mitochondrial intracellular organization; heterogeneity; oxidative phosphorylation; reactive oxygen
species; mitochondrial swelling

1. Introduction

Mitochondria are involved in numerous metabolic pathways [1–7] and produce a
major portion of intracellular ATP through the electron transport chain (ETC) in some
cells, coupled with oxidative phosphorylation; they provide over 90% of cellular ATP
in high oxygen consuming organs such as the heart, liver, and brain. Mitochondria are
composed of two separate and functionally different membranes, the outer mitochondrial
membrane (OMM) and the inner mitochondrial membrane (IMM), with the intermembrane
space between them and the internal space known as the matrix enclosed by the IMM [6].
These organelles contain the circular genome, mitochondrial DNA (mtDNA), which was
reduced in size during evolution through deletions or point mutations and its transfer to
the nucleus. The size, shape, and number of mitochondria vary in different cell types. Cells
contain independent and/or interconnected mitochondria, which create the subcellular
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mitochondrial network. In addition to ATP production, mitochondria also participate in
other aspects of cell metabolism and physiology, such as the regulation of ion homeostasis,
particularly intracellular Ca2+, fatty acid and cholesterol metabolism, redox status, cell sur-
vival, and cell death mechanisms [2,4,8–14]. Mitochondria bioenergetics and intracellular
energy transfer are involved in the pathogenesis of numerous metabolic and hereditary
diseases, including cardiovascular and neurodegenerative diseases, diabetes, cancer, and
aging [15–27]. Mitochondria are the major source of reactive oxygen species (ROS) that,
at low concentrations, participate in cellular signalling mechanisms whereas, at high con-
centrations, cause oxidative stress and cell death [22–28]. Notably, energy metabolism and
crosstalk between cytoplasmic and mitochondrial ATP production are markedly different
in cancer cells compared to non-cancer cells in terms of adaptation to environmental condi-
tions. Therefore, a multifaceted and comprehensive analysis of mitochondrial function and
morphology is important for the precise estimation of cell physiology and pathophysiology.
In the following sections, we will discuss the biochemical and biophysical approaches that
are currently applied to analyze the function and structural organization of mitochondria
in situ or in vivo using techniques that do not require isolation of the organelles.

2. Advantages of Using Intact Cells or In Situ Approaches for Mitochondria Research

Mitochondrial oxygen consumption rates can be determined using a traditional Clark
electrode in isolated mitochondria [29–33] in vitro and non-isolated mitochondria of intact
permeabilized cells or muscle fibers in situ [6,34–37]). In addition, cytometry, capillary
electrophoresis, patch-clamping, and optical trapping were used for the analysis of mito-
chondria [32]. Analysis of mitochondria in muscle biopsies remains an important initial
screening procedure for the potential presence of metabolic diseases in humans. The
changes in the mitochondrial structure, dynamics, organization, interaction with other
cell systems, and several functional properties, such as redox state, mitochondrial ROS
(mtROS), biogenesis, etc., can be analyzed with a confocal fluorescent imaging approach
using TMRM or flavoproteins fluorescence (Figure 1) in situ or in vivo [6,38–40].
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Figure 1. Regular arrangements of mitochondria in: (A) rat cardiomyocytes loaded with 0.1 µM
tetramethylrhodamine methyl ester (TMRM), 30 min incubation of cells at room temperature (543 nm
laser excitation); (B) rat skeletal (quadriceps) muscles (flavoproteins autofluorescence, 488 nm laser
excitation). A portion of the figure was reprinted with permission from ref [38,39]. Copyright
2006 Elsevier.

Figure 2 compares imaging of mitochondria in skeletal muscles performed by ultra-
high-resolution scanning electron microscopy [41] to the specific fluorescent mitochondrial
Ca2+ probe Rhod-2 [39]. These two images bear several similarities in terms of mito-
chondrial shapes, intracellular positions, and organization of these organelles in muscles,
including numerous inter-mitochondrial contacts and clusters of the subsarcolemmal mi-
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tochondrial subpopulation. The major difference is that for electron microscopy, muscles
were always fixed. In contrast, muscles for fluorescent imaging were not fixed and mito-
chondria were functional, thereby preserving their capacity for dynamics and accessibility
for various experimental manipulations.
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Figure 2. Mitochondrial intracellular arrangement in skeletal muscles, visualized by ultra-high-
resolution scanning electron microscopy and in muscles loaded (60 min, room temperature) with
5 µM of the specific fluorescent mitochondrial Ca2+ probe Rhod-2AM. Reprinted with permission
from ref [41,42]. Copyright 2006 Elsevier. Rhod-2 has a net positive charge, thereby allowing for its
specific accumulation in mitochondria. Reprinted with permission from ref [41]. Copyright 2006
Elsevier. Fluorescence was measured using 543 nm for excitation (helium-neon laser) and greater than
580 nm for emission. Note: A portion of the figure was reprinted with permission from ref [39,43].
Copyright 2006 Elsevier.

A specific protocol was developed for the analysis of functional mitochondria in situ,
without isolation of organelles, in selectively permeabilized cells or muscle fibers using
digitonin or saponin, which only permeabilize the plasma membrane, thereby leaving
mitochondrial membranes intact [6,33–36]. Digitonin and saponin specifically interact
and solubilize cholesterol in the plasma membrane and thus permeabilize the membrane,
leading to the formation of non-selective pores. The plasma membrane contains high
cholesterol amounts, whereas the membranes of the sarco/endoplasmic reticulum or
mitochondria have considerably lower cholesterol contents. Based on these differences,
chemical permeabilizing agents, such as saponin, digitonin, filipin, solanine, tomatine,
or alamethicin, selectively permeabilize the cells or muscle fibers [6,44–51], leaving the
intracellular membranes of the mitochondria, sarco/endoplasmic reticulum, myofilaments,
and cytoskeleton intact, and equilibrating the intracellular spaces with incubation medium.
Therefore, the cell permeabilization technique provides a unique possibility to analyze
human biopsies or genetically modified animals and can be used in basic research as well
as for the diagnosis of various human diseases in clinically oriented studies.

Enzymatic assays of individual respiratory (ETC) complexes or other mitochondrial
enzymes are widely used for the estimation of mitochondrial function under physiolog-
ical and pathological conditions [52–54]. However, this method has been shown to be
insufficient for the accomplished analysis of mitochondrial function and injury since all
enzymes and their complexes interact with each other. Hence, oxidative phosphoryla-
tion should be investigated in intact mitochondria [32,55,56] through the measurement of
oxygen consumption [57,58]. Standard procedures of organelle isolation based on differ-
ential centrifugation of tissue or cell homogenates allow for a precise characterization of
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functional properties of mitochondria in vitro [32]. Although remarkable knowledge has
been gained using isolated mitochondria, this technique has several serious limitations:
(i) it requires relatively large amounts of tissues or cells; (ii) mitochondria are frequently
damaged by the isolation (several centrifugations and washings) procedure [59,60]; and (iii)
mitochondria isolated from cells and tissues lack their essential intracellular environment.
The isolation procedure has been shown to result in changes to mitochondrial morphol-
ogy, sensitization to permeability transition pore (PTP) opening, changes in respiratory
mitochondrial function, and increased mitochondrial ROS production [6,59,60]. Moreover,
mitochondrial networks and all contacts of mitochondria within the sarco/endoplasmic
reticulum and cytoskeleton are disrupted during isolation, which significantly affects their
structural organization, metabolism, and physiology.

Cells are highly organized units with multiple and multifaceted functional and struc-
tural interactions between various subcellular systems. A large number of studies provide
strong evidence that elucidating individual organelles alone is not sufficient, and systemic
approaches must be applied for a better understanding of cell physiology, crosstalk between
organelles, and cellular signaling pathways. Since mitochondria actively interact with the
cytoskeleton and sarco/endoplasmic reticulum [8,12,61–65], the interaction between mi-
tochondria and cytoskeletal proteins (plectin and tubulin beta II) and their connections
beyond the voltage-dependent anion channel (VDAC) can be studied only in vivo or in
situ. These interconnections are ultimately involved in the regulation of mitochondrial
function and can be studied using combinations of several modern techniques. Several
cytoskeletal elements play a vital role in the structural and functional organization of
mitochondria, including mitochondrial morphology, dynamics, motility, and mitosis. In
the heart, mitochondrial bioenergetics and oxygen consumption are linearly dependent
on the cardiac contractile activity [66,67] and rather stable concentration of ADP, a reg-
ulator of mitochondrial respiration. The apparent Michaelis constant (appKm) for ADP
is an important parameter for mitochondrial respiration; it indicates the affinity of mi-
tochondrial respiration to ADP (response to ADP), thereby reflecting the permeability
state of the OMM [63,68] that is calculated from the respiratory ADP kinetics. A high re-
sponse to ADP (low appKm, about 10–30 µM) has been obtained for isolated mitochondria
in vitro [58,59]. Interestingly, measurements of mitochondrial respiration in situ (e.g., in
permeabilized cells) showed more than 10-fold higher (200–350 µM) appKm ADP values,
demonstrating that their interaction with cytoskeletal proteins (plectin, tubulin beta II)
could be essential for the permeability of the OMM and, therefore, for the regulation of
mitochondrial respiratory function since the absence of certain cytoskeletal proteins leads to
low appKmADP [69,70]. To overcome the limitations associated with isolated mitochondria
and simultaneously maintain a similar high scope for experimental manipulations, a new
method for studying the function of intact or permeabilized cells, muscle fibers, or tissue
homogenates has been established [6,34–37,44–51]. This approach uses the capacity of
biological detergents (mostly digitonin and saponin) to specifically interact with the plasma
membrane cholesterol of cells or muscle fibers. In permeabilized cells or muscle fibers, the
organization, structure, and function of mitochondria and the cytoskeletal proteins remain
mostly intact [35–37]. The respiratory control ratio (state 3, after ADP addition)/(state
2, before ADP addition) in permeabilized muscle (e.g., quadriceps muscles) fibers can
be even higher than in carefully isolated mitochondria. Moreover, mitochondria become
fully accessible to specific substrates or inhibitors in these preparations and can be used
for the mitochondrial respiratory analysis while remaining connected to other cellular
systems. This is especially important considering recent evidence of enzymatic/metabolic
channeling enzyme redistribution and nucleotides (ADP/ATP) compartmentation in the
cell [63,71,72].

3. Analysis of ETC Complexes

A specifically designed substrate/inhibitor/uncoupler titration protocol is applied for
a step-by-step functional analysis of mitochondrial ETC complexes (I, II, III, IV) under in
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situ-like conditions. Notably, numerous studies using permeabilized muscle fibers or cells
confirmed that mitochondria are capable of utilizing various substrates (e.g., glutamate,
malate, pyruvate, succinate, TMPD/ascorbate) with a high sensitivity to specific inhibitors
of mitochondrial ETC complexes (rotenone, antimycin A, etc.), thereby demonstrating
functional intactness of well-coupled mitochondria [6,73–75]. In addition, the analysis of
β-oxidation of fatty acids or glutamine oxidation, medium- and long-chain acylcarnitines
may also be used for the measurements [6,76]. The uncoupled maximum respiration flux
can be induced by the addition of frequently used uncouplers such as CCCP or FCCP
to collapse the proton-motive force through the IMM and thus estimate the maximum
mitochondrial capacity. Since CCCP and FCCP are membrane-permeable agents, they can
be used in intact living cells without permeabilization to estimate cellular respiration under
uncoupled conditions and maximal mitochondrial capacity. CCCP and FCCP must be used
at optimal concentrations since they have inhibitory effects at extremely high concentrations.
Usually, the uncoupled control ratio (UCR) [73–75,77] in intact cells is in a range of 4.3–4.5.
Importantly, endogenous and uncoupled respirations were found to be linearly dependent
on the cell density in a range of 0.2–6.0 × 106 cells/mL. This mitochondrial uncoupling
has also been suggested for a cardioprotection strategy under oxidative stress, diabetes,
and ischemia-reperfusion injury [77,78]. In addition to respiratory parameters, analysis
of the mitochondrial membrane potential using different fluorescent potential-dependent
dyes (e.g., TMRM, JC-1) by FACS analysis and other techniques provides useful additional
information about mitochondrial function.

4. Cytochrome c Test for the Assessment of the Intactness of OMM

Cytochrome c is a soluble peripheral membrane protein localized in the intermembrane
space, which is only loosely bound to the IMM; this membrane facilitates the transport
of electrons to complex IV, whereas other cytochromes represent integral proteins. When
the OMM is intact, cytochrome c remains in the intermembrane space and the addition of
exogenous cytochrome c does not affect respiration. However, if the OMM is damaged, the
endogenous cytochrome c can be released from the IMS at physiological ionic strength. In
this case, the exogenous cytochrome c added to the experimental chamber will remarkably
stimulate the respiratory rates in permeabilized cells and muscle fibers [77]. After the
addition of a saturating concentration of cytochrome c, the maximal respiration downreg-
ulated by cytochrome c depletion can be restored. In particular, the cytochrome c test is
recommended to be performed in cases of multiple respiratory chain defects. The level of
cytochrome c in mitochondria and its release into the cytosol is estimated in studies that
elucidate the role of mitochondria in apoptosis [79].

5. Mitochondrial Creatine Kinase Coupling and Energy Transfer

Several isoforms of creatine kinases (CKs) are involved in cell energy metabolism
and intracellular energy transport, in particular, for the synthesis of phosphocreatine in
the intermembrane space by means of the mitochondrial isoform of CK (mi-CK). In the
heart and oxidative muscles, mi-CK is coupled with oxidative phosphorylation through the
ATP-ADP carrier under normal conditions [63,71,72]. Therefore, the addition of creatine
(creatine test) substantially increases mitochondrial respiration since mi-CK acts as an
ADP-regenerating system. Similarly, mitochondrial AMP kinase or hexokinase can be the
regenerating systems for ADP upon the addition of AMP or glucose [63,80]. Previous
studies showed that coupling of mi-CK is significantly hampered in cardiac pathologies,
such as ischemia-reperfusion injury or congestive heart failure [81]. Moreover, the mi-
CK system is highly sensitive to oxidative stress due to the oxidation of essential SH
groups [82]. Therefore, the mi-CK functional activity and coupling can be considered
a sensitive parameter for evidencing alterations in mitochondrial physiology and cell
bioenergetics and can be used as a diagnostic tool in cardiac injuries. The simple creatine
test allows for the rapid evaluation of the functional (coupling) state of this mitochondrial
enzyme in tissue biopsies. This test can be even more sensitive for the evaluation of
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the quality of permeabilized muscle fibers or cardiomyocyte preparations than simple
measurements of fluxes.

More recently, a microplate-based assay (Seahorse assay [83]) of oxygen consumption
rates was used for the assessment of cellular respiration (kinetics of oxygen concentration)
in intact cells. In particular, this approach was successively applied to the measurement
of respiration of non-permeabilized murine skeletal muscle cells [84–87]. The muscles
were not permeabilized or mechanically dissected and were enzymatically dissociated to
minimize manipulations that may affect the sample intactness prior to these measurements.
The technologies allow for the measurement of cellular oxygen consumption in muscle
fibers and various permeabilized or intact cells/tissues, thus estimating the cellular energy
and ions (e.g., protons) in cells with intact physiology.

It should be noted that mitochondria in vivo are morphologically and functionally
heterogeneous in cells [88,89], and this variety is thought to have important physiological
consequences. It has been suggested that different mitochondrial subsets may perform
diverse cellular functions depending on cellular demands [87]. Individual mitochondria
may have different membrane potentials, mitoCa2+, mtROS, sensitivities to mitochondrial
PTP induction, and even different motilities [90–92]. However, the precise mechanisms
underlying the development of mitochondrial heterogeneity remain unknown.

6. Mitochondrial Swelling and Calcium Retention Capacity

Changes in the matrix volume induced by ions, particularly Ca2+ and K+, play a
crucial role in the regulation of mitochondrial function and metabolism [93,94]. Modest
increases in the matrix volume stimulate mitochondrial bioenergetics and ATP produc-
tion [95,96], whereas excessive swelling of mitochondria due to sustained PTP opening
impairs mitochondrial function, leading to cell death [97,98]. Mitochondrial Ca2+ overload
accompanied by high mtROS levels is the main event that provokes PTP induction [99].
Due to the crucial role of mitochondria in human diseases [100], analysis of mitochondrial
swelling is important for the estimation of mitochondrial damage induced by various
pathological stimuli [101]. The Ca2+ retention capacity (CRC) represents the capability of
mitochondria to uptake maximum Ca2+ and, therefore, is used to quantify the extent of
PTP opening. Usually, the CRC is quantified in isolated mitochondria spectrophotomet-
rically (light scattering) or using different Ca2+-sensitive dyes. For example, along with
Ca2+-sensitive fluorescent dyes, arsenazo III, a non-membrane-permeant Ca2+-sensitive
dye [101–104], and Ca2+-sensitive electrodes [104,105] have been used to measure Ca2+

release/PTP opening in isolated mitochondria. Notably, the estimation of the CRC/PTP
opening in isolated mitochondria has several disadvantages [6,49,50].

The quantification of mitochondrial PTP/CRC in situ or in vivo was performed previ-
ously in cells and tissue samples. For example, mitochondrial PTP opening in the heart
in vivo was quantified by the [3 H] 2-deoxyglucose (3 H-DOG) entrapment technique with-
out isolation of mitochondria [106–108]. The isolated heart is perfused with 3 H-DOG,
which is converted to 3 H-DOG-6-phosphate in the cytoplasm and enters the mitochondria
through the PTP. The amount of 3 H-DOG-6-phosphate entrapped in mitochondria corre-
sponds to the extent of PTP opening [109–111]. Calcein-AM, a cell-permeant fluorescent
probe, is utilized to measure PTP/CRC in cells in situ, where Ca2+ release from mitochon-
dria through the PTP indicates the extent of pore opening [112–114]. The technique for
the measurement of PTP opening/CRC has certain disadvantages. In this approach, the
fluorescence intensity of calcein in the cytosol is quenched by Co2+, a heavy metal, which
exerts toxic effects on cells. Moreover, it is difficult to conclude whether calcein quenching
is associated with its release through PTPs, or whether Co2+ enters through the PTP and
quenches calcein in the matrix of mitochondria. In favor of this, cytosolic calcein has been
shown to exit from normal mitochondria and enter back after PTP opening [115]. It should
also be noted that calcein-AM is not cleaved in all cell types, such as hepatocytes [116].

In addition to mitochondrial bioenergetics, respiration rates, membrane potential,
mtROS, and ions, permeabilized cells were previously used to elucidate the CRC using
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different Ca2+-sensitive fluorescent probes [117,118]. As mentioned above, two biological
detergents (digitonin and saponin) are primarily used to permeabilize cells; digitonin dis-
rupts the plasmalemma by targeting lipid rafts, while saponins permeabilize it by selectively
removing cholesterol from the membranes without affecting membrane proteins [6,34].
Importantly, permeabilization does not affect the essential subcellular organization and the
structural and functional integrity of cellular organelles. We have recently shown that the
mitochondrial CRC measured by the Ca2+-sensitive fluorescence probe Calcium Green-5N
in saponin-permeabilized cardiomyocytes was significantly higher than in isolated mito-
chondria [118] (Figure 3). Furthermore, a comparative analysis of the permeabilization
capacity of saponin and digitonin revealed that saponin-permeabilized cardiomyocytes
exhibited a higher CRC than digitonin-permeabilized cells. This study, along with studies
from other groups, suggests that analysis of the CRC in saponin-permeabilized intact cells
has more advantages compared to the isolated mitochondria. Analysis of the CRC in perme-
abilized cells can be used in basic research as well as to diagnose different human diseases.
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Figure 3. Comparative analysis of mitochondrial CRC in isolated mitochondria in vitro and perme-
abilized cells in situ: (A) H9c2 cardiomyocytes permeabilized by saponin (50 and 100 µg/mL) or
digitonin (10, 50, and 100 µg/mL); (B) permeabilized H9c2 cardiomyocytes vs. isolated mitochondria
in the presence or absence of 1 µM thapsigargin (TG, a SERCA inhibitor). Ca2+ was added every
3 min (arrows) by increments of 1 nmol/injection. (Note: the figure was reprinted with permission
from ref [118]. Copyright 2006 Elsevier.)

7. Mitochondrial Fluorescent Confocal Imaging

Rhodamine 123 was the first fluorescent dye used in flow cytometry [119] and in mito-
chondrial imaging. As it is specifically and potential-driven concentrated in mitochondria
in living cells, rhodamine 123 was considered a useful probe for monitoring the abundance
of mitochondria. However, due to the relatively low resolution, its application in imaging
was limited. Applying techniques for autofluorescence and digital fluorescence imaging of
mitochondrial NAD(P)H, endogenous flavoproteins, and specific mitochondrial fluorescent
probes to permeabilized muscle fibers and cardiomyocytes (Figure 4) provided options for
more precise imaging [38,39,42,63,65,87,120].

It is noteworthy that the imaging approach enables not only the observation of mi-
tochondrial structure/morphology but also the ability to obtain information about the
general mitochondrial properties and functions. Since mitochondrial flavoproteins are
fluorescent in an oxidized state and NAD(P)H in a reduced state, it has been possible to
continuously monitor mitochondrial redox states. The addition of mitochondrial substrates,
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ADP, or potassium cyanide resulted in strong changes in the NAD redox system. The
intensities of fluorescent flavoproteins and NAD(P)H demonstrated inverse fluorescence
signal behavior (Figure 5).
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Importantly, flavoproteins and NADH fluorescence were fully co-localized with
MitoTrackerTM Green FM, an established fluorescent marker for mitochondria. It has
been shown that the ratio of the intensities of fluorescent flavoproteins and NAD(P)H
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is practically non-sensitive to any other types of fluorescence, thereby eliminating the
possible side effects of artificial fluorescent probes and can therefore be used as a sensitive
indicator of mitochondrial redox states. Using the imaging approach, the phenomenon of
mitochondrial heterogeneity has been established. For example, a much higher oxidative
state of subsarcolemmal as compared to intermyofibrillar mitochondria has been found [39].
The flavoprotein autofluorescence signals of these mitochondrial subpopulations were four
times different. The identification of the membrane potential and mtROS also revealed the
heterogeneity of pathologically altered mitochondria (e.g., after cold ischemia-reperfusion
and transplantation of rat hearts) [121]. Mitochondrial imaging, therefore, permits the
assessment of mitochondrial defects topology, which provides information about the molec-
ular mechanisms of cardiac cold ischemia-reperfusion injury. Similarly, flavoprotein redox
states and mitochondrial membrane potential heterogeneity have been demonstrated in
intact cardiomyocytes under conditions of substrate (glucose) deprivation [40]. This in-
cluded metabolic transients, well-coordinated redox transitions, and wave-like metabolic
propagation within one cell and even between cells. The mechanism may involve some
diffusible cytosolic messengers. Therefore, in addition to respirometry, fluorescence imag-
ing approaches can be used for the analysis of functional mitochondria in permeabilized
muscles and intact cardiac cells. Altogether, analysis of the mitochondrial structural organi-
zation, bioenergetics, and redox status using the aforementioned in situ techniques is useful
for the precise estimation of the cardioprotective and anti-aging effects of newly developed
mitochondria-targeted compounds [122–127]. Mitochondria-targeted antioxidants such as
SS-31, MitoQ, XJB-5-131, SkQ, CoQ10, SOD mimetics, mitochondria-targeting glutathione
(mitoGSH), and polyphenols, among others, could be examined in future studies.

8. Conclusions

Respirometry and imaging of mitochondria in intact or permeabilized cardiomyocytes
and muscle fibers and tissues are reliable tools for the functional analysis of mitochondria
in situ or in vivo, associated with preserved essential interactions with other intracellular
systems. These approaches can be used in basic research as well as various clinically
oriented studies where the minimization of sample sizes is an important advantage for
analyzing mitochondria in human biopsies. In addition, imaging of endogenous fluorescent
flavoproteins, NADH or mitochondria-specific fluorescent dyes, and genetically encoded
fluorescent proteins can also be applied in mitochondrial studies. We reviewed methods
that are applied to elucidate mitochondrial morphology, mitochondrial membrane potential,
ion homeostasis, mitochondrial pH regulation, redox state transitions, mtROS production,
and PTP opening/CRC in situ. Biochemical and functional characteristics of mitochondria
obtained using in situ methods are markedly different from those obtained in isolated
mitochondria in vitro. In summary, we reviewed currently available methods to study
mitochondrial function, structure, and intracellular organization in situ in cardiomyocytes
and skeletal muscle fibers.
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