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Abstract: Reverse vaccinology is an outstanding strategy to identify antigens with high potential for
vaccine development. Different parameters of five prediction programs were used to assess their
sensitivity and specificity to identify B-cell epitopes of Chikungunya virus (CHIKV) strains reported
in the IEDB database. The results, based on the use of 15 to 20 mer epitopes and the polyproteins
to which they belong, were compared to establish the best parameters to optimize the prediction of
antigenic peptides of the Mexican strain CHIKV AJV21562.1. LBtope showed the highest specificity
when we used the reported epitopes and polyproteins but the worst sensitivity with polyproteins;
ABCpred had similar specificity to LBtope only with the epitopes reported and showed moderate
specificity when we used polyproteins for the predictions. Because LBtope was more reliable in
predicting true epitopes, it was used as a reference program to predict and select six novel epitopes of
the Mexican strain of CHIKV according to prediction frequency, viral genome localization, and non-
homology with the human proteome. On the other hand, six bioinformatics programs were used with
default parameters to predict T-cell epitopes in the CHIKV strains AJV21562.1 and AJV21561.1. The
sequences of the polyproteins were analyzed to predict epitopes present in the more frequent HLA
alleles of the Mexican population: DQA1*03011, DQA1*0401, DQA1*0501, DQB1*0201, DQB1*0301,
DQB1*0302, and DQB1*0402. Fifteen predicted epitopes in the non-structural and 15 predicted
epitopes in the structural polyprotein (9- to 16-mers) with the highest scores of each allele were
compared to select epitopes with at least 80% identity. Next, the epitopes predicted with at least two
programs were aligned to the human proteome, and 12 sequences without identity with the human
proteome were identified as potential antigenic candidates. This strategy would be useful to evaluate
vaccine candidates against other viral diseases affecting the countries of the Americas and to increase
knowledge about these diseases.
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1. Introduction

Chikungunya virus (CHIKV) is an enveloped, single-stranded, positive-sense RNA
virus belonging to the genus Alphavirus of the family Togaviridae [1,2]. It contains a
genome of approximately 12 Kb with two open reading frames with a cap sequence at its
5′ end and a poly(A) at the 3′ end; these two sequences encode two polyproteins cleaved
by viral and cellular proteases to generate four non-structural proteins (nsP1, nsP2, nsP3,
nsP4) and five structural proteins (C, E3, E2, 6K, E1), respectively [3,4].

Phylogenetic analyses have revealed the presence of three separate lineages of CHIKV
strains: West Africa, Asia, and East/South/Central Africa (ESCA), and these lineages
are ~92.5–98% identical at the amino acid sequence level [5]. Strains from India and the
Indian Ocean are separated into two independent sub-lineages, possibly derived from an
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East African ancestral genotype [6]. Analyses of complete CHIKV genomes from viruses
isolated in 2014 from 14 Caribbean islands, the Bahamas, and two mainland countries in
the Americas confirmed that all belonged to the Asian genotype. They clustered together
with the other Caribbean and mainland sequences isolated during the American outbreak,
forming a monophyletic ‘Asian/American’ lineage that is divided into two well-supported
clades [7].

Infections caused by CHIKV generate annual epidemic outbreaks in tropical and
subtropical regions in the world where the mosquito species Aedes aegypti and Aedes
albopictus circulate and can transmit this arbovirus. Patients usually have a fever, rash,
and joint pain that can persist for months or years, and some patients develop destructive
arthropathy/arthritis [8] that can negatively affect their quality of life and their daily
usual activities, resulting in significant economic losses to them and challenges to the
health systems.

In 2014, more than 1 million suspected cases of chikungunya disease were reported in
the Americas. In 2015, in the same region, 693,489 suspected cases and 37,480 confirmed
cases of chikungunya fever were reported to the Pan American Health Organization
(PAHO) regional office, of which Colombia bore the biggest burden with 356,079 suspected
cases. In 2016, a total of 349,936 suspected and 146,914 laboratory-confirmed cases were
reported to the PAHO regional office, i.e., half the burden compared to the previous year.
Countries reporting the most cases were Brazil (265,000 suspected cases), Bolivia, and
Colombia (19,000 suspected cases, in each) [9]. In the case of Mexico, the Ministry of
Health reported 11,199 confirmed cases of chikungunya fever in 2015 [10] and 755 cases in
2016 [11]. However, the number of cases may have been higher than reported due to the
limitations of the diagnosis. This scenario could easily happen again due to new strains of
CHIKV introduced by the waves of migrants that occur annually in Mexico; therefore, we
have to find alternatives to diminish the number of cases of chikungunya fever emerging
in America.

Vaccination would be of great relevance for the control of this viral infection, and di-
verse attempts have been made to develop vaccines against CHIKV; however, no approved
vaccines are available so far. Thus, it is necessary to develop strategies to design safe and
effective vaccines with low cost to apply in countries where CHIKV is endemic.

Since the alphavirus E2 glycoprotein is the major target of the host immune re-
sponse [12], linear B-cell epitopes are excellent candidates for the development of epitope-
based vaccines. In this regard, several approaches to design vaccine candidates against
CHIKV have been based on antigenic epitopes predicted with different tools of the IEDB
methods, and some of them have been used to construct a multi-epitope vaccine [13,14]).
Those epitopes identified in silico were assumed as potentially effective candidates for vac-
cine development. However, it must be taken into account that some immunoinformatics
tools that are designed for B-cell epitopes require refinement to increase their prediction
specificity and sensitivity.

In this work, we aimed to establish the best parameters of five computational methods
to optimize the prediction of linear B-cell antigenic peptides in the polyprotein of the
Mexican CHIKV strain AJV21562.1. In addition, T-cell epitopes of CHIKV with wide allelic
distribution in the Mexican population were predicted through six other computational
methods. Sequences of 15- to 20-mer B-cell epitopes retrieved from the IEDB database and
the polyprotein sequences to which they belong were analyzed using five bioinformatics
programs (LBtope, ABCpred, AAP, FBCPred, and BCPred), and the parameters were
adjusted to predict a high percentage of the same sequences. The optimized parameters
were used to predict B-cell epitopes of the structural polyprotein of the Mexican strain, and
the results were compared with the predicted T-cell epitopes in order to identify novel B-
and T-cell antigens to develop vaccine candidates.
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2. Materials and Methods
2.1. Selection of Control B-Cell Epitopes

Epitopes from the IEDB database, Version 2.20, were selected as controls based on the
following criteria:

1. Epitopes of the alphavirus CHIKV or Sindbis virus structural proteins;
2. Linear B-cell epitopes;
3. Epitopes positive or highly positive by ELISA test using sera from humans infected

with CHIKV (positive controls); and
4. Epitopes negative by ELISA or another serological test using sera from humans or

primates (negative controls).

2.2. Analysis of Specificity and Sensibility of the Control B-Cell Epitopes Prediction

The amino acid sequences of positive and negative controls were analyzed with the
programs LBtope [15], ABCpred [16], AAP, FBCPred, and BCPred [17] available on the
internet. In each program, the thresholds and the lengths of the amino acids were adjusted
according to the length of each control epitope.

ABCpred predicts immunodominant linear B-cell epitopes based on artificial neural
networks (machine learning technique) using fixed-length patterns from 10- up to 20-
mers [16]. LBtope identifies linear B-cell epitopes based on support vector machines (SVMs)
built with more datasets than the ABCpred program. The LBtope program selects epitopes
with a percentage of probability of more than 60% for binding to MHC molecules [15]. This
program uses the platform of the variable_non_redundant dataset to predict sequences
of several sizes. FBCPred predicts epitopes of any length and has been evaluated on
unique epitopes without previous homology reduction [17]. The BCPred program predicts
B-cell epitopes using the SVM method and was trained on a homology-reduced dataset
of linear B-cell epitopes (with more than 80% sequence identity) derived from a dataset
previously used to evaluate ABCpred [18]. The length of the epitopes and the threshold
can be adjusted by the user. The AAP program is based on an antigenicity scale of paired
amino acids (i.e., AAP) from positive epitopes of the BciPep database and negative epitopes
of the Swiss-Prot databases [19]. BCPred and AAP allow the user to select between 12 and
22 pairs of amino acids outlets.

The predicted epitopes with more than 80% sequence identity to the control epitopes
were used to calculate sensitivity (Sn) and specificity (Sp) according to these formulas:

Sn = TP/(TP + FN) (1)

Sp = TN/(TN + FP) (2)

TP (total true positives) = positives by ELISA and predicted with any program;
TN (total true negatives) = negatives by ELISA and no predicted with any program;
FN (total false negatives) = positives by ELISA and no predicted with any program;
FP (total false positives) = negatives by ELISA and predicted with any program.

2.3. Analysis of Specificity and Sensitivity of the Control B-Cell Epitopes Predictions from the
Alphavirus Polyproteins

The sequences of the structural polyproteins of the alphavirus PDB ID: 3N42 (DQ462750),
PDB ID: 3N44 (DQ462746) [20], PDB ID: 3J2W (AY726732) [21], and PDB ID: 3J0F (JQ771794) [22]
were downloaded from the Protein Data Bank. They were analyzed with the aforementioned
programs, and we adjusted the thresholds and the number of the amino acids as was done
with the control epitopes. The predicted epitopes with >80% similarity to the controls were
used to calculate the specificity and sensitivity of each program as previously described.
The lowest levels of FP and FN were registered to identify the best thresholds.
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2.4. Selection of the Best Predictor Programs

The programs LBTope [15], ABCPred [16], and AAP, FBCPred, and BCPred [17]) were
used to predict B-cell epitopes which were then compared to select the program with
the highest specificity (least amount of FP) as described above, despite having a lower
sensitivity (lower amount of TP), because it is preferable to predict fewer true positives
than to predict many epitopes including some false positives.

2.5. Prediction and Selection of B-Cell Epitopes from a Mexican Strain of CHIKV

LBtope with a threshold of 0.7 was chosen as a reference program to select similar
epitopes predicted with the other programs and construct a binary matrix. Briefly, the pre-
dicted epitopes in each program were compared with the 20-mer-long epitopes predicted
with the LBtope program. Epitopes predicted with at least 60% identity (12 amino acids)
with the epitopes predicted by LBtope were labeled with 1; the epitopes not predicted or
with less than 60% identity were labeled with 0. The prediction frequency of each epitope
was calculated based on the number of programs in which it was predicted.

To select epitopes with the highest antigenic potential, we clustered epitopes with
more than 70% overlapping amino acids. Groups containing 10 to 14 overlapping epitopes
were divided into two subgroups to homogenize the length of the epitopes in ~20-mers,
whereas the epitopes with less than 75% prediction frequency were excluded.

All the epitopes of each group or subgroup were superimposed forming a longer
peptide that included all the sequences without repeating them. Finally, amino acids with
100% identity (core) were identified to determine representative antigenic sequences with
no identity with the human proteins. To this end, the selected CHIKV sequences were
aligned with the human proteome (TaxId: 9606) using the BLAST program, Version 2.10.1,
under default conditions.

2.6. Prediction and Selection of T-Cell Epitopes from a Mexican Strain of CHIKV

Antigenic T-cell epitopes were identified through a similar approach conducted to
identify B-cell epitopes. Briefly, the sequence of the structural and non-structural polypro-
teins of the CHIKV strains (AJV21562.1 and AJV21561.1, respectively) retrieved from
GenBank were analyzed with the default parameters of six computational programs
(IEDB Analysis Resource [23], NetMHCIIpan 3.1 [24], RANKPEP [25], PREDIVAC [26],
ProPed [27], and EpiTOP 1.0 [28]) to predict epitopes presented by the more frequent
HLA alleles in the Mexican population DQA1*03011, DQA1*0401, DQA1*0501, DQB1*0201,
DQB1*0301, DQB1*0302, and DQB1*0402.

IEDB includes a variety of binding prediction algorithms (machine learning-based
methods (ARB, NN-align, SMM-align), a combinatorial library (PROPED), and a combined
consensus approach trained with the complete dataset [23]) to determine the affinity of
a panel of peptides to the MHC class II molecules covering 26 allelic variants with high
frequency in the human population [23]. NetMHCIIpan 3.1 is based on an ensemble of
artificial neural networks trained on quantitative peptide binding data covering multi-
ple MHC class II molecules. The identification of the binding core by neural networks
ensembles is improved with the network alignment procedure called “offset correction”
(fully automated and unsupervised, which means that no information about the actual
location of the binding core is used to define the offset values) [24]. RANKPEP uses
position-specific scoring matrices (PSSMs) or profiles for the prediction of peptide-MHC
class I and peptide-MHC class II binding. The server determines whether the C terminus
of any predicted MHC class I ligand may result from proteasomal cleavage. Predictions
are focused on conserved T-cell epitopes to thwart mutation as an immune evasion mecha-
nism [25]. The PREDIVAC predictions are based on the concept of specificity-determining
residues applied to the protein phosphorylation site prediction. The method was devel-
oped using high-affinity HLA class II peptide binding data because of the correlation with
promiscuous CD4+ T-cell recognition and immunodominance. A central finding was the
highest specificity delivered by the method in the identification of immunodominant and



Viruses 2021, 13, 2360 5 of 13

promiscuous CD4+ T-cell epitopes [26]. ProPed is a graphical tool for predicting MHC class
II binding regions. The server implements a matrix-based prediction algorithm, employing
an amino acid/position coefficient table deduced from the literature, and might be useful in
locating the promiscuous binding regions that can bind to several HLA-DR alleles [27]. The
EpiTOP 1.0 server predicts MHC class II binding based on a quantitative structure/activity
relationship for ligands binding to 12 HLA-DRB1 alleles. Models derived were based on
combinations of different blocks of variables (cross-terms accounting for adjacent positions,
for every second position in the peptide, and for peptide/protein interactions). The external
predictive ability was tested using a set of 356 HLA-DRB1 binders with an r2 from 0.364 to
0.530. Peptide and protein positions involved in the interactions were analyzed in terms of
hydrophobicity, steric bulk, and polarity [28].

Fifteen predicted epitopes in non-structural and 15 predicted epitopes in the structural
polyprotein (9- to 16-mers), with the highest scores of each allele, were compared to select
epitopes with at least 80% identity. The prediction frequency of each epitope was calculated
based on the number of programs in which it was predicted, and the epitopes predicted by
fewer than two programs were discarded. Finally, the selected sequences were compared
with the human proteome (TaxId: 9606) using the BLAST program, Version 2.10.1, under
default conditions.

2.7. Structural Localization of the Identified Peptides

The sequences of the new epitopes predicted in this work, localized in the structural
polyprotein of CHIKV were mapped in the crystal structure of the protein retrieved from
the PDB ID 3N41 by using the PyMOL Molecular Graphics System, Version 2.0 [29].

2.8. Antigenicity Prediction

To determine whether the predicted epitopes induce T- and B-cell immune responses,
we analyzed the sequence of the CHIKV strain AJV21562.1 with VaxiJen [30]. In this regard,
the analysis considered the antigenic prediction to MHC class II molecules by using the
IEDB consensus and Vaxitop comparisons. Finally, we evaluated if the epitopes were
significantly predicted with both methods.

3. Results
3.1. Selection of Positive Control and Negative Control B-Cell Epitopes

Twenty-four positive epitopes and 33 negative epitopes were selected from the IEDB
database, in which they were registered with positive or highly positive immunoreactivity
or negative against CHIKV antibodies in infected human sera (Table 1).

Table 1. Control epitopes used in this work. Epitopes with positive or negative immunoreactivity were selected from the
IEDB database [20–22], Lum et al., 2013 [31], and Kam et al., 2014 [32]. aa, amino acids.

Epitopes from the IEDB Databases

No. Negative Epitopes Length in aa Positive Epitopes Length in aa

1 LAHCPDCGEGHSCHS 15 STKDNFNVYKATRPYLAHC 19

2 DCGEGHSCHSPVALE 15 PTEGLEVTWGNNEPYKYWPQLSTNGT 26

3 HSCHSPVALERIRNE 15 LLSMVGMAAGMCMCARRRCITPYELTPGATVPFL 34

4 PVALERIRNEATDGT 15 TDGTLKIQVSLQIGIKTDDSHDWTKLRYMDNHMPADAERAGL 42

5 RIRNEATDGTLKIQV 15 LTTTDKVINNCKVDQCHA 18

6 LKIQVSLQIGIKTDD 15 LTTTDKVINNCKVDQCHAAVTNHKKW 26

7 SLQIGIKTDDSHDWT 15 PTVTYGKNQVIMLLYPDHPTLLSYRN 26

8 IKTDDSHDWTKLRYM 15 STKDNFNVYKATRPY 15

9 SHDWTKLRYMDNHMP 15 CTITGTMGHFILARC 15

10 KLRYMDNHMPADAER 15 NHKKWQYNSPLVPRN 15

11 DNHMPADAERAGLFV 15 HIPFPLANVTCRVPK 15
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Table 1. Cont.

Epitopes from the IEDB Databases

No. Negative Epitopes Length in aa Positive Epitopes Length in aa

12 ADAERAGLFVRTSAP 15 VTYGKNQVIMLLYPD 15

13 AGLFVRTSAPCTITG 15 LEVTWGNNEPYKYWP 15

14 RTSAPCTITGTMGHF 15 GTAHGHPHEIILYYY 15

15 ILARCPKGETLTVGF 15 HPHEIILYYYELYPT 15

16 TMGHFILARCPKGET 15 KDIVTKITPEGAEEW 15

17 PKGETLTVGFTDSRK 15 LLQASLTCSPHRQRR 15

18 LTVGFTDSRKISHSC 15 EITVMSSEVLPSTNQEYI 18

19 ISHSCTHPFHHDPPV 15 HVKGTIDHPVLSKLKFTK 18

20 EVVLTVPTEGLEVTW 15 KPGKRQRMALKLEADRLF 18

21 IGREKFHSRPQHGKE 15 NIPISIDIPNAAFIRTSD 18

22 FHSRPQHGKELPCST 15 PISASFTPFDHKVVIHRG 18

23 QHGKELPCSTYVQST 15 TWNSKGKTIKTTPEGTEE 18

24 LPCSTYVQSTAATTE 15 YNYDFPEYGAMKPGAFGD 18

25 YVQSTAATTEEIEVH 15

26 MPPDTPDRTLMSQQS 15

27 PDRTLMSQQSGNVKI 15

28 MSQQSGNVKITVNGQ 15

29 TVNGQTVRYKCNCGG 15

30 TVRYKCNCGGSNEGL 15

31 SNEGLTTTDKVINNC 15

32 TTTDKVINNCKVDQC 15

33 QYNSPLVPRNAELGD 15

3.2. Program Validation Based on Predictions of Control B-Cell Epitopes

We obtained predictions with high Sp values (0.515–0.939) using a threshold of
0.7 to 0.85 (Table 2). All programs predicted more than 50% FP and less than 50% TP,
with low Sn values (0.167–0.50).

Table 2. Thresholds of each program with the highest amount of TP and the lowest amount of TN
control epitopes. The analysis of positive and negative control epitopes was made with each program
using different thresholds and lengths. The number of predicted TP, TN, FP, and FN sequences were
used to calculate sensitivity (Sn) and specificity (Sp).

Program ABCpred FBCPred LBTope BCPred AAP

Thresholds 0.85 0.85 0.7 0.8 0.7

Sn 0.208 0.458 0.167 0.417 0.500

Sp 0.909 0.727 0.939 0.727 0.515

TP 5 (20.8%) 11 (45.8%) 4 (16.7%) 10 (41.7%) 12 (50%)

FN 19 (79.2%) 13 (54.2%) 20 (83.3%) 14 (58.3%) 12 (50%)

TN 30 (90.9%) 24 (72.7%) 31 (93.9%) 24 (72.7%) 17 (51.5%)

FP 3 (9.1%) 9 (27.3%) 2 (6.1%) 9 (27.3%) 16 (48.5%)

The programs with the highest Sp were LBtope (Sp 0.939) and ABCpred (Sp 0.909),
followed by BCPred and FBCPred (both with Sp 0.727) and AAP (Sp 0.515) (Table 2). In
contrast, the LBtope and ABCpred programs predicted the least amount of FP and had
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the highest Sp, even though they had the lowest Sn (Table 2). The FBCPred and BCPred
programs showed an Sn (>0.4) twice the Sn of ABCpred and LBtope (Table 2). Finally, the
highest number of FP control epitopes were predicted with AAP; therefore, this program
was discarded for the following analysis.

3.3. Validation of Programs Based on Control B-Cell Epitopes Predicted in Alphavirus Polyproteins

To confirm the validation of the programs, we retrieved from PDB the alphavirus
sequences PDB ID: 3N42 (DQ462750), PDB ID: 3N44 (DQ462746) [20], PDB ID: 3J2W
(AY726732) [21], and PDB ID: 3J0F (JQ771794) [22]. These structural polyproteins were
analyzed with LBtope, ABCpred, BCPred, and FBCPred, as described in the Materials
and Methods section (Section 2). The predicted epitopes were compared with the control
epitopes to calculate the amount of TP, FN, TN, and FP, as well as Sn and Sp (Table 3).

Table 3. Thresholds of each program with the highest amount of TP and the least amount of TN
control epitopes predicted from structural polyproteins. The analysis of positive and negative control
epitopes was made with each program using different thresholds and lengths. The number of
predicted TP, TN, FP, and FN sequences was used to calculate Sn and (Sp).

Program ABCpred FBCPred LBTope BCPred

Thresholds 0.85 0.85 0.7 0.8

Sn 0.458 0.667 0.208 0.542

Sp 0.606 0.636 0.909 0.636

TP 11 (45.8%) 16 (66.7%) 5 (20.8%) 13 (54,2%)

FN 13 (54.2%) 8 (33.3%) 19 (79.2%) 11 (45.8%)

TN 20 (60.6%) 21 (63.6%) 30 (90.9%) 21 (63.6%)

FP 13 (39.4%) 12 (36.4%) 3 (9.1%) 12 (36.4%)

The program with the highest Sp was LBtope (Sp 0.909), followed by FBCPred and
BCPred (each with Sp 0.636). The ABCpred program showed a slightly lower Sp (0.606)
than FBCPred and BCPred (Table 3). Based on polyproteins, FBCPred and BCPred predicted
more TP (66.7% and 54.2%, respectively) using polyproteins than ABCpred (45.8%) and
LBtope (20.8%) (Table 3). ABCpred, FBCPred, and BCPred predicted more FP (36.4% to
39.4%) than LBtope (9.1%) with the polyproteins (Table 3). FBCPred, BCPred, and ABCpred
did not discriminate many positive epitopes from negative epitopes using polyproteins
even with a threshold greater than 0.7 (Table 3). Therefore, all programs predicted more
than 50% FP and less than 50% TP, observing Sn values between 0.208 and 0.667. Finally, Sn
increased in all programs using polyproteins for the prediction of epitopes. The program
with the highest Sn was FBCPred (0.667), followed by BCPred (0.542), ABCpred (0.458),
and LBtope (0.208).

3.4. Prediction and Selection of Novel B-Cell Epitopes of the Mexican CHIKV Strain

LBtope was selected as the best predictor program due to its highest Sp using se-
quences of positive control epitopes and structural polyproteins of CHIKV. Therefore, this
program (dataset variable_non_redundant) with a threshold of 0.7 was used to predict
171 (20-mer-long) epitopes from the CHIKV strain AJV21562.1, which were compared to
epitopes predicted with ABCPred, FBCPred, and BCPred with a threshold of 0.8 each.
A total of 145 epitopes with more than 60% identity were identified. Fifty-two epitopes
(30.40%) were predicted with one program in addition to LBtope, 76 epitopes (44.44%)
were predicted with two additional programs, and 17 epitopes (9.94%) were predicted with
three or more programs.

After elimination of 17 sequences with more than 80% of identity to the reported
sequence in the IEDB database, used as positive and negative controls (Table 1), 13 clusters
of 1 to 10 epitopes with more than 70% overlapping amino acids were obtained. Because
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most of the epitopes included in the clusters were predicted with one or two programs
(less than 75% prediction frequency) 70 epitopes were not chosen as a potential antigen
according to our criteria. Only seven new epitopes of CHIKV AJV21562.1 predicted with
all programs were identified as a potential candidate highly antigenic, three epitopes in the
E2 protein and two epitopes of the E1 protein, whereas one epitope was located in the S3
peptidase and one epitope was in a non-coding region (amino acids 61–80).

An epitope with 45% similarity to the human immunoglobulin heavy chain junction
human region (ID MOP20971.1 and MOK15443.1) was deleted. Thus, six sequences of
20–26 amino acids were identified as novel antigens potentially immunogenic and without
identity to the human proteome, which would avoid cross-reactivity with human antigens
(Table 4).

Table 4. Predicted B-cell epitopes of CHIKV Mexican strain. Epitopes of the structural polyprotein
AJV21562.1 were predicted with the programs LBtope (dataset variable_non_redundant), ABCPred,
FBCPred, and BCPred (see Materials and Methods section (Section 2)).

ID Protein Position
(Start)

Position
(End) Sequence

pep2 N/A 61 83 PRKNRKNKKQKQKQQAPRNNTNQ

pep25 Alpha E2 451 471 THPFHHDPPVIGREKFHSRPQ

pep157 Alpha E2 618 643 TLLSYRNMGEEPNYQEEWVTHKKEIR

pep91 Alpha E1 815 834 VIPNTVGVPYKTLVNRPGYS

pep107 Alpha E1 999 1018 PPFGAGRPGQFGDIQSRTPE

pep114 Alpha E2 646 665 VPTEGLEVTWGNNEPYKYWPQ

3.5. Prediction and Selection of Novel T-Cell Epitopes

A total of 210 T-cell epitopes predicted with bioinformatics programs were selected for
the seven DQ alleles, with more frequency in the Mexican population. Ninety-five (45.2%)
epitopes were predicted with the highest scores in most of the programs, of which 21% had
the same length, 60% shared at least 80% identity, and 19% had >80% identity and the same
scores in all programs. Finally, 12 sequences predicted by two or more programs with the
highest scores were identified as potential antigenic candidates (Table 5). None of these
epitopes showed identity with human proteins. The sequence RPGYSPMVLEMEL in the
epitope EC17-RPG was also predicted by LBTope, but it was only included only in Table 5
because it was more frequently predicted with methods for the T-cell epitopes prediction.

Table 5. Predicted T-cell epitopes of CHIKV Mexican strain. Epitopes of the structural AJV21562.1 and non-structural
AJV21561.1 polyproteins of CHIKV were predicted with the programs IEDB Analysis Resource, NetMHCIIpan 3.1,
RANKPEP, PREDIVAC, ProPed, and EpiTOP 1.0 (see Materials and Methods section (Section 2)).

Epitope ID Sequence Position Protein Allele

EC12-PFM PFMYNAMAGAYPSYST 182–197 nsP1 HLA-DQA1*05:01/DQB1*03:01

EC6-CST CSTYAQSTAATAEEIEVHM 478–496 E2 HLA-DQA1*04:01/DQB1*04:02
HLA-DQA1*03:01/DQB1*03:02

EC2-LQA LQAAQEDVQVEIDVEQLED 513–531 nsP1
HLA-DQA1*03:01/DQB1*03:02
HLA-DQA1*04:01/DQB1*04:02

HLA-DQA10501-DQB10201

EC18-QPL QPLFWMQALIPLAAL 763–777 E1 HLA-DQA10501-DQB10201

EC17-RPG RPGYSPMVLEMELLSVTLE 830–848 E1 HLA-DQA10501-DQB10201

EC20-MVL MVLEMELLSVTLEPTL 836–850 E1 HLA-DQA10501-DQB10201

EC15-EFA EFASAYRAHTASASAKLRV 926–944 E1 HLA-DQA1*05:01/DQB1*03:01

EC38-MTN MTNAVTIREAEIEVE 1142–1156 E1 HLA-DQA1*03:01/DQB1*03:02
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Table 5. Cont.

Epitope ID Sequence Position Protein Allele

EC4-GVG GVGLVVAVAALILIV 1225–1239 E1 HLA-DQA1*05:01/DQB1*03:01

EC30-NQL NQLNAAFVGQATRAG 1317–1331 nsP2 HLA-DQA1*05:01/DQB1*03:01

EC31-PSD PSDLDADAPALEPAL 1689–1704 nsP3 HLA-DQA1*03:01/DQB1*03:02

EC27-VHT VHTLFDMSAEDFDAI 2200–2216 nsP4 HLA-DQA10501-DQB10201

3.6. Mapping of the Identified Peptides

The structural polyprotein from the PDB ID: 3N41 sequence was modeled by using
the PyMOL Molecular Graphics System, Version 2.0 [29], to map the linear B-cell epitopes
predicted in this work. The epitopes pep25 (blue), pep114 (light blue), and pep157 (deep
purple) were together in the E2 protein, whereas pep91 (light orange) was localized in the
C-terminal, and pep107 (orange) was in the N-terminal of the E1 protein (Figure 1). The
pep157 was completely exposed on the surface of the E2 protein, while the other epitopes
were partially embedded in E1 or E2 proteins.

Figure 1. Three-dimensional localization of the predicted B-cell epitopes of CHIKV strain AJV21562.1. The pep25 (blue),
pep157 (deep purple), and pep114 (light blue) are in the E2 protein. The pep91 (light orange) and pep107 (orange) are in the
E1 protein.

The T-cell epitopes EC17-RPG (orange) and EC38-MTN (red) were partially ex-
posed, whereas EC20-MVL (cyan) and EC15-EFA (blue) were embedded in the E1 protein
(Figure 2).

The epitopes pep2, EC6-CST, EC18-QPL, and EC4-GVG could not be mapped in the
3N41 protein. In addition, we identified two new epitopes of the nsP1 and one epitope
in the protein nsP2, nsP3, and nsP4 proteins (data not shown) restricted to the MHC
class II complex.
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Figure 2. Three-dimensional localization of the predicted T-cell epitopes of Chikungunya virus strain AJV21562.1. The
epitopes EC17-RPG (orange), EC38-MTN (red), EC20-MVL (cyan), and EC15-EFA (blue) were localized in the E1 protein.

3.7. Antigenicity Prediction

The CHIKV strain AJV21562.1 sequence was analyzed with VaxiJen [30]. The predicted
epitopes pep25, pep157, pep91, pep107, EC6-CST, EC18-QPL, EC17-RPG, EC20-MVL, EC15-
EFA, EC38-MTN, and EC4-GVG, which are associated with Alpha E2 or Alpha E1 proteins,
were also identified by the IEDB consensus, whereas the pep2, pep114, EC12-PFM, EC2-
LQA (nsP1 protein), EC30-NQL (nsP2), EC31-PSD (nsP3), and EC27-VHT (nsP4) epitopes
were not predicted. Vaxitop was only able to predict the epitopes EC6-CST, EC18-QPL,
EC17-RPG, and EC15-EFA (Supplementary Information Table S1).

4. Discussion

In order to improve the specificity and sensitivity of our prediction of B-cell epitopes,
several thresholds in computational programs were used to analyze the prediction of con-
trol epitopes retrieved from the IEDB. As we expected, increasing the prediction thresholds
in some programs allowed us to discriminate between positive and negative epitopes
and to choose true antigenic epitopes. The LBtope and ABCpred programs predicted
the least amount of FP and had the highest Sp using control epitopes. Therefore, they
were the most reliable programs, even though they had the lowest Sn (Tables 2 and 3).
However, ABCpred predicted more FP than LBtope, with the polyproteins suggesting that
ABCpred is a moderately good predictor. In contrast, the LBtope program predicted the
lowest amount of FP and TP by analyzing control epitopes (16.7%) as well as polyproteins
(20.8%) (Tables 2 and 3), resulting in the best predictor. Finally, FBCPred and BCPred
could not discriminate between positive and negative control epitopes with both strategies.
Therefore, FBCPred and BCPred were considered poor predictors.

In general, when alphavirus polyproteins sequences were used to predict CHIKV
epitopes, Sn increased and Sp decreased in all programs. This suggests that more TP
and more FP could be predicted, as more neighboring amino acids flank the epitopes,
since changing an amino acid disrupts the epitope/antibody interaction [33]. In this sense,
Chua et al. [21] identified some mutations of neutralizing epitopes that alter the efficiency
of cross-neutralization between CHIKV genotypes.

Several of the positive control epitopes have not been predicted as TP, probably
due to different algorithms and models of the bioinformatics programs used, since the
programs are based on different properties of the proteins or do not take into account



Viruses 2021, 13, 2360 11 of 13

the reconfiguration of epitope residues when an antigen is in complex with a specific
antibody [34]. However, some TP epitopes were predicted with more than 80% similarity to
the positive controls, suggesting that it is necessary to adjust the conditions of the prediction
programs (as done in this work) to eliminate many FP and have greater specificity for
future predictions.

Most antibodies against CHIKV recognize the region between amino acids 3 and
10 (STKDNFNVYK) of the peptide E2EP3 STKDNFNVYKATRPY [33], which was used
as a positive control in our work. The sequence TKDNFNVYK was predicted only with
ABCpred in two of our TP epitopes predicted from positive control epitopes and the
polyproteins analyzed. We identified the amino acids TKDNFNVYK in 50% and 75% of
two similar TP. Additional amino acids may have reduced the predictive power of the
other programs.

Narula et al. [14] identified B-cell, Th, and CTL epitopes, using the FBCPred program
with a threshold greater than 0.8, similar to our methods. The B-cell epitope VTWGN-
NEPYKYWPQLSANGT of the CHIKV African strain S27 (UniProt ID: Q8JUX5) was similar
in two epitopes predicted in this work. Precisely 65% and 95% of the African strain epitope
are shared with two different TP epitopes predicted from alphavirus polyproteins or the
positive control epitopes.

In addition, with both strategies, we predicted a TP epitope and one FP epitope con-
taining 30% and 50%, respectively, of the B-cell epitope PLVPRNAELGDRKGKIHIPF [14].

On the other hand, the amino acids LPCST of the CD4+ epitope LPCSTYVQSNAATAEE [14]
were identified in one FP (33.3%), and the sequence LPCSTYVQS was observed in 60% of another
FP epitope predicted with both strategies.

Based on the above findings, we suggest that the prediction of FP with bioinformatics
programs does not depend on sequences used.

The CHIKV sequences used in this work had 80% amino acid conservation, even with
other alphaviruses. Therefore, the epitopes predicted and selected with our strategy could
be effective to bind to antibodies from patients in different endemic regions.

We consider that our new epitopes of CHIKV identified in silico have high antigenic
potential, since they were predicted using a strategy based on a similar prediction of
epitopes already validated experimentally, which is completely different from the other
in silico strategies used so far. Furthermore, as some of our new epitopes have some
percentage of similarity with the epitopes reported by Narula et al. [14], we expect that the
overlapped region of CHIKV reported in our work and by Narula and colleagues [14] can
mediate a strong antibody response against the viral infection. Therefore, the epitopes from
the overlapped region would be more likely to recognize antibodies against CHIKV than
epitopes identified by strategies that did not include experimentally validated epitopes.

In addition, to determine the antigenicity of all of the 18 newly identified B and T-
cell epitopes, we analyzed the sequence of CHIKV strain AJV21562.1 with VaxiJen [30],
considering the antigenic prediction to MHC class II, by using the IEDB consensus and
Vaxitop comparisons. We found that 4 out 6 predicted epitopes from Table 4 and 12 epitopes
from Table 5 were also predicted by the IEDB consensus, whereas 1 epitope from the E2
protein and 3 epitopes from E1 protein were predicted with Vaxitop (Table S1), probably
because no training data are available or were used for conducting the requested prediction,
as the server claims. However, we must be careful, because VaxiJen predictions are mainly
based on bacterial datasets, and not enough virus genomes have been considered.

5. Conclusions

We evaluated different conditions within several computer programs to increase
the probability of prediction of antigenically known positive and negative epitopes of
alphavirus, and this allowed us to identify six new linear B-cell epitopes of CHIKV with
high antigenic potential. Using six computational methods, we improved the identification
of 12 new T-cell epitopes to induce cellular immune responses against CHIKV. This work
also shows that it is necessary to adjust the threshold of the prediction programs to elimi-
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nate many FP and increase the specificity and probability of predicting true antigens by
immunoinformatics for the development of safe and effective vaccines regardless of the
viral strains. Our strategy would be useful for developing vaccine candidates against other
viral diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122360/s1, Table S1: Antigenicity prediction of epitopes from the CHIKV Mexican strain.
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