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Abstract: Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic,
with genetic causes accounting for 10–25% of cases. Whole-exome sequencing (WES) may enable
identifying contributing genes and variant profiles to stratify the population into subtypes of OF.
This study sought to identify a blood-based gene variant profile using accumulation of rare variants
to promote precision medicine in fertility preservation programs. A case–control (n = 118, n = 32,
respectively) WES study was performed in which only non-synonymous rare variants <5% minor
allele frequency (MAF; in the IGSR) and coverage ≥ 100× were considered. A profile of 66 variants
of uncertain significance was used for training an unsupervised machine learning model to separate
cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes
of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female
population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study
linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting
application of this approach for precision medicine in fertility preservation.

Keywords: ovarian failure; whole exome sequencing; single nucleotide variant; infertility; precision
medicine; prediction model; genomic taxonomy; genome variant profile; personalized medicine; ovary

1. Introduction

Ovarian failure (OF) is characterised by accelerated attrition of the ovarian follicle re-
serve, amenorrhea, dramatic hypoestrogenism, and elevated gonadotropin levels, but these
manifestations differ depending on aetiology [1–3]. OF may result from genetic (familial
or sporadic), cytogenetic, environmental, iatrogenic, autoimmune, or metabolic disorders;
genetic causes account for about 10–25% of cases [4,5], and autoimmune conditions account
for 4–30% of cases [6]. Though women with OF can achieve pregnancy [7,8], OF usually
presents as infertility because the ovarian reserve is nearly or completely exhausted [9]. OF
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is often diagnosed as idiopathic, and research is needed to better define the origins of OF
and identify risk factors to aid in early diagnosis and inform treatment measures [10–12].

Anti-Müllerian hormone (AMH) and follicle stimulating hormone (FSH) measure-
ments aid OF diagnosis [13,14]. However, both are limited as predictive biomarkers because
modest increases or decreases in AMH are difficult to detect and do not characterise sub-
types of OF; meanwhile, FSH has less sensitivity than AMH and depends on the day of
the cycle in which the sample is obtained [15–17]. Intriguingly, as for other conditions [18],
high-throughput genomics data may help discern subtypes and stages of OF.

Heritability plays a clear role in OF, and studies of familial OF had shed light on genetic
aspects of the condition [19–21]. While familial studies focus on detecting causative variants
in one or few genes in one family, population studies identify variants shared by individuals
independent of familial relationship and inheritance [22–24]. Next-generation sequencing
(NSG) based on whole-exome sequencing (WES) characterises known and unknown varia-
tion within gene-coding regions in each studied sample, significantly improving the power
of previous studies focused on discovery of variants in the population [19,24–27].

Despite advantages of WES, the large degree of genetic variation creates challenges in
identifying meaningful changes. Therefore, strategies are needed to identify candidate vari-
ants that can be prioritised by predicted protein defects, frequency in the population, and
evidence of evolutionary pressure including negative selection [22,28–32]. Existing studies
often lack (1) negative controls (i.e., age-matched individuals without OF); (2) characterisa-
tion of genetic variation identified in genes not known to be associated with the phenotype
of interest; and (3) implementation of machine learning strategies such as machine learning
algorithms that provide a more comprehensive picture, as is required in reproductive
precision medicine [18]. Manipulation of this information by machine learning algorithms,
can be applied to stratify populations into disease subtypes based on an additive model
considering the presence or absence of DNA variants [33–35]. Thus, we performed a
WES-based case–control study to describe genomic profiles based on multivariant models
considering the presence or absence of DNA variants (single-nucleotide variants (SNVs))
as preventive screening to identify women at risk of OF. This predictive model will inform
precision medicine in fertility preservation programs.

2. Materials and Methods
2.1. Participants and Inclusion Criteria

A WES-based case–control study was conducted between 2017 and 2019 at infertility
clinics in collaboration with a genetic diagnosis and reproductive medicine research de-
partment. The study recruited 118 women diagnosed with OF and 32 women as controls
from Spain. Women exhibiting amenorrhea for >6 months with AMH values < 0.3 ng/mL,
FSH values > 20 IU, and <5 follicles upon antral follicle count (AFC) via transvaginal
ultrasound were classified as OF. Controls had AMH values > 1.5 ng/mL, FSH < 10 IU, and
AFC > 10. Clinical outcome (live birth (LB)) for both groups was determined. All patients
were <40 years old at the time of recruitment and were selected following clinical criteria
with idiopathic disease and normal karyotypes, no FRM1 permutations, and no history of
pelvic surgery, radiotherapy, chemotherapy, or autoimmune disorders. The International
Genome Sample Resource (IGSR) database, which contains genomic variant information
including allele frequencies, normal genomic variability, and ethnicity from 1271 healthy
female individuals (OF was not considered an exclusion criterion), was used as a pseudo-
control population to optimise the study complementing control population [36–38]. The
Shapiro–Wilk test was used to check normality of clinical variables, hormone levels, age,
body mass index, AFC, and LB, while the Wilcoxon and Fisher tests were used to evaluate
clinical ranges of AMH and presence or absence of variants, respectively, between cases
and controls [39–41]. The study was approved by the institutional review board of the
Instituto Valenciano de Infertilidad and Hospital La Fe (1709-PAM-090-PR).
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2.2. Pre-Processing, NGS, and Variant Calling

Peripheral blood genomic DNA was isolated (Maxwell 16 lev blood DNA, Promega,
Madison, WI, USA) and quantified using fluorescence spectroscopy (Qubit). Absorbance
readings with Nanodrop confirmed the purity of DNA, with all samples yielding a
260:280 ratio of >1.8. DNA integrity was evaluated using TapeStation (Agilent Technolo-
gies, Santa Clara, CA, USA), and the DNA integrity number (DIN) was >7 (recommended
threshold for NGS library prep strategies) for each sample. WES was performed on all
DNA samples using SureSelect Clinical Research Exome V2 (Agilent Technologies) and
Illumina sequencers (MiSeq or NextSeq). Reads from the 18,311 sequenced genes were
aligned to the human reference genome (hg19) using the Burrows-Wheeler algorithm
(version 0.7.17) mapper [42]. Subsequent variant calling was performed using GATK soft-
ware (version 3.6.0) following the standard pipeline the standard pipeline recommended
by the developers of the software [43]. Variants were annotated using SnpEff software
(version 4.3) [44] to obtain information on which position of the genome is affected by the
variant, including if it is a protein coding sequence, which gene and in what position of
said gene is located, and the biological consequences expected from the changes (e.g., if
the variant disrupts the triplet reading frame of the DNA, is called a Frameshift variant).
Furthermore, SnpEff retrieves information from the IGSR that allow the user to know if a
certain variant is registered or not in the database [44].

2.3. Variant Filtering, Processing, and Prioritisation

Variants were filtered based on several criteria (further detailed in Supplemental Figure S1):

1. A moderate or deleterious effect on protein coding sequence (according to SnpEff
annotations). Moderate effect included Missense variants, UTR (5′ + 3′) and splice
(acceptor or donor) variants; while deleterious effects included Frameshift, Nosense
(stop codon gain/loss) variants, protein to protein contact modifier variants, structural
interaction modifier variants and disruptive inframe variants.

2. Variants absent from the IGSR database were retained for downstream analysis.
Meanwhile, variants present in the IGSR were only kept if their minor allele frequency
(MAF) was lower than <0.05, based on the premise that purifying selection decreases
allele frequency of variants that confer less fitness.

3. Passage of quality criteria for coverage (>100×) as well as several parameters eval-
uated by GATK: Genotype Quality (GQ), which evaluates the confidence of the
genotype attributed to a patient for a certain variant (homozygous for the reference
allele, heterozygous or homozygous for the disease-associated allele); Position depth
(DP) or total number of reads detected at a given position of the genome; Allele Depth
(AD), the number of reads for the variant in that position. Further information is
annexed with Supplementary Figure S1.

After applying these filters, remaining variants were used to (i) identify variants with
significant differences in frequency between controls and cases and (ii) classify variants
if they were present in at least 10% of cases and completely absent from controls. This
last point was based on the premise that variants found only in one individual are related
to individual variation while variants shared by a subgroup have a higher probability of
being biomarkers related to the disease. Prioritized variants in this step were researched to
find possible links with fertility. In addition to IGSR, GnomAD, and dbSNP databases were
consulted to determine if identified variants were already reported [45,46], and Genecards,
Uniprot, and Gene Ontology databases were used to annotate gene function [47–49].
Case and control variant frequencies were tested by Fisher test in the R environment
(version 3.4.4, 15 March 2018) [50], while variant processing and prioritisation were done
in the Python environment (version 3.5.2, 26 July 2016) [51].

2.4. Patient Stratification and Ovarian Failure Subtypes Prediction

Prioritised variants were used to stratify the study population based on patient genotype
(homozygous for the reference allele, heterozygous or homozygous for the disease-associated
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allele). In order to find different subtypes of ovarian failure in the study population, unsuper-
vised hierarchical clustering—with similarity and genomic distance values calculated with
the Jaccard coefficient [52]—was used to group patients based on genomic variant profile.
Jaccard’s formula is J (X, Y) = |X∩Y|/|X∪Y| where X is the genotype profile of the variants
of one patient, while Y is the same for another patient. Calculating the similarity coefficient
with Jaccard allow grouping together patients that share not only the same variants but
also the same genotype for said variants. Optimal clustering was achieved with Ball and
Hartigan indexes implemented in Nbclust (version 3.0) in R [53], which increase differences
inter-cluster while trying to maximize similarities intra-cluster; this is, trying to find clusters
of patients that are really similar by the genomic profile while separating them as much
as possible from other patients that do not share similar profiles. Using the subtypes of
ovarian failure generated and to generate a model capable of distinguish patients with OF, a
Random Forest algorithm was trained with a 10-fold cross-validation (CV) 100 times in WEKA
platform software (version 3.8.2, 22 December 2017) [54], WEKA by default stratified the
folds maintaining the proportion of cases and controls (79%/21%). With Random Forest, the
model created 500 forest each iteration and selected the best consensual tree [55,56]. Random
forest also assigned a score to each variant based on the mean decrease in impurity (MDI),
which represents how informative each variant is for stratifying the population according
to genotype of said variant [57]. Key variants in the stratification were analysed to look for
potential relations with fertility. Finally, to ascertain if the genomic variant profile found in our
population is detected in an independent population and ensure that a determined subtype is
reproducible, the female population from the IGSR database (n = 1271) [36] was evaluated
using our predictive model.

3. Results
3.1. Clinical Characterisation and Sequencing Quality of the Study Population

High-depth exome sequencing data were achieved with an average > 100× for
15,903 genes (86.85% of the studied 18,311 genes) and >25× for 16,773 genes (91.66%
of the studied 16,773 genes) among 118 patients with OF and 32 controls. Phenotypically
characterised cases and controls had significantly different mean values of AMH, AFC,
FSH, and LB (p < 0.01), highlighting the clinical differences associated with OF related
to controls (Figure 1A). For genomic study of SNVs associated with OF, we focused on
variants absent in the IGSR with a low MAF (<0.05) in the IGSR population and changes
predicted to cause a moderate to deleterious effect at the protein level. With these criteria,
we ensured that variants were under pressure of purifying selection.

3.2. Genomic Variation Hypotheses

Gene-targeted and non-targeted hypotheses related to ovarian failure were devel-
oped from the 161,209 variants identified in the 18,311-gene panel (Figure 1B). In the
gene-targeted approach, we focused on finding more variants in genes previously associ-
ated with ovarian physiology; for the non-targeted approach, the whole gene panel was
considered to identify main variants in novel genes not previously associated with OF.
There were 2395 variants in genes associated with ovarian physiology identified in the
targeted approach, and 63,928 variants considered candidate disease-associated alleles in
the non-targeted approach (Figure 1C); 57,866 synonymous variants were excluded because
no effect was predicted. However, contrasting the proportions of variants found in targeted
genes to the proportions of variants found in remaining genes of the exome (non-targeted)
revealed that targeted genes related to ovarian physiology accumulated fewer variants
(Fisher test, p < 2.2 × 10−16, odds ratio = 1.2), so the targeted hypothesis was discarded.
Variants found in the whole exome were classified by the predicted type of change in the
coding sequence. The 63,928 variants showed moderate to deleterious effects, with most
changes being missense in the UTR or in structural interaction and frameshifts (Figure 1C).
The rest of the experimental design covered in the following points is shown in Figure 1D.
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Figure 1. Study design and variant prioritisation. (A) Population demographics and clinical data.
Means and standard deviations (in brackets) are shown. For age, body mass index (BMI), age at
menarche, live birth (LB), antral follicle count (AFC), follicle stimulating hormone (FSH), and oestra-
diol (E2) contrasts. The Shapiro–Wilk test was used to check normality and the Wilcoxon test to
evaluate differences between cases and controls. The Fisher test was used to evaluate differences
between cases and controls for anti-Müllerian hormone (AMH) levels according to Reference Lab-
oratory hormonal ranges (low: <0.68 ng/mL; adequate: 0.68–2.27 ng/mL; normal: >2.27 ng/mL)
(*** p < 0.01). (B) Pipeline for filtering variants. Women diagnosed with ovarian failure (OF) were
recruited as cases (n = 118) and those without ovarian failure as controls (n = 32). Whole-exome
sequencing (WES) of DNA from peripheral blood was performed in all samples using SureSelect Clin-
ical Research Exome V2 (Agilent Technologies) and Illumina sequencing (Miseq or Nextseq). Variant
calling was performed using GATK software. (C) Prioritised variants. Variants that passed quality
and biological criteria (minor allele frequency (MAF), type of change at protein level, sequencing
parameters) are shown for targeted analysis of genes previously associated with ovarian physiology
and from whole exome analysis. Number of variants and genes affected for each predicted change
in protein function are also represented. (D) Pipeline of the predictive OF model. A random forest
predictive model is built using the prioritised variants and then validated with the pseudo-control
population of the International Genome Sample Resource (IGSR) (n = 1271).
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3.3. A Genomic Variant Profile Predictive of OF

A significant difference (p < 0.01) in the distributions of allele frequencies between
cases and controls was observed in 116 of the 63,928 candidate variants (Supplementary
Table S1). Interestingly, only one of them, the missense variant c.902C > G (p.Ala301Gly)
inducing an alanine to glycine change, was identified in the macrophage stimulating 1-like
(MST1L) gene in 14 controls and four cases with a significant difference in proportions
(FDR = 0.03, odds ratio = 16.6) (highlighted in Supplementary Table S1). Given the unique
intra-variability of each individual and that finding variants shared by several individuals
is complex, to ensure that the accumulation of variants was predictive of OF, we identified
variants shared by at least 10% of cases and not present in controls. The 66 variants of
uncertain significance (VUS) absent in controls with high case prevalence in >10% of cases
affected 62 genes (Supplementary Table S2). Important variants by their prevalence in
cases are shown in Table 1. One variant, affecting the mucin 6 (MUC6) gene (c.5297C > T;
p.Thr1766Ile), was identified in 26% (i.e., 31 of 118) of patients with OF. An additional
variant, c.715G > A (p.Ala239Thr), affecting the ankyrin repeat domain 20 family member
A4 (ANKRD20A4), was absent in IGSR, dbSNP, and GnomAD databases. In addition
to the MUC6 variant, five variants were shared by >20 cases: c.529A > G (p.Ser177Gly)
affecting bromodomain and PHD finger containing 3 (BRPF3) in 22 cases, c.1435G > A
(p.Ala479Thr) affecting adaptor related protein complex 5 subunit mu 1 (AP5M1) in 22 cases,
c.880A > T (p.Met294Leu) affecting cysteine rich secretory protein LCCL domain containing
2 (CRISPLD2) in 21 cases, c.692C > G (p.Ala237Gly) affecting galactosamine (N-acetyl)-
6-sulfatase (GALNS) in 20 cases, and c.539C > G (p.Thr180Ser) affecting mini chromo-
some maintenance complex component 5 (MCM5) in 20 cases (highlighted in Table 1).
Three of the 66 variants affected three genes previously associated with infertility: variant
c.181G > C (p.Ala60Pro) of mutS homolog 3 (MSH3) in 15 cases, c.1534G > A (p.Val512Ile)
in gamma-glutamyltransferase 1 (GGT1) in 14 cases, and c.782G > A (p.Arg261Gln) of
aquaporin 8 (AQP8) in 13 cases (as noted in Table 1).

3.4. A New Genomic Taxonomy of OF

Based on the 66 variants present in >10% of OF cases and absent in controls, the
clustering based on the genomic variant profile distinguished two main subtypes of OF
(subtypes A and B) distinct from controls (C) (Figure 2A). Based on genomic distance, sub-
type B was more similar to controls than A. The predictive value of the 66 variant profiles
distinguished OF cases (A, B) and controls (C) with an average of 97.2% (ranging 0.96–0.98)
through the 100 interactions of the Random Forest model, an average sensitivity of 97.2%
(ranging 0.965–0.98) an average specificity of 99.2% (ranging 0.989–0.994) (Figure 2B, left).
Major variant contributors to the stratification were SPEP1 and GAB4 missense variants
(c.1369C > A, p.Arg457Ser and c.818T > C, p.Leu273Pro, with MDI 0.2 and 0.15, respec-
tively). The model also distinguished two genomic subtypes of OF (A and B) with an
average of 93.3% accuracy (ranging 0.92–0.946) through the 100 iterations of the model,
an average of 93.31% (ranging 0.92–0.946) sensitivity, and an average of 96.57% specificity
(ranging 0.945–0.974) (Figure 2B, right); 14.4% of OF patients were classified as type A
and 85.6% as type B, and three patients were incorrectly classified between cases and
controls (Figure 2C, left) and an average of 10 patients were incorrectly classified as the
other subtype or control when comparing subtypes (Figure 2C, right). Further, there were
no clinical differences of significance in mean values for AMH, FSH, or AFC between
subtypes A and B, so the difference was only at the genetic level (Figure 3B). The number
of disease-associated variants (n = 66) accumulated by each patient ranged 1–15, with most
accumulating nine variants (n = 17) (Supplementary Figures S2 and S3A). Additionally, the
MST1L variant c.902C > G (p.Ala301Gly) was confined to subtype B (highlighted in Figure
3A). Genomic characterisation of the subtypes revealed three variants characteristic of
subtype A; two affecting the dynein axonemal heavy chain 6 (DNAH6) gene (c.6356A > G,
p.Tyr2119Cys and c.8576A > G, p.Lys2859Arg, MDI 0.48 and 0.47, respectively), and one
affecting traB domain containing 2A (TRABD2A) (c.1034G > A, p.Arg345His, MDI 0.43);
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also identified were two previously mentioned variants (AQP8 and MUC6 (MDI 0.38 and
0.31, respectively)) and a second MUC6 variant (c.5330G > A, p.Gly1777Asp, MDI 0.34)
characteristic of subtype B (Figure 3A, bottom) (as noted in Table 1).
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Figure 2. Genomic taxonomy of ovarian failure. (A) Dendrogram obtained from unsupervised clustering of case and control
individuals. Three clusters are distinguished: clusters A (red, n = 17) and B (blue, n = 101) group case individuals into two
distinct genomic profiles, while cluster C (green, n = 32) contains all control individuals. Genomic distance is represented
by height for all groups, with a greater height indicating a larger difference between groups. (B) Prediction performance
parameters. Parameters were obtained after executing a random forest algorithm 100 times, with 500 trees created in each
iteration with 10-fold stratified cross-validation. Parameters are shown for model 1 (left) and model 2 (right), with the
corresponding values of accuracy, sensitivity, specificity, precision, and ROC area obtained for each class and a weighted
average in total. Kappa statistic for each model also is shown. (C) Prediction performance confusion matrices. A matrix
is shown for model 1 (left), where controls (group C) were distinguished from cases (groups A, B). All 32 controls were
correctly classified in cluster C, but three cases were misclassified. A matrix for model 2 (right) distinguishing the two
genomic profiles for ovarian failure (groups A and B), with all controls correctly classified (group C) and 10 cases incorrectly
classified as either controls or the other subtype. AUROC = area under ROC curve.
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Table 1. Novel variants predictive of ovarian failure. Chromosomal and genomic positions of the variants, as well as bases and amino acid changes at the indicated number in the
sequences, dbSNP IDs (if known), type of changes, amino acid class, polarity and charge changes, genes affected, number of cases affected by the variant, coverage (mean and standard
deviation), and accession numbers. Variants were present in at least 10% of cases (12 women out of 118) and no controls. Gene Ontology and Genecards databases were consulted to
annotate gene function. 1 Top 6 variants shared by >20 cases. 2 Top variants valued by random forest algorithm to stratify the population. 3 The three variants found affecting genes
already related to ovarian failure in the literature. 4 Variant absent in International Genome Sample Resource, dbSNP, and GnomAD databases.

Chromosome and
Position

Change at
Sequence and

Aa Level
Rs Type of Change

Amino Acid Class,
Polarity, and Charge

Change
Gene Function N Cases

Affected Coverage Accession Number

2; 84897501 2 c.6356A > G,
p.Tyr2119Cys rs17025409 Missense variant Aromatic polar neutral >

sulfuric nonpolar neutral DNAH6 Microtubule
activity 17 146

(18.08) NM_001370.1

2; 84932720 2 c.8576A > G,
p.Lys2859Arg rs61750773 Missense variant Basic polar positive > basic

polar positive DNAH6 Microtubule
activity 19 146

(20.02) NM_001370.1

2; 85059227 2 c.1034C > T,
p.Arg345His rs61744273 Missense variant

Basic polar positive > basic
aromatic polar

positive-neutral
TRABD2A

Negative
regulation of WNT
signalling pathway

18 287
(42.23) NM_001277053.1

5; 79950724 3 c.181G > C,
p.Ala60Pro rs2001675 Missense variant Aliphatic nonpolar neutral

> cyclic nonpolar neutral MSH3 DNA repair 15 145
(57.73) NM_002439.4

6; 36168628 1 c.529A > G,
p.Ser177Gly rs45504893 Missense variant Hydroxylic polar neutral >

aliphatic nonpolar neutral BRPF3 Chromatin
organisation 22 320

(44.1) NM_015695.2

9; 69391207 4 c.715G > A,
p.Ala239Thr Missense variant Aliphatic nonpolar neutral

> hydroxylic polar neutral ANKRD20A4 Unknown 13 125
(8.03) NM_001098805.1

11; 1017471 2 c.5330G > A,
p.Gly1777Asp Missense variant Aliphatic nonpolar neutral >

acid acidic polar negative MUC6 Cytoprotection of
epithelial surfaces 13 448

(194.38) NM_005961.2

11; 1017504 1,2 c.5297C > T,
p.Thr1766Ile Missense variant Hydroxylic polar neutral >

aliphatic nonpolar neutral MUC6 Cytoprotection of
epithelial surfaces 31 448

(147.15) NM_005961.2

14; 57755564 1 c.1435G > A,
p.Ala479Thr rs35759976 Missense variant Aliphatic nonpolar neutral

> hydroxylic polar neutral AP5M1 Apoptosis 22 179
(14.19) NM_018229.3

16; 25239809 2,3 c.782G > A,
p.Arg261Gln rs111840156 Missense variant Basic polar positive >

amide polar neutral AQP8 Cellular response
to cAMP 13 265

(24.69) NM_001169.2

16; 84902483 1 c.880A > T,
p.Met294Leu rs72799568 Missense variant Sulfuric nonpolar neutral >

aliphatic nonpolar neutral CRISPLD2 Extracellular matrix
assembly 21 247

(145.71) NM_031476.3

16; 88902199 1 c.692C > G,
p.Ala237Gly rs34745339

Structural
interaction variant,
missense variant

Aliphatic nonpolar neutral >
aliphatic nonpolar neutral GALNS Degradation of gly-

cosaminoglycans 20 214
(33.02) NM_000512.4
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Table 1. Cont.

Chromosome and
Position

Change at
Sequence and

Aa Level
Rs Type of Change

Amino Acid Class,
Polarity, and Charge

Change
Gene Function N Cases

Affected Coverage Accession Number

17; 71232990 2 c.1369C > A,
p.Arg457Ser rs61729639 Missense variant Basic polar positive >

hydroxylic polar neutral SPEP1 Unknown 14 180
(38.16) NM_001288771.1

22; 17450929 2 c.841G > A,
p.Ala281Thr rs61741409 Missense variant Aliphatic nonpolar neutral

> hydroxylic polar neutral GAB4 Unknown 14 236
(36.89) NM_001037814.1

22; 17450952 2 c.818T > C,
p.Leu273Pro rs11703655 Missense variant Aliphatic nonpolar neutral

> cyclic nonpolar neutral GAB4 Unknown 14 236
(43.66) NM_001037814.1

22; 25024326 3 c.1534G > A,
p.Val512Ile

Structural
interaction variant,
missense variant

Aliphatic nonpolar neutral
> aliphatic nonpolar neutral GGT1 Proteolysis 14 112

(17.48 NM_013430.2

22; 35802661 1 c.539C > G,
p.Thr180Ser rs2307340 Missense variant Hydroxylic polar neutral >

hydroxylic polar neutral MCM5 DNA replication
initiation 20 309

(92.27) NM_006739.3
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onemal heavy chain 6 (DNAH6) and one for TraB domain containing 2A (TRABD2A) genes were 
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Figure 3. Characterisation of the two genomic subtypes of ovarian failure. (A) Dendrogram analysis
of both subtypes. Genomic profiles of subtypes A (red cluster, n = 17) and B (blue cluster, n = 101)
obtained from unsupervised clustering were examined for the number of variants accumulated
in each individual (represented in greyscale). Macrophage stimulating 1 like variant was found
in four cases, all in the B subtype (black point in dendrogram). Mean decrease in impurity (MDI)
scores assigned by the random forest algorithm was evaluated, and two genomic variants for dynein
axonemal heavy chain 6 (DNAH6) and one for TraB domain containing 2A (TRABD2A) genes were
the most characteristic of subtype A. Meanwhile, two variants for mucin 6 (MUC6) and one for
aquaporin 8 (AQP8) were the most characteristic of subtype B (bottom). (B) Clinical comparison
of subtypes A and B. Shapiro and Wilcoxon tests were applied to contrast the mean antral follicle
counts (AFC) and levels of follicle-stimulating hormone (FSH) and anti-Müllerian hormone (AMH).
No statistical differences were found.
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3.5. Testing the Genomic Predictive Model in the IGSR Population

To determine whether the model could predict subtypes of OF in an independent
population with unknown fertility, we tested our model in the female IGSR population
(n = 1271). A prediction score of 0–1 was associated with each individual to determine
diagnostic power, and only individuals with a predictive score ≥ 0.9 were considered
predicted to the specific subtype. In the IGSR population, 7/1271 (0.5%) women were
predicted as subtype A, while 31/1271 (2.4%) were considered subtype B.

4. Discussion

We describe the first predictive model of OF based on a genomic variant profile
obtained through blood WES and machine learning algorithms. The model was effective
in identifying and stratifying patients into two subtypes of OF (A and B), considering a
pattern of 66 variants rather than individual variant effects. Subtypes of OF were tested in
an independent IGSR population of 1271 women—only 0.5% of women were predicted
as subtype A, a feasible proportion considering that OF prevalence is estimated at 1% in
women < 40 years old [1–3]. We believe that the 2.4% of women predicted as subtype B
may be overestimated given that our model was constructed under the assumption that the
66 variants are absent from controls and our design only considered 32 controls. However,
the IGSR population introduced a higher population variability that could contribute to
false positives in subtype B, as this profile was more similar to controls than subtype
A. Additionally, other phenomena influencing disease prevalence such as penetrance or
expressivity together with environmental factors could affect the final phenotype. Thus,
subtype A should be considered the most distinguishable from controls, with likely fewer
false positives and with the most potential to be useful in fertility preservation programs.
However, further prospective studies are needed to evaluate the prediction ability of this
model in relation to clinical phenotype.

Prior exome-sequencing studies seeking to identify new variants associated with
OF [22,30,58] focused on established genes associated with OF; in our study, DNA se-
quences in genes related to ovarian physiology exhibited proportionately fewer variants
than remaining genes in the exome. Further, prior studies identified variants shared by a
few patients with OF and did not include controls [22,29,31,32,59,60]. The prioritisation
criteria used in our study ensure that variants are rare and are likely under purifying selec-
tive pressure based on the potential cumulative adverse effects of the variants on genetic
fitness of the OF population at a functional level [25,61]. In contrast to GWAS studies that
use populations of thousands [62–65], our study had a modest sample size but was larger
than similar studies in Europe or the USA [22,32,66,67]. The efficacy of the contrast of
proportions approach was lower than GWAS studies, as expected, although we did identify
116 disease-associated variants with p < 0.01 and one variant with an adjusted p < 0.05 that
was over-represented in controls. This adjusted variant affected MST1L, which encodes
a protein with serine-type endopeptidase activity but no other known functions [47,48].
Overrepresentation of the MSTL1 variant in controls may protect against OF, suggesting an
advantage conferred by the G allele, but this requires further research because the number
of controls in this study was small.

The fingerprint or genomic intra-variability of each individual presents a challenge
in variant profiling [68]. A presence > 10% (i.e., 12 out of 118 OF patients) was deemed
necessary to identify variants fixed in the OF population, and we identified 66 VUS in
genes not previously associated with OF matching these criteria. In addition to identifying
variants in genes not previously associated with fertility, we identified three variants
affecting genes previously associated with OF: MSH3, GGT1, and AQP8. MSH3, part of
the post-replication DNA repair system, is required for fertility; mice lacking Mshl3 are
sterile and their oocytes fail to complete meiosis I [69]. Ggt1 knock-out mice are infertile,
lack antral follicle development, and do not respond to external gonadotropins [70]. AQP8
plays an important role in the apoptosis of granulosa cells, and mice lacking Aqp8 develop
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mature follicles and are more fertile than wild-type mice [71]; therefore, further research is
needed to determine how the AQP8 variants impact OF.

The top six variants shared by patients with OF that were most representative of our
population occurred in MUC6, BRPF3, AP5M1, CRISPL2, GALNS, and MCM5. A variant in
MUC6 was found in 31 cases (25% of study population). MUC6 encodes a protein associated
with protecting epithelial surfaces against chemical agents [72] and is related to ovarian
tumours in mice [73]. Given that OF may have an environmental aetiology [11,20,74], we
hypothesise that it may protect the ovary from environmental pollution and chemotoxicity
and its variants may confer differential sensitivity to environmental agents. Another
variant shared by 22 patients (20% of population) is within BRPF3 and is associated with
reorganisation of chromatin and acetylation of histone H3K14, which is needed for efficient
activation of DNA replication [75]. Chromatin organisation and DNA replication are
imperative during follicular development [19,76], suggesting a role of BRPF3 in oocyte
maturation and fertility. Further, an AP5M1 variant was found in 22 women. AP5M1
induces apoptosis in cervical carcinoma cells [77] and may play a similar role in primordial
follicle death and premature loss of ovarian reserve. Twenty-one cases had a variant in
CRISPL2, which promotes extracellular matrix assembly. The bovine CRISPL2 homolog
is upregulated in granulosa cells in ovulatory follicles and could play an important role
in human fertility [78]. GALNS was affected in 20 patients, participates in degradation of
glycosaminoglycans, and is highly expressed in the ovary [79]. Finally, 20 patients had
a variant affecting MCM5, which encodes a protein that is part of a molecular complex
involved in DNA replication. Alterations in members of the same gene family, MCM8 and
MCM9, affect DNA repair and cause OF [80–82].

Precision medicine describes new disease stages and treatment targets based on
genomic profiles [18]. A profile based on the 66 VUS identified in this study distinguished
OF from controls with 97.2% accuracy and stratified the OF population into two different
groups with 93% accuracy, 93.31% sensitivity, and 96.67% specificity. Three patients in
subtype A and six in subtype B failed to classify as their actual subtype. Subtype B was
closer to the control group and contained all four cases sharing the MST1L variant. These
results suggest two genomic subtypes of OF, one with a specific genetic profile (A) and
another (B) genetically distinct but closer to our control group. Two variants, one in
SPEP1 and the other in GAB4, were the most informative in case vs. control classification.
Little is known, however, about the functions of both genes. Three gene variants were
the most informative for classifying patients into subtype A (one in TRABD2 affecting
18 patients, and two in DNHA6 affecting 17 and 19 patients) and three into subtype
B (AQP8 and MUC6 variants, and an additional MUC6 variant affecting 13 patients).
TRABD2A is a metalloprotease that acts as a negative regulator of WNT signalling [83] by
cleaving WNT3A, which is needed in synergy with R-spondin2 for follicular development
in mice [84]. TRABD1A also cleaves WNT5A, a protein that decreases ovulation and
increases follicular atresia. WNT5A is a physiologic inhibitor of gonadotropin signalling
in humans [85], and female Wnt5a knockout mice are subfertile [86]. DNAH6 belongs
to the dynein family of genes and encodes part of the microtubule-associated motor
protein complex. Other dynein family members, DNAH5 and DNAH1, are associated with
infertility [87,88]. Mutations in DNAH6 cause primary ciliary dyskinesia and Huntington’s
disease, both of which are associated with infertility [89,90].

Although we purport functional roles for the genes involved in the genomic variant
profile, this does not imply causation in reference to OF. Not all variants of the profile need
to have a direct link with the pathology; these variants could be biomarkers without an
implication for fertility. Importantly, the subtypes we described were distinguishable only
by their genetic profiles and not by clinical parameters (including FSH), suggesting that
they are detectable with the molecular deepness of genomic profiling. This highlights that
a deeper understanding of the variant profile could change OF taxonomy and molecular
classification. Indeed, this is interesting because the clinical criteria do not distinguish
aetiologies or subtypes of OF. Subtype A could be easier to distinguish from controls for
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preventive detection in women at risk to experience infertility who can be identified only
from genomic information. Whether these subtypes have different aetiologies or confer
other clinical implications requires further studies.

We distinguished a genomic variant profile between OF cases and controls that re-
vealed two subtypes of OF. While the inheritance and causative nature of the variants are
not known, the distinct variant profiles serve as building blocks for a predictive model to
detect subtype A in the general population and offer a promising first step toward using
genomic and personalised medicine to predict OF in fertility preservation programs. We
acknowledge that the good predictive value of our model depends on absence of the 66
variants for proper prediction; thus, as more individuals are tested, the performance of
the model may decrease, such as overestimating the number of women with subtype B.
Nonetheless, we believe this distinct genomic profile is capable of predicting OF in the
general population, especially for subtype A. Clinical follow-up studies and prediction
models testing in an independent population will be required to ascertain significance
of the identified subtypes and overcome clinical and technical limitations of this study.
Nevertheless, and given our sample size, we trust that the cross-validation models here
developed avoids overfitting by using all samples in both training and testing phases.

5. Conclusions

We described the genomic profile of 66 VUS not previously associated with OF. The
variant profile was used to create a predictive model capable of identifying OF individuals
and classifying them into two genomic subtypes (A and B) with high accuracy, specificity,
and sensitivity. One subtype was predicted accurately in a feasible proportion of the IGSR
cohort as a surrogate of the general population. Thus, the identified variants may help
establish a variant profile as a preventive biomarker in fertility preservation programs as a
minimally invasive test in blood samples. Further prospective studies in an independent
population are needed to determine reproducibility of the model and evaluate preventive
potential of the two genetic subtypes in clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/jpm11070609/s1, Figure S1: Pipeline for filtering genomic variants. A first filter was made to
retain variants affecting protein coding sequences. From these, the International Genome Sample
Resource (IGSR) database, which contains variants of >3000 healthy individuals, was consulted.
Variants found in the database with a minor allele frequency (MAF) < 0.05 were kept. Variants absent
from the database also were retained. Two criteria were applied to this set of variants. Quality criteria
values were based on confidence of a genotype attributed to a specific sample, or genotype quality
(GQ); total amount of reads for a given position, or position depth (DP); and number of reads for the
given variant detected in the sequencing, or allele depth (AD). In addition, AD should account for
≥20% of position depth. Biological criteria were based on the predicted protein-level effect of the
variant, which could range from deleterious to moderate. Figure S2: Frequency of ovarian failure
variants accumulated in each patient. Number of patients is presented on the Y-axis, and number
of presenting variants from the genomic profile of 66 variants associated with ovarian failure on
the X-axis of the histogram. Most patients (17) shared 9 variants. The maximum number of shared
variants was 15, seen in 4 patients. Figure S3: DNAH6 and TRABD2A variants. Screenshots are shown
for 3 variant s (2 for DNAH6, 1 for TRABD2A), highlighting the genome position (left corner, in green)
and the presence of the variant in all corresponding case samples in the respective gene (highlighted
in the centre of the picture, in green). Table S1: Significant variants found after using contrast of
proportions. Fisher test identified 116 significant variants (p < 0.01). Chromosome, position, change
at sequence and amino acid level, type of change, genes affected, and dbSNP identifier, if known, are
shown. 1 = Significant variant after adjusting p-values for FDR (adj. < 0.05). Table S2: Novel sixty-six
variants predictive of ovarian failure. Chromosomal and genomic positions of the variants, as well as
bases and amino acid changes at the indicated number in the sequences, dbSNP IDs (if known), type
of changes, amino acid class, polarity and charge changes, genes affected, number of cases affected
by the variant, and coverage and accession numbers. Variants were present in at least 10% of cases
(12 women out of 118) and no controls. Gene Ontology and Genecards databases were consulted to
annotate gene function. 1 Top 6 variants shared by >20 cases. 2 Top variants valued by random forest

https://www.mdpi.com/article/10.3390/jpm11070609/s1
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algorithm to stratify the population. 3 The three variants found affecting genes already related to
ovarian failure in the literature. 4 Variant absent in International Genome Sample Resource, dbSNP,
and GnomAD databases.
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