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An increase in intrahepatic triglyceride (IHTG) content is the hallmark of nonalcoholic fatty liver disease (NAFLD) and is strongly
associated with insulin resistance and dyslipidemia. Although regular aerobic exercise improves metabolic function, its role in
regulating fat accumulation in the liver is incompletely understood, and human data are scarce. Results from exercise training
studies in animals highlight a number of potential factors that could possibly mediate the effect of exercise on liver fat, but none
of them has been formally tested in man. The effect of exercise on IHTG content strongly depends on the background diet, so
that exercise is more effective in reducing IHTG under conditions that favor liver fat accretion (e.g., when animals are fed high-fat
diets). Concurrent loss of body weight or visceral fat does not appear to mediate the effect of exercise on IHTG, whereas sex (males
versus females), prandial status (fasted versus fed), and duration of training, as well as the time elapsed from the last bout of
exercise could all be affecting the observed exercise-induced changes in IHTG content. The potential importance of these factors
remains obscure, thus providing a wide array of opportunities for future research on the effects of exercise (and diet) on liver fat
accumulation.

1. Introduction

Excessive accumulation of fat in the liver, that is, intrahepatic
triglyceride (IHTG), is associated with increased prevalence
rates of and risk for dyslipidemia, diabetes, and cardiovascu-
lar disease [1–3]. Data from epidemiological as well as
metabolic studies indicate that increased IHTG content is
accompanied by insulin resistance and dysregulation of lipid
metabolism [4–6]. Exercise is known to improve metabolic
function [7, 8]; however its effects on IHTG remain elusive
[9, 10]. Data from studies in humans are scarce and not
entirely consistent [11]. In this paper, the results from a
number of animal studies are briefly reviewed in an attempt
to highlight putative factors that may modulate the effect of
exercise on IHTG content.

2. Exercise Training in Animals

Many studies have evaluated the effect of aerobic exercise
training on IHTG content in rodents; their design varies in

terms of sex, strain, background diet, training duration, the
prandial status, and the time of assessment after the last
bout of exercise (Table 1) [12–37]. Results are largely heter-
ogeneous, but a crude analysis of the data suggests that en-
durance training decreases IHTG (median: −16%, range:
−92% to +97%, n = 50 studies; Table 1). Most frequently
[14, 16, 18, 20, 26, 31, 35] but not always [15, 17, 34, 37],
exercise has been shown to be more effective in reducing liver
fat or attenuating its accretion in animals fed high-fat rather
than standard, low-fat diets (median decrease: 25% and 14%,
resp., Figure 1(a)). This is consistent with data from human
studies, in which exercise training appears to be more potent
in reducing IHTG in subjects with increased baseline IHTG,
for example, subjects with NAFLD, type II diabetes, or the
elderly [11].

The reasons why exercise is more effective in reducing
IHTG on high-fat than low-fat diets are not entirely clear
but are likely related to the hepatosteatotic effect of high-fat
feeding. Fat is mainly stored as microvesicles (<1 μm2) within
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Figure 1: Factors that may affect changes in liver fat in response to exercise training in animals. Exercise-induced changes in intrahepatic
triglyceride content (Δ-IHTG) are shown for: (a) animals fed high fat or standard chow (low fat) diets; (b) animals that experienced weight
loss (or attenuated weight gain) or not; (c) male or female animals; (d) fasted or fed animals; (e) animals trained for longer or shorter periods
of time; (f) animals examined within one day from the last bout of exercise or later during recovery. Box plots have been constructed using
average changes in liver fat (% difference relative to sedentary controls) for each group of animals in the studies depicted in Table 1, and
illustrate median, first, and third quartiles, minimum and maximum values, as well as potential positive and negative outliers.
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hepatocytes, whereas the high-fat diet-induced hepatic stea-
tosis occurs via accumulation of macrovesicles (>1 μm2)
[18, 38]. Endurance training has been shown to completely
prevent the high-fat diet-induced hepatic steatosis [18, 38],
that is, the hepatocyte surface area occupied by the lipid
vacuoles, solely by reducing the number of lipid vacuoles in
all sizes between 1 and 10 μm2 (i.e., macrovesicles), without
affecting the number of vacuoles of surface area <1 μm2 (i.e.,
microvesicles) [18]. Hence exercise may have less of an effect
when on low-fat diets, not only because of lower total IHTG
content, but also because most of this fat (∼75%) is stored in
microvesicles, not macrovesicles. A more pronounced IHTG-
depleting effect of exercise has also been observed under
other conditions that favor the development of fatty liver,
such as overfeeding [34], ovariectomy [28], ethanol ingestion
[39], or tumor-bearing [24]. Apart from the fat content of the
background diet, the type of dietary carbohydrate [12], pro-
tein [25], and fat (i.e., saturated or unsaturated fatty acids)
[22], as well as the feeding pattern (ad libitum or paired) [12]
do not appear to affect, at least not in a major way, the
exercise-induced change in IHTG content.

The collective of available data in animals highlights a
number of other putative factors that may modulate the ef-
fect of exercise on liver fat; however, none of these factors has
been formally tested using rigorous experimental designs.
Concurrent weight loss or attenuated weight gain is not
likely critical for the exercise-induced depletion of IHTG
to manifest, albeit they may lead to greater reductions in
liver fat when compared to no weight loss or similar weight
gain (median decrease: 27.5% and 14%, resp., Figure 1(b)).
However, just like in humans [11], loss of visceral adipose
tissue mass with exercise training is not necessarily coupled
with a corresponding decrease in liver fat [16, 18, 28, 37].
Likewise, human studies have shown that exercise-induced
reductions in IHTG content can occur in the absence of
changes in total body fat [40] or even visceral adipose tissue
[41].

Exercise may be more effective in reducing IHTG content
in males than in females (median decrease: 25% and 14%,
resp., Figure 1(c)), in fasted (≥6 h) than in fed animals
(median decrease: 31% and 11%, resp., Figure 1(d)), and
after longer (≥8 wk) than shorter interventions [34] (median
decrease: 24% and 14%, resp.; Figure 1(e)). The time elapsed
from the last bout of exercise (≤24 h or ≥36 h) may also
mediate the observed changes in IHTG (median decrease:
24% and 13.5%, resp., Figure 1(f)), suggesting that even
acute exercise could affect liver fat. However, relevant infor-
mation is scarce and inconclusive. A single bout of aerobic
exercise (30–60 min) did not affect IHTG content, measured
immediately after exercise, in female rats [42] but caused a
∼30% decrease in male rats [43] of the same strain, under
both standard and high-fat feeding conditions. This is in line
with data from exercise training studies in animals raising the
possibility that males may be more sensitive to the IHTG-
reducing effect of exercise than females (Figure 1(c)), as
well as with recent observations in humans [44]. Studies
in which male rats were exercised until exhaustion provide
conflicting results, some observed a mild [45] or marked
[46, 47] increase in hepatic steatosis whereas others found
a decrease of 30–60% [48] at the end of exercise.

3. Detraining after Regular Exercise

If regular exercise reduces liver fat, cessation of exercise
should lead to an increase in IHTG content. Only a few
animal studies have evaluated the effect of detraining on liver
fat accumulation, and all have demonstrated that cessation of
regular exercise (after 6–16 weeks of training) for a short (2-
3 days) or a long (6 weeks) period of time is not associated
with any significant changes in IHTG content compared with
the trained state (i.e., before discontinuation of exercise)
when animals are fed a standard low-fat diet [28, 36, 49, 50].
Furthermore, detraining for 2–7 days does not alter the
total number of hepatocyte lipid vacuoles and their size,
even though it does activate precursors and processes in
the liver known to initiate steatosis (e.g., decreased mito-
chondrial oxidative capacity, increased expression of de novo
lipogenesis proteins, and increased malonyl CoA levels) [49].
Interpretation of detraining data is not straightforward,
though. It is possible that this lack of an effect of detraining
relates to the lesser potency of exercise in reducing liver fat
content in animals fed standard low-fat diets (Figure 1), so
that changes after detraining are similarly less pronounced.
For instance, two [28, 36] out of three studies that reported
no effect of detraining on liver fat also failed to observe a
training-induced decrease in IHTG content, suggesting that
training and detraining have no effect on liver fat accumu-
lation under low-fat feeding conditions. Whereas one study
[49] did observe a training-induced decrease in liver fat in
rats fed a low-fat diet but found no changes after detraining,
implying that the IHTG-depleting effect of regular exercise
is long-lived and is not readily reversed by detraining. Still,
compared with sedentary, never-exercised counterparts,
detrained animals appear to be relatively protected from mild
hepatic steatosis induced by 2 weeks of high-fat feeding [36],
but not from the development of frank fatty liver 6 weeks
after ovariectomy [28], even though cessation of exercise
training in ovariectomized rats resulted in a nearly 40%
increase in IHTG content compared with ovariectomized rats
who did not stop exercising [28]. It is thus possible that the
relevant molecular and biochemical adaptations to exercise
are readily reversed when the exercise routine is interrupted
(<1 week), however, changes in IHTG manifest later in
time and only when strong triggering factors for liver
fat accretion coexist, such as high-fat feeding or ovar-
iectomy. Support for this notion is provided by an earlier
study, where detraining resulted in a striking increase in
IHTG content only when animals were subjected to starva-
tion and refeeding [50].

4. Conclusion

The effect of exercise on IHTG content has recently attracted
much scientific interest in light of the apparent detrimental
metabolic effects of excessive liver fat accumulation. Al-
though the results from a few studies in human subjects
are promising, as exercise appears to reduce IHTG [11], the
importance of the factors highlighted herein on the basis
of studies in animals has never been evaluated in man.
Future studies should at least control for—in order to avoid
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confounding—or directly investigate the role of these factors
in affecting the exercise-induced changes in liver fat content.
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“The effect of a single bout of exhaustive exercise on muscle
carbohydrate and lipid metabolism in a rat model of type 2
diabetes mellitus,” Acta Diabetologica, vol. 37, no. 1, pp. 47–
53, 2000.

[49] S. R. Rector, J. P. Thyfault, M. J. Laye et al., “Cessation of daily
exercise dramatically alters precursors of hepatic steatosis in
Otsuka Long-Evans Tokushima Fatty (OLETF) rats,” Journal
of Physiology, vol. 586, no. 17, pp. 4241–4249, 2008.

[50] P. Lowney, V. M. Lee, R. J. Hansen, and J. S. Stern, “Effects
of exercise, detraining, starvation, and refeeding on lipogenic
capacity of Osborne-Mendel rat,” American Journal of Physiol-
ogy, vol. 254, no. 4, pp. R648–R654, 1988.


	Introduction
	Exercise Training in Animals
	Detraining after Regular Exercise
	Conclusion
	Conflict of Interests
	References

