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ABSTRACT Single-molecule (SM) approaches have provided valuable mechanistic information on many biophysical systems.
As technological advances lead to ever-larger data sets, tools for rapid analysis and identification of molecules exhibiting the
behavior of interest are increasingly important. In many cases the underlying mechanism is unknown, making unsupervised
techniques desirable. The divisive segmentation and clustering (DISC) algorithm is one such unsupervised method that ideal-
izes noisy SM time series much faster than computationally intensive approaches without sacrificing accuracy. However, DISC
relies on a user-selected objective criterion (OC) to guide its estimation of the ideal time series. Here, we explore how different
OCs affect DISC’s performance for data typical of SM fluorescence imaging experiments. We find that OCs differing in their pen-
alty for model complexity each optimize DISC’s performance for time series with different properties such as signal/noise and
number of sample points. Using a machine learning approach, we generate a decision boundary that allows unsupervised se-
lection of OCs based on the input time series to maximize performance for different types of data. This is particularly relevant for
SM fluorescence data sets, which often have signal/noise near the derived decision boundary and include time series of nonuni-
form length because of stochastic bleaching. Our approach, AutoDISC, allows unsupervised per-molecule optimization of DISC,
which will substantially assist in the rapid analysis of high-throughput SM data sets with noisy samples and nonuniform time
windows.
SIGNIFICANCE The divisive segmentation and clustering (DISC) algorithm is a computationally efficient and accurate
algorithm for idealizing noisy single-molecule time series. Although largely unsupervised, DISC requires user selection of a
guiding objective criterion. We show that different criteria are optimal for different types of data. Critically, single-molecule
fluorescence data sets typically exhibit stochastic variation in data properties from molecule to molecule. Here, we extend
DISC to automate the optimal choice of criterion on a per-molecule basis. This advance, AutoDISC, provides a practical
solution for automating analysis of high-throughput single-molecule fluorescence data sets increasingly common because
of developments in camera and dye technologies.
INTRODUCTION

Recent advances in detector and imaging technologies have
enabled increasingly high-throughput single-molecule (SM)
data collection (1–3). For example, faster scientific comple-
mentary metal-oxide-semiconductor (sCMOS) cameras
with larger chips coupled with photobleach-resistant fluoro-
phores allow simultaneous recording of hundreds of mole-
cules per field of view for extended durations (4–6). Tools
for rapid unsupervised analysis of such large data sets are
increasingly critical to avoid becoming the bottleneck for
experiment progress (7,8).
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Hidden Markov models (HMMs) are a widely successful
approach for SM time series analysis (9–12). However,
global analysis of large high-throughput SM data sets with
a specific HMM is challenging for data sets with per-mole-
cule variation in behavior or state emission and noise
amplitudes. For example, such variation is typical of cam-
era-based imaging modalities that often contain hundreds
to thousands of molecules in which only a subset of mole-
cules exhibits the behavior of interest. Furthermore, spatial
nonuniformities in the optical pathways and/or illumination
give rise to per-molecule variation in signal/noise, which
can be exacerbated by motion within steeply varying excita-
tion fields (e.g., total internal reflection fluorescence micro-
scopy) or fluorophore photodynamics (13–15). Finally,
HMMs require postulation of a molecular mechanism
(i.e., specification of a model’s states and the allowed tran-
sitions between them), which may be unknown a priori (9).
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Although methods exist for selecting a model from a set of
HMMs (16), this poses a heavy computational burden pro-
portional to the size of the test model set. Unsupervised ap-
proaches for HMM model selection, e.g., infinite HMMs
(17,18) and deep learning neural networks (19–21), auto-
mate the process of model identification but remain compu-
tationally expensive or require extensive training data sets
before their use. This is not to say that one should not use
an HMM if the data allow it. However, efficient unsuper-
vised approaches that do not require postulation of a specific
mechanism or pretraining on similar known data sets allow
rapid screening and/or analysis of high-throughput data sets
even in the presence of per-molecule variability as discussed
above. Even in cases in which analysis with an HMM is
ultimately desired, rapid screening with unsupervised ap-
proaches can aid in guiding the choice of experimental con-
ditions or identifying subsets of molecules with particular
behaviors of interest.

The divisive segmentation and clustering (DISC) algo-
rithm is a largely unsupervised top-down approach for rapid
idealization of noisy piecewise continuous time series
typical of SM imaging experiments (13). For a given noisy
time series, DISC estimates the underlying ideal noiseless
time series consisting of discrete jumps between a finite
number of distinct intensity levels. Both the jumps and the
number of distinct intensity levels are determined in an un-
supervised fashion and do not require the user to postulate a
molecular mechanism before analysis. Compared with
HMMs or change point analyses, DISC is orders of magni-
tude faster while maintaining state-of-the-art accuracy, pre-
cision, and recall. Lately, many deep learning techniques
reliant on neural networks have been developed for unsuper-
vised SM analysis (19,20). Unlike these approaches, DISC
does not require extensive training data sets to guide its
idealization, which simplifies its application to multiple
different experimental regimes. Rather than relying on
training data, DISC utilizes a user-specified objective crite-
rion (OC) that weighs goodness of fit against the complexity
of the ideal sequence to guide idealization (22). The OC
represents a metric for unsupervised approaches to identify
the simplest model that describes the noisy experimental
data reasonably well while avoiding complex models that
overfit the data. In addition to DISC, OCs have been widely
applied in numerous SM analysis approaches, including
HMM model selection and change point idealization
(10,11,16,23).

Here, we show that different OCs optimize DISC’s accu-
racy, precision, and recall for SM time series that differ in
their signal/noise ratio (SNR) or number of sample points.
This is crucial for SM fluorescence imaging experiments
in which nonuniformity in the optics or illumination and sto-
chastic bleaching of fluorophores result in variable SNRs
and observation window durations across molecules even
within a single field of view. To maximize the performance
of DISC on such a data set, we use a machine learning tech-
nique to automate the per-molecule selection of the optimal
OC. Critically, this automation makes DISC robust to both
the scale and heterogeneity of data sets typical of increas-
ingly common high-throughput SM imaging experiments
(24,25).
MATERIALS AND METHODS

Simulations

All simulations and analyses were conducted in MATLAB version R2019a

(The MathWorks, Natick, MA). SM time series were simulated as Markov

chains of dwells in distinct molecular states governed by the average rate of

transitions between states (11). The simulated Markov mechanisms are de-

picted in Fig. S1. Each state was assigned a mean observable intensity. For

models of two-state dynamics at one, two, or four sites, state intensity levels

were 0 and 1. For the three-state cyclic and linear models, state intensity

levels were 0.2, 0.6, and 0.8 to reflect typical SM fluorescence resonance

energy transfer (smFRET) observations. All simulations had a uniform

sample frequency fs, and transition rates between states were specified rela-

tive to the sample frequency. For the one-site, two-site, and four-site

models, both forward and backward transitions rates were set to the same

value, which ranged from 0.001 to 0.1 fs. For the three-state models, the

fast rate kf ranged from 0.001 to 0.1 fs, and the slow rate ks was set to 0.3

kf. The fast rate always described transitions between the higher-intensity

levels. These prescriptions provide simulations that test performance on

both equivalent and disparate rates within a given model.

The duration of each distinct dwell in a state was simulated with double

precision. For discretized simulated intensities at a uniform sample fre-

quency fs, we assigned the weighted mean of the intensities for all dwells

within a sample duration (1/fs) with weights set to the relative fraction of

the sample duration for each dwell. This procedure simulates integration

of the signal throughout the sample period analogous to camera-based im-

aging strategies. This results in some samples having simulated mean inten-

sities that are a weighted mean of the intensities of multiple individual

states visited during that sample duration. For example, dwells shorter

than a single sample period result in truncated observed intensity values

for that sample. However, even at the fastest tested transition rate (0.1 fs),

such truncations were infrequent and had little impact on idealization

with DISC. At slower transition rates, these subsample events were rela-

tively rare. We note that at faster rates approaching the sample frequency,

subsample events are frequent and result in an overall reduction in the

apparent state intensity level separation (data not shown). DISC is likely

to be inappropriate for such data, as it requires reasonable resolution of

the state intensity levels.

When applicable, we implemented state intensity heterogeneity on a per-

event basis by adding a small stochastic offset to the mean intensity of in-

dividual events. The offset was drawn from an exponential distribution with

a mean set to 4% of the average separation between neighboring state inten-

sity levels, similar to prior observations of such fluctuations in measures of

molecular association (13).

To simulate noisy experimental data, Gaussian or Poisson noise was

added to the noiseless intensity series described above. For Gaussian noise,

the standard deviation (SD) of the added noise (s) was set to the ratio of the

average separation between neighboring state intensity levels (DIavg) and

the specified per-site SNR (SNRS ranging from 1 to 8) such that SNRS ¼
DIavg/s. For example, DIavg ¼ 1 and s ¼ 1/SNRS for two-state dynamics

between intensity levels 0 and 1, whereas DIavg ¼ 0.3 and s ¼ 0.3/SNRs

for three-state dynamics between intensity levels 0.2, 0.6, and 0.8.

For simulations of two-state dynamics at two or four independent sites,

the variance of the added noise s2 was scaled for each event by the number

of sites in their higher-intensity state. The reason for this procedure is to

simulate experimental observations such as binding and unbinding of a

fluorescent molecule at multiple sites where the noise is observed to
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increase with the number of fluorophores in each diffraction-limited spot

(13). The degree to which multiple sites give rise to additive noise depends

on the amount of noise arising from the recording system versus the molec-

ular activity, which will vary for each individual experimental setup. For

Poisson-distributed noise, the variance naturally increases with increasing

photon counts. In the low-photon regime discussed below, the variance

approximately doubles upon transitioning from one to two sites adopting

their high-intensity states, whereas this increase is �1.5-fold in the

higher-photon regime explored here. As there is no single value that will

describe additive noise in all experiments, we chose to scale the noise by

the number of ‘‘active’’ or ‘‘occupied’’ sites to provide examples of data

that differ substantially from the simulations of all single-site models

with uniform noise. Given that our results are qualitatively similar for

both uniform and scaled noise, it is likely that our conclusions will remain

relevant for scaled noise that falls between these extremes. Finally, we also

provide simulations with Poisson noise (see below), which together with

uniform and scaled noise models provide a breadth of examples across var-

iable types of simulated noise.

For Poisson-distributed noise, we first converted simulated noiseless in-

tensity traces as described above to number of photons per sample. We

assumed a baseline mean photon count p per sample duration which de-

fines a baseline SD of sp ¼ ffiffiffi
p

p
. Simulated noiseless intensity traces for

all tested models were scaled by the factor SNRSsp for a specified per-

site SNRS (ranging from 1 to 8) such that SNRS ¼ DIavg/sp after scaling.

Finally, the scaled trace was rounded to an integer number of photons, and

the baseline photon count p was added. Poisson noise was then applied

to each sample in the simulated photon series by drawing from a

Poisson distribution with a mean set to the noiseless simulated photon

count at that sample. To simulate data from experiments with lower and

higher background photon counts, p was chosen to be either 10 or 50,

respectively.

A consequence of nonuniform noise in simulations of multiple sites is

that SNR is not constant throughout the series but decreases transiently

from that specified for each single site during periods in which multiple

sites simultaneously adopt their higher-intensity state. SNR is also not con-

stant for the three-state models with uniform noise given that it is based on

an average of two different level separations. To obtain a single metric to

describe the overall SNR throughout a time series, we define the effective

SNR of each series as the ratio of DIavg to the SD of the residuals after sub-

tracting the simulated ideal noiseless intensity series from that after adding

noise. Note that this effective SNR can vary even for series simulated with

the same per-site SNRS and will, in general, be less than SNRS for simula-

tions of multiple sites because of additive noise.

For each model and each unique combination of SNRS and transition rate

(k or kf), we simulated a total of 100,000 sample points split between 10 and

1000 time series depending on series lengths that ranged from 10,000 sam-

ples to 100 samples, respectively.
Idealization performance

Noisy simulated time series were idealized with DISC using one of the

following OCs: Bayesian information criterion based on either the residual

sum of squared errors (BICRSS) or a Gaussian mixture model (BICGMM),

Akaike information criterion based on either the residual sum of squared

errors (AICRSS) or a Gaussian mixture model (AICGMM), Hannan-Quinn in-

formation criterion (HQCGMM), and minimal description length (MDL)

(Eqs. 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11) (23,26–29). In principle, a different

OC could be selected for the segmentation and clustering portions of the

DISC algorithm. Here, we only explore the impact of selecting a single

OC for all portions of the algorithm. The general format for each OC is a

summation of two terms that balance goodness of fit with a penalty for over-

fitting noise with overly complex models (Eq. 1).

OC ¼ fit error þ overfit penalty; (1)
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RSS
� � � �
BICRSS ¼ nptsln
npts

þ ntransitions þ nstatesð Þln npts ; (2)

BICGMM ¼ �2 ln Lð Þ þ 3nstates � 1ð Þln npts
� �

; (3)
RSS
� �
AICRSS ¼ nptsln
npts

þ 2 ntransitions þ nstatesð Þ; (4)

AICGMM ¼ �2 ln Lð Þ þ 2 3nstates � 1ð Þ; (5)
and

HQCGMM ¼ �2 ln Lð Þ þ 2 3nstates � 1ð Þln ln npts
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; (6)

where L is the likelihood for the estimated model defined as the product of

likelihoods for each data point y(ti), each of which is described by a linear

combination of likelihoods for each state’s Gaussian emission distribution

N with mean and SD mj and sj and mixing coefficientwj (Eqs. 7 and 8) (30).
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�
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(8)

We define MDL as previously described in (23):

MDL ¼ Fþ G; (9)
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(11)

To quantify the quality of DISC’s idealizations with different OCs, each

event returned by DISC was determined to be either a true positive (TP),

false positive (FP), or false negative (FN) based on the known simulated

noiseless sequence. These same metrics were also used to compare the

idealization of AutoDISC to two other unsupervised idealization ap-

proaches: step transition and state identification (STaSI) and AutoStep-

finder (23,31). Because events were simulated with subsample timing and

intensities integrated over the sample period, samples containing transitions

between states exhibit intermediate intensities between the true state inten-

sity levels. As these intermediate intensities are an artifact of the discretiza-

tion process rather than true state intensities, we set such intermediates in

the noiseless sequence to the intensity level associated with the state that

was occupied for the largest portion of the sample period before
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determining TP, FP, and FN events. Furthermore, to prevent slight numer-

ical differences between simulated and idealized intensity levels or subtle

offsets in event onset or offset from being construed as errors, TP events

for OC comparisons were allowed to have intensities within 510% of

the known SD of the intensity level and onset or offset times within 53

samples of the known event timing. For all software comparisons, this in-

tensity envelope was expanded to 525% of the known SD of the intensity

level to limit excessive error attribution to STaSI or AutoStepfinder so long

as they are reasonably close to the true intensity levels. Events classified as

FPs were either extraneous events or correct events with the wrong inten-

sity. FNs were defined as missed events. For each idealization, accuracy,

precision, and recall were calculated as general performance metrics

ranging from 0 (worst) to 1 (best) (Eqs. 12, 13, and 14). The F1 score is

a widely used overall metric for summarizing performance and ranges

from 0 (worst) to 1 (best) (Eq. 15) (32).

Accuracy ¼ TP

TP þ FP þ FN
(12)

TP

Precision ¼

TP þ FP
(13)

TP

Recall ¼

TP þ FN
(14)

2 � Precision � Recall

F1 ¼

Precision þ Recall
(15)

OC penalty hyperparameter

To test the effects of a variable penalty term, we scaled the penalty terms of

AICGMM, BICRSS, and MDL using a hyperparameter l (see Eq. 16). For

each unique combination of conditions (SNRS and transition rate), short

(300 samples) or long (3000 samples) simulated traces from the four-site

and three-state cyclic models with added state intensity heterogeneity

were idealized with DISC using AICGMM, BICRSS, or MDL for values of

l ranging from 0.001 to 100.

OC ¼ fit error þ l overfit penaltyð Þ (16)

Linear decision boundary for AICGMM vs. BICRSS

To generate a decision boundary for the optimal choice of either AICGMM or

BICRSS based on the properties of the time series, we used MATLAB’s

fitcsvm function from the Statistics and Machine Learning Toolbox (The

MathWorks). For each data series from each tested model, we computed

a preference score for AICGMM vs. BICRSS based on their individual F1

scores (Eq. 17).

Preference for AICGMM ¼ F1GMM

F1GMM þ F1RSS
(17)

For each model, these scores were binned in two dimensions according to

the effective SNR and log10(number of samples) of their corresponding se-

ries. Each bin was labeled as either ‘‘AICGMM optimal’’ or ‘‘BICRSS

optimal’’ according to its average preference score (AICGMM optimal for

preference scoresR0.5). These bin labels were used to train a support vec-

tor machine (SVM) classifier to determine a linear decision boundary in the

two-dimensional space of effective SNR and number of samples.
Data availability statement

Software implementing AutoDISC is available at https://github.com/

marcel-goldschen-ohm/AutoDISC.
RESULTS

Different OCs optimize DISC’s performance under
different experimental conditions

The DISC algorithm is a largely unsupervised top-down
approach for rapid idealization of noisy piecewise contin-
uous time series typical of SM imaging experiments (13).
Although subsequently unsupervised, the algorithm initially
requires a user-selected OC to guide its idealization. DISC
has three main steps. 1) Divisive segmentation: starting
with the intensity values of all data points in the time series
assigned to a single cluster (the mean intensity of the time
series), each cluster is recursively split into two child clus-
ters until the selected OC is optimized. 2) Hierarchical
agglomerative clustering: during segmentation, clusters in
separate branches that should belong to the same intensity
level may be assigned unique intensity states because of
random fluctuations in the data. Agglomerative clustering
starting with the segmented clusters from the previous
step remerges segments with similar intensity distributions
based on the selected OC. 3) Viterbi: the previous steps
accurately identify intensity levels in the time series but
do not provide a good description of the kinetics of transi-
tions among those levels. To estimate event kinetics, the
Viterbi algorithm is applied to determine the most likely
sequence of transitions among the identified intensity levels.
We have previously shown that DISC provides orders of
magnitude faster computational speed while maintaining
comparable accuracy, precision, and recall to other
commonly used approaches (13). However, the impact of
OC choice on the accuracy of DISC’s idealization for
different kinds of data has yet to be rigorously evaluated.

To explore the impact of OC choice on DISC’s perfor-
mance, we simulated noisy SM time series with known state
sequences and evaluated the ability of DISC to identify the
correct noiseless sequences using different OCs. We simu-
lated data for several different kinds of mechanisms to eval-
uate a variety of typical SM data. Simulated mechanisms
include two-state dynamics at one, two, or four independent
sites similar to binding observations from colocalization SM
fluorescence experiments and three-state linear or cyclic
models with distinct state emissions typical of smFRET ex-
periments (Fig. S1). Furthermore, for each model we varied
simulation parameters such as sample length, SNR, and
state transition rates to determine the impact of OC choice
on data under different experimental conditions (see Mate-
rials and methods). Here, we define SNR as the ratio of
the average intensity level separation (DIavg) to the SD of
the noise fluctuations (s) (see Materials and methods). In
many cases, real experimental SM fluorescence data
Biophysical Journal 120, 4472–4483, October 19, 2021 4475

https://github.com/marcel-goldschen-ohm/AutoDISC
https://github.com/marcel-goldschen-ohm/AutoDISC


Bandyopadhyay and Goldschen-Ohm
additionally contain heterogeneity in state emissions
(13,33). The source of this heterogeneity is uncertain but
is likely caused by shifts of the molecule in the exponen-
tially decaying excitation field or dye photodynamics
(14,15). Changes in observed dye brightness due to dye
conformation, polarization orientation, partial quenching
via electron transfer, and protein-induced fluorescence
enhancement are commonly observed (34). To better reflect
these real observations, we additionally included heteroge-
neous state intensities in some of our simulations (see Ma-
terials and methods).

Five OCs were initially tested: Bayesian information cri-
terion based on either the residual sum of squared errors
(BICRSS) or a Gaussian mixture model (BICGMM), Akaike
information criterion (AICGMM) and Hannan-Quinn infor-
mation criterion (HQCGMM) based on a Gaussian mixture
model, and MDL (Eqs. 2, 3, 5, 6, 7, 8, 9, 10, and 11)
(23,26–29). In each case, DISC’s idealization performance
on the noisy simulated data was evaluated using standard
criteria of accuracy, precision, and recall (Eqs. 11, 12, and
13). An overall measure of this performance is summarized
in the F1 score (0–1: worst to perfect), which combines both
precision and recall in a single metric (Eq. 15) (32). For each
OC, DISC’s performance was primarily dependent on the
SNR and number of samples in the time series (Figs. S2–
S14). State transition rates had relatively less of an effect
on performance except when rates were extreme (e.g.,
average rate approaching the sample rate).

For data with heterogeneous state intensities, there was no
single OC that was optimal for all simulated conditions
(Figs. 1 and S2–S6). Thus, the conditions of each time series
dictate the optimal choice of OC. Across tested models,
BICRSS is almost always the best choice for data with few
sample points and low SNR. In some cases, MDL performs
as well as BICRSS in this regime. However, MDL’s relative
performance decreases substantially for faster transition
rates, especially as the underlying model complexity in-
creases or the SNR decreases. In contrast, BICRSS exhibits
either a smaller or negligible drop in relative performance
at these faster rates. At the lowest SNRs, there is a trend
for performance to decrease with increasing trace length
and transition rates. In extreme cases, this occurs because
of the idealization converging on a constant value that is
the mean of the data. For slower rates and shorter traces,
this is more likely to be true than for longer traces with
faster transition rates, at which increasing trace length in-
creases the odds of missing an actual transition because of
poor SNR. Generally, the GMM-based OCs including
BICGMM, AICGMM, and HQCGMM tend to outperform
BICRSS as the number of sample points and/or the SNR in-
creases. For shorter time series and lower SNRs, AICGMM

outperforms both BICGMM and HQCGMM. However, BICRSS

is better yet for these series. At higher SNRs at which
BICRSS performs relatively poorly, all the GMM-based
OCs perform similarly well. Thus, a simple choice between
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BICRSS and one of the GMM-based OCs would provide an
optimal solution in nearly all tested cases. Given that
AICGMM has the overall best performance across tested
data conditions, the remainder of our analysis focuses on
AICGMM and BICRSS.

In general, BICRSS outperforms AICGMM for short traces
with less than �1000 samples and low SNRs of �3 or less
(Fig. 1), whereas AICGMM outperforms BICRSS for longer
traces with more samples and/or higher SNR (Fig. 1).
This is largely because AICGMM tends to underfit shorter se-
ries with low SNR, whereas BICRSS overfits longer series
with high SNR. Each OC balances a goodness of fit term
and a penalty term that attempts to prevent overfitting for
overly complex models or sequences (Eq. 1). The observed
behavior can be understood by examination of the penalty
terms for AICGMM and BICRSS (Eqs. 2 and 5). Because
the number of level transitions or change points is a stochas-
tic function of the length of the time series, BICRSS will
generally have a lower penalty than AICGMM for shorter
traces with few transitions. For short traces with a low
SNR, AICGMM is likely to underfit the number of distinct in-
tensity levels because of the small amount of data and rela-
tively large variation around each level, whereas the
relatively smaller penalty for adding a level with BICRSS

means that such underfitting is less likely (Fig. 1, top). How-
ever, the lower penalty for additional levels also means that
BICRSS tends to split levels with heterogeneous event inten-
sities into multiple sublevels because of a marginal increase
in transitions per sublevel compared to a significant reduc-
tion in the sum of squared residuals. The amount of hetero-
geneity in each level will increase with the number of
transitions into each level, which increases with the length
of the series. Also, as SNR increases, such heterogeneity be-
comes more distinct. Thus, for longer traces with a high
SNR, heterogeneous event intensities are likely to be over-
fitted by BICRSS in comparison to AICGMM (Fig. 1, middle).
In the absence of heterogeneous state intensities, BICRSS

either matches or outperforms AICGMM for most experi-
mental conditions (Figs. S7 and S8). However, AICGMM

continues to outperform BICRSS in a few cases for longer
traces with high SNR and rapid transition rates (Fig. S7).
This, again, can be understood by examination of the pen-
alty terms for each OC (Eqs. 2 and 5). At faster rates,
long traces will have large numbers of change points that
result in a larger penalty term for BICRSS than for AICGMM.
Because of this larger penalty, BICRSS is more prone to
underfit these traces than AICGMM.

These trends in OC performance were consistent for both
Gaussian and photon-based Poisson noise, suggesting that
DISC can be applied to data with both types of noise despite
the GMM-based OCs assuming Gaussian distributed noise
(see Materials and methods) (Figs. S9–S16). As compared
to simulations with Gaussian noise, the upper limit of per-
formance for simulations with Poisson noise was a bit lower
because of larger noise envelopes in high-intensity states.



FIGURE 1 Optimal choice of AICGMM vs. BICRSS depends on experimental conditions. (Top and middle) Examples of simulated SM time series for the

four-site model in Fig. S1 with (gray) and without (black) added noise and per-event state intensity heterogeneity. Traces are overlaid with DISC’s ideal-

ization of the noisy data using either AICGMM (blue) or BICRSS (orange). Histograms of the noisy data are shown to the right overlaid with mixtures of

Gaussians fitted to the data in each uniquely identified level for both the true noiseless series and the result of each idealization. AICGMM tends to underfit

shorter series with lower per-site signal-to-noise ratios (SNRS) (top, SNRS ¼ 3), whereas BICRSS tends to overfit longer series with higher SNRS (middle,

SNRS¼ 6; notice that true levels are split into multiple nearby sublevels). Note that noise increases with observed intensity level such that the effective signal/

noise for events with multiple occupied sites will be less than SNRS (see Materials and methods). (Bottom) Summary of performance for DISC’s idealization

of simulated noisy SM time series across a range of series lengths and SNRS for k ¼ 0.005 fs. Rate � 10 implies k ¼ 0.05 fs. Mean (line) and SD (shaded

region) for F1 scores (0–1: worst to perfect; Eq. 15) for 10–1000 simulated time series at each unique set of conditions (number of samples and SNRS) ideal-

ized with DISC using AICGMM, BICRSS, BICGMM, HQCGMM, or MDL (see Materials and methods). See Figs. S2–S18 for additional conditions and models.

To see the figure in color, go online.

Unsupervised criteria selection for DISC
This effect was exacerbated in simulations with low photon
counts.

The relative success of AICGMM compared to BICGMM

suggested that an evaluation of AICRSS (Eq. 4) was neces-
sary to compare to BICRSS. For two of the tested models,
AICRSS performs consistently worse than BICRSS across
the evaluated conditions (Figs. S17 and S18). AICRSS tends
to overfit in comparison to BICRSS because of its relatively
smaller penalty term for added states and/or transitions. For
longer series with higher SNRs in which BICRSS already
tends to overfit, AICRSS only exacerbates the overfitting.
Therefore, AICRSS was not included in further analyses.
Analogously, AICGMM performs better than BICGMM

because it is less prone to underfitting because of its smaller
penalty term. We note, however, that there was a slight pref-
erence for BICGMM over AICGMM at the highest SNRs and
rates for some models. In this regime, overfitting noise fluc-
tuations and rapid flickery transitions is mitigated by the
Biophysical Journal 120, 4472–4483, October 19, 2021 4477
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higher penalty term for BICGMM. Thus, for data at higher
SNRs and rates than tested here, it is possible that BICGMM

would be a more optimal choice. Given that most fluores-
cence-based SM series fall in the range of tested conditions,
we focus on AICGMM.

Optimal idealization with DISC across data conditions re-
quires selection between at least two OCs such as AICGMM

or BICRSS based on the number of samples and SNR in the
time series. For SM fluorescence measurements in which
fluorophore bleaching and spatial or temporal heterogeneity
in excitation power can lead to stochastic variability in both
the number of samples and SNR across molecules, this
choice should optimally be made on a per-molecule basis.
FIGURE 2 A linear decision boundary for the optimal choice of either

AICGMM or BICRSS. Heatmap of the degree of preference for AICGMM

vs. BICRSS from 0 to 1 (see Eq. 17) is shown for simulations of the four-

site binding model shown in Fig. S1 with state intensity heterogeneity. Pref-

erence was determined from 1000 simulated time series for each unique

pair of conditions (SNRS and number of samples in the time series). Given

nonuniform noise across intensity levels, preference is shown as a function

of the effective SNR of each trace (see Materials and methods) rather than

the average simulated SNRS. The white line denotes the linear decision

boundary determined by the SVM classifier. Boundaries for additional

models with and without state intensity heterogeneity are shown in Figs.

S23 and S24. To see the figure in color, go online.
Optimization of a variable penalty
hyperparameter does not outperform a simple
choice between either AICGMM or BICRSS

Given the dependence of DISC’s performance on the pen-
alty term of the chosen OC, we explored whether optimizing
a variable penalty term for a given OC would further
enhance performance. We introduced a hyperparameter l

that scales the penalty term (Eq. 16). Using AICGMM,
BICRSS, or MDL as the framework for the OC, we scaled
l from 0.001 to 100 and chose the value of l that maximized
the OC’s performance for a given set of experimental condi-
tions (see Materials and methods) (Figs. S19–S22). Notably,
all the GMM-based OCs differ solely in their scaling of the
penalty term, meaning l evaluation of AICGMM is inclusive
of similar evaluations with BICGMM or HQCGMM. This
markedly improved performance for each OC in their
respective problematic regimes. However, in nearly all con-
ditions, AICGMM, BICRSS, or MDL optimized with this
approach did not outperform the better of either AICGMM

or BICRSS with l ¼ 1. Although it is theoretically possible
to fit a curve for a given OC’s optimal l at every experi-
mental condition to guarantee peak performance, the
optimal l is relatively model dependent (Figs. S19–S22).
This curve-fitting approach would therefore overfit the un-
derlying training models, limiting its utility for many
SM experiments. In contrast, a simple selection between
AICGMM or BICRSS is practical and generally sufficient
for optimal performance on a per-molecule basis.
A decision boundary for selecting the optimal OC
on a per-molecule basis

To automate the unsupervised optimal choice of either
AICGMM or BICRSS on a per-molecule basis, we used a ma-
chine learning tool, the SVM, to identify a two-dimensional
linear decision boundary based on number of samples and
the effective SNR in each time series (see Materials and
methods) (Fig. 2). For each unique pair of conditions (number
of samples and effective SNR), Fig. 2 illustrates the relative
preference for AICGMM over BICRSS based on F1 score
4478 Biophysical Journal 120, 4472–4483, October 19, 2021
(Eq. 17). The boundary between regimes of highBICRSS-pref-
erence and high AICGMM-preference is well described by a
line, and more complex nonlinear boundaries were unneces-
sary. Constraining the boundary to a linear SVM also pre-
vented overfitting small fluctuations in the training data set.

A similar linear decision boundary was determined for
each model in Fig. S1 for simulations both with and without
per-event state intensity heterogeneity (Figs. S23 and S24).
The boundaries for each model were largely similar, with
the primary difference being a slight shift to lower SNR
for the simpler two-state models at one or two sites. None-
theless, the same boundary determined for the more
complex four-site and three-state models was also appro-
priate for the simpler one- and two-site models given
the broad region of roughly equivalent preference for
AICGMM or BICRSS in the simpler models. Here, we
selected the boundary for the four-site binding model as
appropriate for all tested models. This boundary is given
by log10(#samples) ¼ �0.49SNReffective þ 4.69. For a given
model, the determined boundary was somewhat dependent
on transition rate, with small shifts in intercept or slope
across rates (Fig. S25). However, the overall cluster of
boundaries across rates was highly consistent with each
model’s overall boundary. Although boundaries were highly
similar for data both with and without per-event state
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intensity heterogeneity, BICRSS was generally either
optimal or equivalent to AICGMM across tested conditions
in the absence of heterogeneity (Figs. S23 and S24). Thus,
the need for an automated per-molecule selection of OC is
much clearer when the data include such heterogeneity.
Nonetheless, use of the identified boundary does not harm
idealization when no per-event heterogeneity is observed.
We cannot rule out that some mechanisms may give rise
to time series with very different decision boundaries. How-
ever, the set of models and range of simulated conditions
covers representative data for typical SM fluorescence ex-
periments. Thus, the identified boundary is likely to be rele-
vant for many SM imaging data sets or similar data.
FIGURE 3 Estimation of the average intensity level separation and

noise in a time series. (Top left) Idealization of a noisy time series using

DISC with BICRSS. (Top right) Histogram of the residuals after subtract-

ing the idealization from the noisy time series to the left. The SD s of

the distribution of residuals is taken as the estimate for the average noise

in the observations. (Bottom left) Histogram of step heights from the

idealized series above in which each step is duplicated according to

the number of samples in the preceding and following dwells (see

Results). The mean of the histogram (solid line) after discarding step

heights less than 2s (dashed line) is taken as the estimate for the average

intensity level separation in the time series (DIavg). Estimated SNR ¼
DIavg/s. (Bottom right) Estimated versus effective SNR (see Materials

and methods) summarized across simulated time series for all tested

models in Fig. S1 under all tested conditions (SNRS, number of sample

points per trace, and average transition rates). Mean (solid line) and SD

(shaded region) across time series. Dashed diagonal line indicated per-

fect estimation.
Estimation of effective SNR for SM time series

To use this decision boundary, one must estimate the
average separation in intensity levels (DIavg) and the over-
all noise (s) of each time series in an experimental data set.
Therefore, we developed an unsupervised approach to esti-
mate the effective SNR of an SM time series (Fig. 3). First,
we apply DISC using BICRSS to generate an initial ideali-
zation that may overfit, but likely does not underfit, the data
(Fig. 3, top left). The SD of the residuals between this
initial fit and the noisy data is taken as our overall noise es-
timate s (Fig. 3, top right). To estimate DIavg, we first find
the absolute value of the change in intensity levels at each
change point i in the idealized series (DIi). We then
generate an array containing ni copies of each step DIi,
where ni is the number of samples between changepoint i
� 1 and i þ 1. This procedure ensures that changes in in-
tensity are weighted according to the relative fraction of
the series that they define. To avoid inclusion of small in-
tensity changes due to BICRSS overfitting noise fluctua-
tions, we only consider change points at which DIi > 2s.
The mean of the resulting array of DIi-values is taken as
our signal estimate DIavg (Fig. 3, bottom left). Finally, the
effective SNR is estimated as the ratio DIavg/s.

We tested the SNR estimation approach described above
by comparing it to the known effective SNR for each simu-
lated series for each of the models in Fig. S1 with and
without state intensity heterogeneity. In all cases, this esti-
mation procedure provided a good approximation of the
known effective SNR (Fig. 3, bottom right). SNR tended
to be slightly overestimated for traces with low effective
SNRs (around 2) and underestimated for traces with high
effective SNRs (around 6–7). However, over- and underes-
timation was marginal and is unlikely to have a major
impact on choice of OC for the identified decision boundary.
AutoDISC: a completely unsupervised workflow
for optimal per-molecule performance

With the linear decision boundary for optimal choice of
either AICGMM or BICRSS and the SNR estimation
approach described above, we can now establish a
completely unsupervised workflow, AutoDISC, for opti-
mizing the DISC algorithm on a per-molecule basis
(Fig. 4). The workflow for an individual time series is as
follows: 1) apply DISC with BICRSS to idealize the time se-
ries. 2) Estimate the effective SNR of the series. 3) Based
on the number of samples and the estimated effective SNR,
select the optimal OC based on the linear decision bound-
ary between AICGMM and BICRSS. 4) If AICGMM is
optimal, apply DISC with AICGMM to idealize the time
series. Otherwise, use the initial idealization. This work-
flow allows unsupervised per-molecule idealization of
noisy SM data with stochastic variation in series duration,
SNR, and event intensities typical of many SM fluores-
cence imaging data sets.
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by DISC.
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Comparison to other unsupervised idealization
methods

AutoDISC was benchmarked by comparison to the unsuper-
vised idealization methods STaSI and AutoStepfinder
(Fig. 5) (23,31). Idealization of simulated series for
two-state dynamics at one or four sites and three-state cyclic
dynamics was evaluated using either AutoDISC, STaSI, or
AutoStepfinder across a range of conditions (SNRS, number
of samples per trace, and transition rates) according to F1
score. AutoDISC either outperformed or was equivalent to
all other methods across models and nearly all conditions
tested both with and without per-event state intensity hetero-
geneity (Figs. 5 and S26–S31).

The best competitor, STaSI, had similar or even in a few
cases slightly better F1 scores to AutoDISC for shorter se-
ries with low SNRS and slow transition rates but was
much less favorable for longer traces with higher SNRS

and faster transition rates, consistent with previous observa-
tions based on BICGMM (13). This performance can be un-
derstood based on two observations. First, STaSI tends to
miss many short-lived events, which is exacerbated under
conditions of faster dynamics. In cases in which all sojourns
in an intensity level are brief, STaSI may ignore the level
completely (Fig. 5, middle). Second, in the presence of
per-event state intensity heterogeneity, STaSI assigns
numerous unique levels for each of these events rather
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than a single global level as correctly identified by
AutoDISC (Fig. 5, top). This results in overly complex
idealized series with extra states and spurious intrastate tran-
sitions that challenge automated screening or analysis.

AutoStepfinder performed similarly to AutoDISC and
STaSI for shorter series with slow dynamics. However, F1
scores for AutoStepfinder were consistently lower than
those for either STaSI or AutoDISC for nearly all other
conditions tested. The relatively poorer performance of
AutoStepfinder was primarily the result of overfitting noise
fluctuations, thereby resulting in the misidentification of
short-lived dwells in nonexistent states (Fig. 5, top and
middle). Such overfitting occurred in both the presence
and absence of per-event state intensity heterogeneity, sug-
gesting that its penalty for additional states is often too
lenient. In the presence of per-event state intensity heteroge-
neity, AutoStepfinder behaves similarly to STaSI in that it
assigns numerous unique levels for each event rather than
identifying the true single global level.

AutoDISC performs well at faster transition rates regard-
less of heterogeneity for more complex models with F1
scores substantially larger than the next-best tested method
as series length increases. By optimally selecting the appro-
priate OC, equivalent or better performance is also achieved
under most other conditions. Furthermore, AutoDISC is the
only tested method that is consistently robust to per-event
state intensity heterogeneity. Given the presence of such fea-
tures in many SM fluorescence experiments, AutoDISC is
an ideal choice for automated analysis or screening of these
data sets.
DISCUSSION

The performance of the DISC algorithm with each of
six different OCs (BICGMM, BICRSS, AICGMM, AICRSS,
HQCGMM, and MDL) was investigated for simulations re-
flecting typical SM fluorescence time series observations un-
der variable experimental conditions. Each OC differentially
impacts DISC’s performance for different conditions, with
the SNR and number of samples in a time series being the pri-
mary determinants for the optimal OC. For nearly all condi-
tions tested, the OC with the best F1 score was either BICRSS

or one of the GMM-based OCs such as AICGMM. BICRSS is
typically optimal for time series with few samples and/or a
low SNR, whereas AICGMM is typically optimal for time se-
ries with a thousand or more samples and high SNR. This dif-
ference in behavior can largely be attributed to the different
penalty terms for each OC and the GMM likelihood distribu-
tions. However, optimization of a variable penalty term does
not generally outperform either AICGMM or BICRSS, suggest-
ing that a simple choice between the two OCs is sufficient for
optimal performance by DISC in nearly all cases. Examina-
tion of the optimal OC under variable conditions (i.e., SNR
and number of samples) reveals a general linear decision
boundary that can be used to select the optimal OC for a



FIGURE 5 Comparison of AutoDISC, STaSI, and AutoStepfinder. (Top andmiddle) Examples of simulated SM time series for the three-state cyclic model

(top; SNRS ¼ 7, kf ¼ 0.01 fs) and four-site model (middle; SNRS ¼ 6, k¼ 0.05 fs) shown in Fig. S1 with (gray) and without (black) added noise and per-event

state intensity heterogeneity. Simulated traces are overlaid with idealizations from AutoDISC (blue), STaSI (yellow), and AutoStepfinder (orange) (23,31).

Histograms of the noisy data are shown to the right of each series overlaid with mixtures of Gaussians fitted to the data in each uniquely identified level for

both the true noiseless series and the idealizations. (Bottom) Summary of each method’s idealization performance for varying series length, SNRS, and rate

constant k using the four-site model. Mean (line) and SD (shaded region) for F1 scores (0–1: worst to perfect; Eq. 15) for 10–1000 simulated time series at

each unique set of conditions (number of samples and SNRS) are given. See Figs. S26–S31 for additional conditions and models. To see the figure in color,

go online.

Unsupervised criteria selection for DISC
given set of conditions.We further developed an estimator for
the effective SNR of experimental SM time series that relates
intensity level separation and Gaussian noise. Together, these
developments establish AutoDISC: a completely unsuper-
vised workflow for the DISC algorithm that automates selec-
tion of the optimal OC on a per-molecule basis. AutoDISC
performs favorably compared to other contemporary unsu-
pervised idealization approaches on time series typical of
SM fluorescence experiments.
Fluorescence imaging is a common approach formassively
parallel observations of SM time series (1,3,6,15). Critically,
effective SNRs in SMfluorescence data sets are often near our
derived decision boundary, at which optimal choice of OC is
most impactful. Furthermore, stochastic fluorophore bleach-
ing and nonuniformities in the optical pathways result in
per-molecule variation in properties such as the observation
time window and the ratio of the fluorescence intensity sepa-
ration between distinct states to the noise within each state
Biophysical Journal 120, 4472–4483, October 19, 2021 4481
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(24,25). In addition to uncertainty regarding the underlying
mechanism, per-molecule variation in state intensity levels
challenges analysis with approaches such as HMMs having
user-defined state intensity distributions. Furthermore, for
such large data sets, it is often the case that only a subset of
molecules exhibits thebehavior of interest. It is therefore ideal
to avoid computationally intensive analyses such as HMMs
on the potentially large fraction of nonrelevant molecules.
Rapid, unsupervised approaches are thus ideal in many cases,
either as a complete analysis or for prescreening to identify a
subset of molecules for further analysis.

DISC is a recently developed, largely unsupervised
approach for idealization of noisy SM time series that auto-
mates detection of the intensity levels within each individual
time series without requiring postulation of a specific mech-
anistic model (13). When possible, the additional constraint
imposed by global optimization of a specific molecular
mechanism or a singular set of state intensity distributions
should be preferred. However, this approach is not appro-
priate for unknown mechanisms or experimental data with
per-molecule variability in state intensity emissions. DISC
not only handles these data efficiently but is also robust to
within-state intensity fluctuations that can arise from chang-
ing orientation in polarized and/or exponentially decaying
excitation fields or dye photodynamics (14,15,34). Further-
more, DISC is orders of magnitude faster than HMM
methods while maintaining state-of-the-art accuracy, preci-
sion, and recall (13). However, DISC relies on a user-spec-
ified OC to guide its idealization. Here, we show that the
optimal choice of OC depends primarily on both the number
of sample points and the signal and noise properties in each
time series. Thus, maximizing the performance of DISC on
experimental data sets with variability in these parameters
requires selection of the optimal OC on a per-molecule
basis.

By automating the per-molecule choice of OC, we
develop a fully unsupervised workflow, AutoDISC, that
maximizes DISC’s performance across data sets with sto-
chastic variation in observation conditions. AutoDISC
either outperforms or matches two other unsupervised ideal-
ization methods (STaSI and AutoStepfinder) across nearly
all conditions tested. One of the advantages of AutoDISC
over these other methods is its ability to robustly identify
global intensity levels in the presence of per-event intensity
heterogeneity. For data that include such heterogeneity, this
is highly beneficial for automated identification and analysis
of the dynamics of interest. However, if one’s goal is to iden-
tify the observed local intensity of each event rather than the
global state level, then an alternate method such as STaSI or
AutoStepfinder may be preferred. We also note that we only
evaluated data with up to five unique states similar to
smFRET experiments, whereas some observations such as
stepwise motion of molecular motors or extension in molec-
ular tweezers can give rise to many more levels (35,36). In
principle, DISC should continue to perform well with many
4482 Biophysical Journal 120, 4472–4483, October 19, 2021
additional levels, provided they are reasonably well sepa-
rated. Another advantage of AutoDISC is its relatively bet-
ter performance for series with faster dynamics, data that
have historically been reliant on computationally expensive
approaches such as HMMs (37,38).

As compared to DISC, AutoDISC’s computational cost is
either marginal or at most doubled owing to potentially
rerunning DISC with AICGMM. Thus, this workflow does
not negate the benefit of DISC’s computational speed
(13), making it an attractive approach for large high-
throughput data sets. Given the prevalence of per-molecule
stochastic variation in SM fluorescence observations and
effective SNRs that are often near our derived decision
boundary, AutoDISC provides an immediately useful tool
to both optimize and speed exploration and analysis of these
and similar SM data sets.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.08.045.
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