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ABSTRACT Decreased susceptibility to carbapenems in Enterobacterales is an emerg-
ing concern. Conventional methods with short turnaround times are crucial for thera-
peutic decisions and infection control. In the current study, we used the Xpert CARBA-
R (Cepheid, Sunnyvale, CA, USA) and the NG-Test CARBA 5 (NG Biotech, Guipry, France)
assays for carbapenemase detection in 214 carbapenem-resistant Enterobacterales (CRE)
blood isolates. We used the modified carbapenem inactivation method, conventional
PCR, and sequencing to determine the production of five common carbapenemase
families and their subtypes. We performed wzc-genotyping for all CR-Klebsiella pneumo-
niae (CRKP) and multilocus sequence typing for all carbapenemase-producing CRE iso-
lates to reveal their genetic relatedness. The results showed a sensitivity of 99.8% and
a specificity of 100% by the Xpert assay, and a sensitivity of 100% and a specificity of
99% by the NG-Test in detecting carbapenemases of 84 CRKP isolates with only one
(VIM-11IMP-8) failure in both tests. For CR-Escherichia coli, four carbapenemase-produc-
ing isolates were detected accurately for their subtypes. The two major clones of carba-
penemase-producing CRKP isolates in Taiwan were ST11-K47 producing KPC-2 (n = 47)
and ST11-K64 producing OXA-48-like (n = 9). Our results support the use of either test
in routine laboratories for the rapid detection of common carbapenemases. Caution
should be taken using the Xpert assay in areas with a high prevalence of CRE carrying
blaIMP-8.

IMPORTANCE Carbapenemase-producing Enterobacterales (CPE) are emerging world-
wide, causing nosocomial outbreaks and even community-acquired infections since
their appearance 2 decades ago. Our previous national surveillance of CPE isolates in
Taiwan identified five carbapenemase families (KPC, OXA, NDM, VIM, and IMP) with
the KPC-2 and OXA-48-like types predominant. Timely detection and classification of
carbapenemases in CPE may be a useful test to guide optimal therapy and infection
control. Genetic detection methods using the Xpert CARBA-R assay and the immuno-
chromatographic assay using the NG-Test CARBA 5 have been validated with the
advantage of short turnaround time. Our study demonstrated that the NG and Xpert
assays are convenient methods to accurately identify carbapenemases in carbape-
nem-resistant Klebsiella pneumoniae and carbapenem-resistant Escherichia coli blood
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isolates. Detecting IMP variants remains challenging, and the results of Xpert CARBA-
R assay should be carefully interpreted.

KEYWORDS carbapenem-resistant Enterobacterales, Xpert CARBA-R, NG-Test CARBA 5,
multilocus sequence, wzc-genotyping, Xpert

Carbapenemase-producing Enterobacterales (CPE) are emerging in Taiwan, causing
nosocomial outbreaks and even community-acquired infections since their appear-

ance 2 decades ago (1–6). In our national surveillance of CPE isolates, we identified five
carbapenemase families (KPC, OXA, NDM, VIM, and IMP) with the KPC-2 and OXA-48-
like types predominant (2). A recent study revealed an increase in the carrying rate of
metallo-beta-lactamase (MBL, e.g., blaNDM, blaVIM, and blaIMP) genes among carbapenem
nonsusceptible Escherichia coli and Klebsiella pneumoniae isolates collected in Taiwan
(5). Treatment options against CPE infections are limited, especially for isolates carrying
MBL, which can hydrolyze novel beta-lactamase inhibitors (7–10). Commercial antimi-
crobial susceptibility tests for these new agents are not widely available in conven-
tional laboratories; therefore, timely detection and classification of carbapenemases in
CPE may be a useful alternative test to guide optimal therapy and infection control.

There are several methods for detecting carbapenemases, including phenotypic
analyses of carbapenem hydrolyzation activity, molecular detection of specific genes,
and immonochromatogenic assays for the enzymes (9). Complexity to perform, turn-
around time, costs, and performance are important factors considered before applying
these tests in routine laboratories. Genetic detection methods using the Xpert CARBA-
R assay (Cepheid, Sunnyvale, CA, USA) and the immunochromatographic assay using
the NG-Test CARBA 5 (NG Biotech, Guipry, France) have been validated with the
advantage of short turnaround time (8, 9, 11). However, carbapenemase variants would
affect the sensitivity of these methods (12, 13). Therefore, it is important to understand
the local epidemiology of carbapenemases in CPE when evaluating these assays.

In this study, we compared the Xpert CARBA-R assay and the NG-Test CARBA 5
using CPE blood isolates collected from our previous national surveillance. We charac-
terized the carbapenemases of the CPE isolates using a modified carbapenem inhibi-
tory method and PCR (PCR) followed by sequencing of five carbapenemase genes
(blaKPC, blaOXA-48-like, blaNDM, blaVIM, and blaIMP). We also determined the genetic related-
ness of these CPE isolates by multilocus sequence typing (for E. coli and K. pneumoniae)
and wzc gene polymorphism analysis (for K. pneumoniae) to determine whether clonal
dissemination of isolates carrying specific carbapenemases occurred.

RESULTS

We collected 186 CR-K. pneumoniae (CRKP) and 28 CR-E. coli (CREC) blood isolates
from our analysis. There were 84 (45.2%) CRKP and 4 (14.3%) CREC isolates positive for
the modified carbapenem inactivation method (mCIM), and all could be characterized
into five major carbapenemases using reference PCR and sequencing (Table 1). Among
CRKP, KPC was the most common carbapenemase (N = 66, 78.6%), followed by OXA
(n = 10, 11.9%), VIM (n = 4, 4.8%), and NDM (n = 1, 1.2%). Three CRKP isolates had dual
carbapenemases (OXA1KPC, OXA1NDM, and VIM1IMP). For the four CREC isolates,
two each carried KPC and NDM.

The sensitivity and specificity of the two rapid tests for the five carbapenemases are
summarized in Table 1. Only one isolate of CRKP carrying VIM1IMP, defined by the ref-
erence method, had discrepant results for both tests. The Xpert test was unable to
identify the blaIMP8 variant, and the NG-Test found additional NDM enzymes that were
not detected by the reference PCR. All three challenging CRKP isolates carrying blaIMP8

were also negative by the Xpert test but positive by the NG-Test, and each test was
performed in duplicate.

The subtypes of carbapenemases, wzc-genotyping, and multilocus sequence typing
(MLST) results for CRKP are summarized in Table 2. The most common carbapenemase
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subtypes in CRKP were KPC-2 (n = 56, 66.7%), followed by OXA-48-like (n = 9, 10.7%),
KPC-17 (n = 8, 9.5%), VIM-1 (n = 4, 4.8%), KPC-3 (n = 2, 2.4%), NDM-1 (n = 1, 1.2%), and
OXA-244 (n = 1, 1.2%). The subtypes of the three CRKP isolates carrying two carbapene-
mases were as follows: KPC-21OXA-48-like, NDM-11OCXA-48-like, and IMP-81VIM-1.
The carbapenemase subtypes of the four CREC isolates were diverse, including KPC-2,
KPC-17, NDM-1, and NDM-5.

A total of 23 genotypes were identified in 152 CRKP isolates by wzc-serotyping with
K47 (n = 59, 38.8%) and K67 (N = 50, 32.9%) predominant. The distribution of capsular
types differed significantly among isolates with and without carbapenemases (P ,

0.001). Among the 84 CRKP isolates with carbapenemases, K47 (n = 58, 69.0%) was the
most common genotype, followed by K64 (n = 14, 16.7%) (Table 2). Among the detected
102 CRKP isolates without carbapenemases, the most common capsular genotypes were
K64 (N = 36, 35.3%), followed by KN2 (n = 8, 7.8%), K57 (n = 4, 3.9%), K2 (n = 3, 2.9%),
K54 (n = 3, 2.9%), K1 (n = 2, 2.0%), K19 (n = 2, 2.0%), K24 (n = 2, 2.0%), and K62 (n = 2,
2.0%). Other capsular genotypes in non-carbapenemase CRKP included K5, K12, K14,
K17, K21, K25, K27, K31, K38, and K47 (one case each). The results of sequence compari-
son are listed in the Table S2.

Results of MLST indicated that the most common sequence type (ST) was ST11
(N = 73; 86.9%) among carbapenemase-producing CRKPs. A difference of one allele
was observed between ST1460 (n = 1) and ST1869 (n = 1) and ST11 and these were
considered to be the same clonal complex 11. A difference in two alleles was found

TABLE 2 Results of carbapenemases subtypes of Klebsiella pneumoniae isolates and their
corresponding multilocus sequence type-capsular K type

Carbapenemases (n) ST-capsular K type (n)
KPC2 (56) ST11-K47 (47), ST11-Kna1a (3), ST11-K64 (2), ST11-K3 (1), ST23-K47 (1),

ST1460-K47 (1), ST2640-K2 (1)
KPC3 (2) ST11-K47 (1), ST11-K54 (1)
KPC17 (8) ST11-K47 (6), ST11-K54 (1), ST-1869-K47 (1)
OXA-48-like (9) ST11-K64 (8), ST307-KN2 (1)
OXA-244 (1) ST11-K64 (1)
VIM1 (4) ST736-Kndb (1), ST1947-K13 (1), STnew1c-K64 (1), STnew2c-K11 (1)
NDM1 (1) ST15-K60 (1)
KPC21OXA-48-like (1) ST11-K64 (1)
OXA-48-like1NDM1 (1) ST11-K64 (1)
VIM11IMP8 (1) ST8-K64 (1)
aKna, sequences were not available by PCR.
bKnd, capsular serotype could not be determined by wzc gene analysis. (Refer to the Table S1 for the sequence).
cSTnew, new sequence type.

TABLE 1 Comparison of the Xpert CARBA-R and the NG CARBA-5 tests with reference methodsa

Xpert CARBA-R NG-Test CARBA 5

Results by reference methods (n)b TP FP FN TN Sensitivity (%) Specificity (%) TP FP FN TN Sensitivity (%) Specificity (%)
Klebsiella pneumoniae (84)c

KPC (67) 67 0 0 119 67 0 0 119
OXA-48 like (12) 12 0 0 174 12 0 0 0
VIM (5) 5 0 0 181 5 0 0 0
NDM (2) 2 0 0 184 2 1 0 0
IMP (1) 0 0 1 185 1 0 0 0
Overall 83 0 1 102 99.8 100.0 83 1 0 102 100.0 99.0

Escherichia coli (4)
KPC (2) 2 0 0 26 2 0 0 26
NDM (2) 2 0 0 26 2 0 0 26
Overall 4 0 0 24 100.0 100.0 4 0 0 24 100.0 100.0

aTP, true positive; FP, false positive; FN, false negative; TN, true negative
bA total of 186 carbapenem-resistant K. pneumoniae and 28 carbapenem-resistant E. coli isolates were enrolled for evaluation with 84 carbapenemases-producing K.
pneumoniae and 4 carbapebnemases-producing E. coli identified by reference methods.

cThree isolates harbored more than one carbapenemase: one OXA1KPC, IMP1VIM, and OXA1NDM each.
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between ST23 (n = 1) and ST2640 (N = 1). Other STs included ST8, ST15, ST307, ST736,
ST1947, and two new STs (Table 2). The allelic profiles are listed in the Table S3. There
were no major STs among carbapenemase-producing CREC isolates ST354 (KPC-2),
ST3492 (KPC-17), ST1193 (NDM-1), and ST410 (NDM-5). We observed geographic clus-
tering of certain subtypes; seven out of eight KPC-17-producing CRKP isolates were iso-
lated from a single institute in southern Taiwan, whereas nine out of the 12 OXA-48-
like-producing CRKP isolates were from central Taiwan.

DISCUSSION

Our results showed excellent performance of both rapid tests for detecting major
carbapenemase variants (KPCs and OXA-48-like) of CRE in Taiwan (sensitivity and speci-
ficity.99%). Clonal outbreaks of ST11-K47 and ST11-K64 comprised the two major car-
bapenemase-producing CRKP clones in our surveillance. Among non-carbapenemase-
producing CRKP, ST11-K64 was predominant.

Both the NG-Test and Xpert assay can shorten the overall turnaround time to within
2 h to detect and differentiate types of carbapenemases accurately from either bacterial
colonies or directly from clinical samples (8, 14–17). Based on the prevalence of CRE car-
rying carbapenemases in Taiwan (41.2%), the positive predictive value and the negative
predictive value would be 100.0% and 99.2% (95% confidence interval: 94.7%–99.9%) for
the Xpert assay and 98.9% (95% C.I.: 92.7%–99.8%) and 100% for the NG test (6).

The accuracy of the two tests is affected by variants of carbapenemases, especially
false-negative results of both tests for detecting IMP (IMP-13/IMP-15/IMP-18 clades)
and OXA families (13, 18–20). Recent studies enrolled isolates carrying KPC, OXA-48
VIM and NDM variants, and only few IMP variants (IMP-4 and IMP-6) were evaluated
(17, 21, 22). Contrary to our study, Liu showed that the NG test missed 8 NDM, 4 OXA-
48 and 1 IMP blood isolates, especially when co-carriage of carbapenemases compared
with the Xpert assay (21). However, they did not specify the variants of the carbapene-
mases resulting in false-negative by the NG test. Our results showed that blaIMP-8 in
CRKP may not be detected accurately by the Xpert assay. Similarly, Jenkins et al.
reported two Enterobacter cloacae and one Serratia marcescens isolate carrying blaIMP8

that had discrepant results with false-negatives by the Xpert assay and remaining posi-
tive by the NG-Test (13). The IMP-8-producing Enterobacterales have caused several
outbreaks in Taiwan since the first report in 2001 (3, 23). Tseng et al. reported that
among 183 carbapenemase-producing K. pneumoniae isolates, IMP-8 was the second
most common carbapenemase (8.7%) after KPC (24). In a recent surveillance, IMP-8
remained a significant part of carbapenemase-producing E. coli (30.4%) and K. pneumo-
niae (4.6%) isolates collected during 2016–2018 (5). There was no clustering of IMP-8-
producing CRKP for the identified MLSTs, including ST37, ST76, ST255, and ST919 (5).
Detection of the IMP family remains challenging using PCR-based methods owing to
the even distribution of mutations along the diversified sequences of different variants
(18, 20). Other rapid tests, such as the CARBA NP test, utilizes the ability of carbapene-
mase hydrolysis of carbapenem for detection. However, the sensitivity (77.4%–90.0%)
and specificity (85.7%–100.0%) varied and may differ among laboratories (15). Baeza et
al. proposed a new algorithm using an immunochromatographic assay followed by an
mCIM test (zCIM) to avoid false negatives of rare carbapenemases and shorten turn-
around time in routine laboratories (8). Clinicians and technicians should be cautious
in interpreting negative results by the Xpert assay in IMP-8 areas of endemicity and
may incorporate the workflow suggested to avoid false results by these rapid tests.

Decreased susceptibility of carbapenem against Enterobacterales in Taiwan is an im-
portant issue, especially the dissemination of carbapenemase-producing K. pneumoniae
in the last decade. Up to 29%–47% of CRKP isolates carried carbapenemase in several
surveillances for resistance compared to less than 10% before 2011 (6). The KPC-2-pro-
ducing ST11-K47 and OXA-48-producing ST11-K64 CRKPs are the two predominant car-
bapenemase-producing clones identified and some isolates among these clones also
carry several virulence genes associated with community onset invasive syndromes in
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Asia (1, 25–28). We identified several serotypes and ST types that have been associated
with the hypervirulent strains in our CRKP blood isolates. Although rarely isolated from
patients with invasive syndrome currently, monitoring of these carbapenemase-produc-
ing clones and further investigation of virulence in these isolates are warranted.

The predominant mechanisms of CREC in Taiwan are the loss of CMY-2 AmpC beta-
lactamases combined with porin (OmpF/OmpC) loss, and the emergence in recent
years of carbapenemase-producing CREC, ranging from 7.6% to 29.5% of isolates stud-
ied (5, 29). The NDM families (NDM-1,5) were the most common carbapenemases car-
ried in E. coli because of clonal spread of ST410, which was also detected in one of our
isolates (5). Other carbapenemases in E. coli, including KPC-2, IMP-8, VIM-1, OXA-48,
and OXA-131, were found in earlier resistance surveillances (5, 6, 29). Timely detection
using rapid tests and imposing strict infection control would mitigate the spread of
these multiple drug-resistant clones.

Our study has several limitations. First, we did not perform sequence typing for
non-carbapenemase-producing CRKP, and it is not clear if clonal dissemination
occurred in the predominant K64 CRKP. Second, we used primers designed for com-
monly encountered carbapenemases in our reference PCR method and these may be
unable to detect rare variants. The isolate positive for three carbapenemases by the
NG-Test should be examined using the whole-genome sequence to exclude the possi-
bility of a new NDM variant. Finally, except for KPC and OXA-48-like, we collected a few
isolates from other carbapenemase families in our experiment. The performance of the
two tests for detecting the other three carbapenemase families in Taiwan requires fur-
ther investigation.

In conclusion, the NG and Xpert assays are convenient methods to accurately iden-
tify carbapenemases in CRKP and CREC blood isolates. Detecting IMP variants remains
challenging, and the results of PCR-based rapid tests should be carefully interpreted.
The protein-level detection of the NG test is more adapted to reduced variation caused
by molecular modifications. We found clonal dissemination of CRKP isolates carrying
blaKPC-2 and blaOXA-48-like genes in Taiwan and geographic variation in major carbapene-
mase types. Through combining these rapid tests in the workflow of routine laborato-
ries facing CRE, clinicians could prescribe suitable antibiotics against these organisms
and be aware of the emergence of MBLs among CRE isolates.

MATERIALS ANDMETHODS
Bacterial isolates. We selected blood isolates of CRKP and CREC, collected during 2017–2019 from

the Surveillance of Multicenter Antimicrobial Resistance in Taiwan program conducted by the Taiwan
Centers for Disease Control (30). Enterobacterales isolates resistant to either imipenem, meropenem, or
ertapenem were considered carbapenem-resistant. These isolates were analyzed in our previous studies
(2, 30, 31). Three CRKP isolates carrying blaIMP-8 from a previous outbreak were enrolled to verify our final
findings (3). Species were reconfirmed by matrix-assisted laser desorption ionization–time of flight mass
spectrometry, and isolates were stored at 280°C with 20% glycerol before testing. The institutional
review board of the National Taiwan University Hospital waived the need for written informed consent
because the study involved only a minimal risk to the patients (201609066RINB).

Modified carbapenem-inhibitory methods. We performed mCIM for all isolates, and the results
were interpreted according to the recommendations of the Clinical and Laboratory Standards Institute
guidelines (32). K. pneumoniae ATCC BAA1705 and K. pneumoniae ATCC BAA1706 were used as positive
and negative-control strains, respectively.

Determination of carbapenemase-encoding genes in K. pneumoniae and E. coli isolates.
Bacterial isolates were cultured overnight on blood plates overnight before testing. We performed PCR
and bidirectional sequencing for all CRE isolates using primers and PCR conditions described elsewhere
to detect five common carbapenemase families (blaKPC, blaOXA-48-like, blaNDM, blaVIM, and blaIMP) (1, 2). The
results of sequencing were used as references to determine the sensitivity and specificity of the two
commercial methods. We performed the Xpert CARBA-R assay (Cepheid, Sunnyvale, CA, USA) and an
immunochromatographic assay using the NG-Test CARBA 5 (NG Biotech, Guipry, France) for all CRE iso-
lates according to the manufacturer’s instructions. In case of discrepant results, we duplicated the
experiments.

Serotyping of carbapenemase-producing K. pneumoniae and multilocus sequence typing for
CPE.We performed serotyping by wzc gene polymorphism analysis for all CRKP isolates and determined
the MLST for all carbapenemase-producing CRKP and CREC isolates as previously described. In brief, the
wzc gene was PCR-amplified and sequenced as described by Pan et al. (33). Regarding MLST, seven
(gapA, inf, mdh, pgi, phoE, rpoB, and tonB) and eight (dinB, icdA, pabB, polB, putP, trpA, trpB, and uidA)
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housekeeping genes were sequenced for K. pneumoniae and E. coli, respectively. The allele naming and
ST identification were assigned according to the database at www.pasteur.fr/mlst.

Data analysis and statistics. The sensitivity and specificity of the Xpert assay and NG-Test were cal-
culated. To compare the capsular serotype of CRKP with or without carbapenemases, we used the
chi-square test. Statistical significance was set at P , 0.05. Data were analyzed using STATA software
(version 14.0; StataCorp., College Station, TX, USA).

SUPPLEMENTAL MATERIAL
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