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Abstract: Methacrylate analogs of quaternary ammonium salts functionalized with carboxylic
(AMadh1 68.8% yield, AMadh2 53.2% yield) and methoxysilane (AMsil1 94.8% yield, AMsil2 36.0%
yield) groups were synthesized via Menschutkin reaction. Fourier-transform infrared spectroscopy
(FTIR), nuclear magnetic resonance spectroscopy (1H, 13C and 2D 1H-13C heteronuclear single
quantum coherence (HSQC) NMR), mass spectrometry, thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) were utilized to validate structures and characterize thermal
properties of the novel multifunctional quaternary ammonium salts synthesized. The potential
adhesive, coupling and antimicrobial properties of these multifunctional monomers encourage their
further comprehensive evaluation in conventional and experimental copolymers and composites.

Keywords: quaternary ammonium salts; antimicrobial monomers; antibacterial dental materials;
tooth caries inhibition; Menschutkin reaction; copolymers; composites; resins

1. Introduction

Quaternary ammonium (QA) salts are highly stable compounds [1], known for their phase
transfer catalytic [2,3], and germicidal properties [4,5]. Their antimicrobial (AM) potential makes
QAs particularly useful in materials applications where AM activity is highly desired, such as dental
materials. There has been increased interest in the design of QA compounds with polymerizable
functional groups as they may provide materials with desired AM properties. Past studies on the
introduction of AM agents, such as chlorhexidine, antibiotics, zinc, silver, fluoride and iodide [6–9],
into such materials have only resulted in short-term AM effect particularly in dental materials upon
prolonged exposure to the intra-oral environment. To resolve the issue of unsustainable AM effect,
many efforts have been devoted to the design and synthesis of polymerizable QA compounds [8,10–13]
Their AM action has been reported to depend on the type of counter ion [10], pendant active groups [6]
and length of the alkyl chains [7]. There has been a desire to design and synthesize QAs with
carboxylate and silane functional groups. Carboxylate functionality has been widely used in dental
materials to facilitate adhesion to dentin and/or enamel [14–16]. On the other hand, organosilanes are
traditionally utilized as good coupling agents with both siliceous fillers and the polymeric matrix [17]
In addition, it has been demonstrated that QAs with hydrophobic alkyl chains provide AM function
that increases with the chain length [18,19]. Increased chain length also increases the hydrophobicity of
the resins/composites thus decreasing the potential for excessive water uptake [20]. The objective of this
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work was to incorporate QA AM functionality with either carboxylate (AMadh series) or organosilane
(AMsil series) into methacrylate-based monomers with varied alkyl chain length. Complex structural
characterization of these materials was performed to validate their structures and the synthetic route
utilized. Evaluation of their thermal properties was performed to compare their phase transition
behavior relative to other dental monomers.

2. Results and Discussion

Quaternary ammonium salts were synthesized by reacting a tertiary amine with four commercially
available alkyl halides, containing carboxylic (AMadh series) or organosilane (AMsil series) functional
groups. The reaction between a neutral amine and an alkyl halide producing two ions of opposite sign,
also known as a Menschutkin reaction [21,22], is a bimolecular nucleophilic substitution (SN2) reaction
(Scheme 1). This reaction occurs at an aliphatic carbon with a stable, electronegative leaving group
(halide). The breaking of the carbon-halide bond and the formation of the new nitrogen-carbon bond
occurs simultaneously during the transition state. In solutions, final products may exist as separate
ions, ion pairs or solid salts. Reversibility of the Menschutkin reactions in solutions has been well
established [23,24].
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Typically, Menschutkin reactions are conducted in polar solvents, which stabilize the transition
state, increasing the rate of reaction. Density functional theory (DFT) calculations [25] show progressive
lengthening of carbon-halide and shortening of carbon-nitrogen bonds of the transition state moiety
with an increase of dielectric constant of the solvent used. Our choice of a solvent (chloroform)
with a relatively low dielectric constant (ε = 4.81) was dictated by the presence of carboxylic and
methoxy-silane groups in one of the reactants. Dissociation of the carboxylic acid proton would
be minimized, relative to a more polar solvent, which may participate in an unwanted acid-base
interaction with a tertiary amine. Formation of a charged quaternary ammonium salt with highly
polar adducts in chloroform can also lead to its precipitation, which may significantly simplify its
purification from the reacting mixture. Direct precipitation of the reaction product was only observed
in the case of AMadh2 (53.2% yield). Other products remained dissolved, possibly due to solvent
hydrogen bonding to their longer alkyl chains. Additions of low polarity solvents (hexane, diethyl
ether) led to the precipitation of purified products (AMadh1 68.8%, AMsil1 94.8% and AMsil2 36.0%
yields). In polar aprotic solvents, iodide is a significantly better leaving group than bromide, which
explains a 2.6-fold increase in AMsil1 product yield (relative to AMsil2).

FT-IR spectra (Supplementary Figures S1 and S2) of synthesized compounds were consistent with
their proposed structures. Absorption peaks (3000 to 3020) cm−1 (sp2 C-H stretch), (2916 to 2943) cm−1

(sp3 C-H stretch), (1716 to 1721) cm−1 (C=O stretch), (1636 to 1641) cm−1 (C=C stretch) were observed
in all products. Additionally, AMsil series products exhibited (1076 to 1082) cm−1 peaks corresponding
to Si-O-C asymmetric stretch [26–28].

NMR spectra of AMadh series compounds and their structures are shown in Figure 1 (1H-NMR) and
Supplementary Figures S4, S6 and S7 (13C-NMR, HSQC). Distinctive signals assigned to the carboxylic
acid proton were observed at a chemical shift of 12.04 ppm (AMadh1) and 11.96 ppm (AMadh2).
The two vinyl protons were observed at 6.08 (trans-) and 5.76 (cis-) ppm, confirming successful
inhibition of methacrylate self-polymerization during the synthesis. Both AMadh compounds exhibit
a singlet at 3.09 ppm, which was assigned to the methyl groups (positions 7, 8) directly attached to the
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quaternary amine (–N+(CH3)2–), which corresponded to 50.4 ppm chemical shift in their 13C-NMR
spectra. Chemical shifts of 4.52 (58.0, 58.1) and 3.70 (61.6) ppm were assigned to protons (carbons)
on the methylene bridge (–O–CH2–CH2–N+(CH3)2–, positions 5 and 6 respectively). Significant
downfield shift of these signals in comparison to the ones present in their tertiary amine precursor
DMAEMA (1H/13C chemical shifts: 2.18/45.3 ppm (positions 7, 8) and 2.52/57.2 ppm (position 6),
Supplementary Figure S3), is due to the de-shielding effect of a positively charged nitrogen center and
further confirms the success of the quaternization reaction. Complete NMR structural assignment of
AMadh compounds is given in Tables 1 and 2.
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Figure 1. 1H-NMR spectra of AMadh1 (a) and AMadh2 (b) products.
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Table 1. NMR spectral peak assignments of AMadh1 structure.

Position δC δH

1 126.5 5.76, s; 6.08, s
2 135.3
3 17.8 1.91, s
4 165.8
5 58.0 4.52, m
6 61.6 3.70, m

7, 8 50.4 3.09, s
9 63.6 3.36, m

10 21.5 1.69, m
11 25.2 1.28, m
12 23.9 1.55, m
13 33.2 2.24, t
14 174.2
19 12.04, s

Table 2. NMR spectral peak assignments of AMadh2 structure.

Position δC δH

1 126.5 5.76, s; 6.08, s
2 135.3
3 17.8 1.91, s
4 165.8
5 58.1 4.52, m
6 61.6 3.70, m

7, 8 50.4 3.09, s
9 63.8 3.35, m

10 21.7 1.67, m

11–16 25.7, 28.37, 28.43, 28.58, 28.64,
28.67 1.26, m

17 24.4 1.48, q
18 33.6 2.19, t
19 174.4
20 11.96, s

NMR spectra of AMsil series compounds shown in Figure 2 (1H-NMR) and Supplementary
Figures S5, S8, and S9 (13C, HSQC) also confirm successful quaternization of the tertiary amine reactant.
It must be noted that methoxy groups (Si–(O–CH3)3, assigned to 1H/13C chemical shifts of 3.51/50.1
(AMsil1), 3.46/49.9 ppm (AMsil2); positions 20, 21, 22), which are highly prone to hydrolysis in the
presence of moisture, were successfully protected by performing this synthesis in chloroform. Complete
NMR structural assignment of AMsil compounds is given in Tables 3 and 4.

Molecular ions (M+) of AMadh2 (m/z = 342.4, 343.4, 344.4), AMsil1 (m/z = 320.3, 321.3, 322.2) and
AMsil2 (m/z = 432.4, 433.4, 434.4) were directly observed during mass spectrometric analysis of the
synthesized compounds (Supplementary Figures S10–S13). All compounds showed high abundance
of C6H9O2

• fragments (m/z = 113.1), typically seen in mass spectra of mono- and di-methacrylates.
Collectively, FTIR, NMR and MS analysis of synthesized AMadh and AMsil series compounds
confirmed that their structures were as designed.

Thermogravimetric analysis of synthesized monomers (Supplementary Figure S14) revealed that
they were stable at physiologically relevant temperatures. Thermal degradation onset was observed
at ≈150 ◦C for all compounds. Minor sample mass changes at or below 100 ◦C can be associated
with water loss of 1% to 2% mass fraction for AMsil monomers and 3% to 4% mass fraction for
AMadh2 monomer.
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Figure 2. 1H-NMR spectra of AMsil1 (a) and AMsil2 (b) products.

Table 3. NMR spectral peak assignments of AMsil1 structure.

Position δC δH

1 126.6 5.77, s; 6.09, s
2 135.3
3 17.8 1.92, s
4 165.8
5 58.0 4.52, m
6 61.7 3.70, m

7, 8 50.6 3.09, s
9 65.9 3.34, m
10 15.6 1.72, m
11 5.2 0.54, t

12,13,14 50.1 3.51, s
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Table 4. NMR spectral peak assignments of AMsil2 structure.

Position δC δH

1 126.5 5.76, s; 6.08, s
2 135.3
3 17.8 1.91, s
4 165.8
5 58.1 4.52, m
6 61.6 3.70, m

7, 8 50.4 3.09, s
9 63.8 3.36, m

10 21.7 1.67, m

11–18 22.1, 25.7, 28.4, 28.6, 28.7, 28.8, 28.9,
32.3 1.25, m

19 8.6 0.57, t
20,21,22 49.9 3.46, s

DSC thermograms of the first heating ramp revealed glassy phase transitions for three of the
four synthesized monomers (Figure 3). Glass transition temperatures (Tg) and the corresponding
changes in specific heat capacity (∆Cp) for AMadh1, AMadh2 and AMsil1 were determined to be
approximately −4, 24, and −22 ◦C and 0.52, 0.38, and 0.59 J/(g K), respectively. Further heating, revealed
exothermic cold crystallization peaks at ≈86 and ≈48 ◦C with a change in enthalpy (∆H) of ≈−60
and −41 J/g for AMadh1 and AMsil1, respectively (Supplementary Figures S15–S18). Endothermic
melting phase transition peaks were observed at ≈125 ◦C (∆H ≈ 122 J/g), ≈132 ◦C (∆H ≈ 167 J/g) and
≈93 ◦C (∆H ≈ 39 J/g) for AMadh1, AMadh2 and AMsil1, respectively. Analysis of scans of the first
cooling ramp suggests that AMadh1 and AMsil1 monomers are slow crystallizers because they show a
cold crystallization peak on first heating with no corresponding crystallization peak on subsequent
cooling from the melt. However, AMadh2 and AMsil2 presented crystallization peaks upon cooling
at ≈83 ◦C (∆H ≈ −133 J/g) and ≈13 ◦C (∆H ≈ −3 J/g). Melting temperatures of monomers obtained
from the thermograms of the second heating ramp were in good agreement with values observed in
the first ramp. AMsil2 was not amenable to the typical heating and cooling analysis, possibly due to
residual moisture; therefore, additional measurements were performed on a DSC (TA Instruments
Q1000) with improved baseline linearity. The heating data showed multiple inflections (Figure 3d),
which after matching with cooling heat capacity data could be attributed to a cold crystallization at
≈11 ◦C followed by melting at ≈2 ◦C. Because the base cooling temperature of the DSC was −90 ◦C
and presence of spikes in the cooling data (likely due to mechanical effects in the pan) the cooling data
alone was insufficient to obtain a reasonable estimate for the crystal/glassy Cp line. To eliminate the
mechanical effects, two sets of cooling data were obtained and averaged, while excluding the regions
around the spikes in the baseline. The overlap in Cp between heating and cooling at low temperatures
gave sufficient confidence that the heating data could be used for the crystal/glassy Cp line and the
overlap at high temperatures for both gave confidence that the cooling trace could be used to estimate
the liquid/melt Cp line. Both crystal/glassy and liquid/melt lines were determined with a linear least
squares fit to a straight line and the glass transition temperature of AMsil2 was estimated by the
intersection of the cooling data at (1/2)∆Cp,glass-melt as ≈−29 ◦C (∆Cp ≈ 0.36 J/(g K)).

The measured glass transition temperatures of the synthesized methacrylate monomer salts
(Figure 4) are generally in line with monomeric Tg’s of base monomers commonly utilized in dental
resins. Differential scanning calorimetry of urethane dimethacrylate (UDMA) and bisphenol A glycidyl
methacrylate (BisGMA) established their monomeric Tg’s to be −38 ◦C and −10 ◦C, respectively. [29]
Incorporation of these QA methacrylate monomer salts into comonomer mixtures based on BisGMA
or UDMA will be expected to contribute to the glass transition temperature of the mixture in an
additive fashion. However, structural differences between the QA monomer salts and base monomers
may give rise to polymerization-induced phase separation in certain formulations. These types of
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partially structurally and thermodynamically compatible comonomer formulations have been reported
to form heterogeneous polymer networks that exhibit reduced polymerization shrinkage and stress
development [30–32]. We are currently evaluating these effects of QA monomers and will report
detailed findings in future publications.
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3. Materials and Methods

All solvents and reagents were procured from commercial sources and were used without
any further purification. 2-(dimethylamino)ethyl methacrylate (DMAEMA), 6-bromohexanoic
acid (BrHA), 11-bromoundecanoic acid (BrUDA), butylated hydroxytoluene (BHT), and
(3-iodopropyl)trimethoxysilane (IPTMS) were purchased from Sigma (St. Louis, MO, USA). Chloroform
was purchased from Acros Organics (Geel, Belgium) and (11-bromoundecyl)trimethoxysilane
(BrUDTMS) was from Gelest Inc. (Morrisville, PA, USA). NMR (1H, 13C, HSQC (2D: 1H-13C))
data of synthesized compounds was collected on Bruker Avance II 600 MHz spectrometer (Billerica,
MA, USA) equipped with a BBO room temperature probe. Deuterated dimethyl sulfoxide (DMSO-d6)
containing tetramethylsilane (TMS) was used as a solvent. Mass spectra were collected on Waters
Quattro Micro mass spectrometer (Waters Corp., Milford, MA, USA) equipped with an ESI probe and
operated in the positive ionization mode. FTIR spectra were collected on a diamond ATR cell attached to
Nexus 670 (ThermoFisher, Madison, WI, USA) spectrometer, equipped with a DTGS room temperature
detector. Thermogravimetric analysis (TGA) was performed on Q500 TGA (TA instruments, New
Castle, DE, USA) at a 10 ◦C/min heating rate under nitrogen purge (flow rate 60 mL/min). Differential
scanning calorimetry (DSC) measurements were performed on a PerkinElmer DSC8500 (Waltham, MA,
USA) equipped with a CLN2 liquid nitrogen chiller under a dry helium purge (flow rate 20 mL/min)
and a TA Instruments Q1000 equipped with an RCS90 mechanical chiller and operated in T4P mode
under a dry nitrogen purge (flow rate 50 mL/min) at heating and cooling rates of 10 ◦C/min. The
instrument temperatures were calibrated against adamantane, benzophenone, indium, tin and lead
standards. Heat flow was calibrated against indium and sample temperatures were corrected for the
measured heating rate against indium. Samples were sealed in 50 µL cold-welded aluminum hermetic
pans in an inert, dry environment prior to measurement. Heat capacity measurements from the Q1000
DSC were taken directly from the instrument software and were not further corrected against a heat
capacity standard.

General Procedure for the Synthesis of Quaternary Ammonium (QA) Monomers

DMAEMA (10.0 mmol) was reacted with alkyl halide (10.0 mmol) at 50 to 55 ◦C in the presence of
BHT (1.0 mmol) and chloroform (2.5 mL). Figure 4 lists all combinations of reacting compounds and
their corresponding reaction products. After 24 h, reaction products were collected, purified and dried
as indicated below.

5-Carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylpentan-1-aminium bromide (AMadh1), ethanol
(2.0 mL) was added to the reaction mixture and transferred to a 50-mL conical separatory flask. Product
was precipitated and washed with hexane (3 × 20 mL). The supernatant was discarded and acetone
(40 mL) was used to re-dissolve the product. Hexane (10 mL) was added to this solution and AMadh1
precipitated as fine white powder. Product was collected by vacuum filtration, washed with hexane,
and vacuum dried. The reaction yielded 2.4250 g of purified product (68.8% yield). FTIR (ATR) νmax

3010.78, 2915.74, 1727.02, 1716.79, 1636.09, 1488.30, 1455.62, 1395.06, 1316.78, 1289.61, 1246.48, 1156.13,
1134.14 946.75 848.19, 814.90, 741.39, 645.12 cm−1; 1H-NMR (DMSO-d6, 600 MHz) δ 12.04 (1H, s), 6.08
(1H, s), 5.76 (1H, s), 4.52 (2H, m), 3.70 (2H, m), 3.36 (2H, m), 3.09 (6H, s), 2.24 (2H, t), 1.91 (3H, s), 1.69
(2H, m), 1.55 (2H, m), 1.28 (2H, m); 13C-NMR (DMSO-d6, 151 MHz) δ 174.2, 165.8, 135.3, 126.5, 63.6, 61.6,
58.0, 50.4, 33.2, 25.2, 23.9, 21.5, 17.8; MSEI+ m/z 113.0 (C6H9O2

•, m/z = 113.1), 114.1, 172.2 (C9H18NO2
•+,

m/z = 172.1), 186.3 (C10H20NO2
•+, m/z = 186.1), 258.3 (C13H24NO4

2•+, m/z = 258.2), 286.3, 300.3.
10-Carboxy-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyldecan-1-aminium bromide (AMadh2), the

product precipitated out of solution as white powder. AMadh2 was collected by vacuum filtration and
washed with chloroform. The reaction yielded 2.0983 g of purified product (53.2% yield). FTIR (ATR)
νmax 3020.22, 2919.64, 2853.68, 1720.62, 1632.90, 1472.53, 1450.86, 1396.20, 1321.88, 1298.54, 1205.04,
1160.55, 1102.09, 1029.49, 981.36, 961.54, 911.05, 811.23, 718.91, 649.71 cm−1; 1H-NMR (DMSO-d6,
600 MHz) δ 11.96 (1H, s), 6.08 (1H, s), 5.76 (1H, s), 4.52 (2H, m), 3.70 (2H, m), 3.35 (2H, m), 3.09 (6H, s),
2.19 (2H, t), 1.91 (3H, s), 1.67 (2H, m), 1.48 (2H, q), 1.26 (12H, m); 13C-NMR (DMSO-d6, 151 MHz) δ 174.4,
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165.8, 135.3, 126.5, 63.8, 61.6, 58.1, 50.4, 33.6, 28.67, 28.64, 28.58, 28.43, 28.37, 25.7, 24.4, 21.7, 17.8; MSEI+

m/z 113.0 (C6H9O2
•, m/z = 113.1), 114.2, 342.4, 343.4, 344.4 (C19H36NO4

+, m/z = 342.3, 343.3, 344.3).
N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-3-(trimethoxysilyl)propan-1-aminium iodide (AMsil1),

chloroform (5.0 mL) was used to rinse and transfer the reaction mixture to a beaker. Diethyl
ether (20 mL) was used to precipitate the final product which was collected by vacuum filtration.
AMsil1 was washed with hexane and vacuum dried. The reactiosn yielded 4.2420 g of purified
product (94.8% yield). FTIR (ATR) νmax 3006.36, 2942.53, 2839.78, 1721.33, 1640.85, 1498.52, 1452.65,
1408.73, 1317.51, 1296.44, 1157.04, 1075.87, 1014.52, 955.81, 930.77, 902.10, 827.52, 808.42, 775.28, 727.63,
654.36 cm−1; 1H-NMR (DMSO-d6, 600 MHz) δ 6.09 (1H, s), 5.77 (1H, s), 4.52 (2H, m), 3.70 (2H, m),
3.51 (9H, s), 3.34 (2H, m), 3.09 (6H, s), 1.92 (3H, s), 1.72 (2H, m), 0.54 (2H, t); 13C-NMR (DMSO-d6,
151 MHz) δ 165.8, 135.3, 126.6, 65.9, 61.7, 58.0, 50.6, 50.1, 17.8, 15.6, 5.2; MSEI+ m/z 113.0 (C6H9O2

•,
m/z = 113.1), 121.0 (C3H9O3Si•, m/z = 121.0), 153.1, 163.2 (C6H15O3Si•, m/z = 163.1), 320.3, 321.3, 322.2
(C14H30NO5Si+, m/z = 320.2, 321.2, 322.2).

N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-11-(trimethoxysilyl)undecan-1-aminium bromide (AMsil2),
diethyl ether (10 mL × 3) was added to the reaction mixture to precipitate and wash the product. After
each addition of diethyl ether, AMsil2 product was collected by centrifugation (14,000 rpm) and the
supernatant top layer decanted. The AMsil2 product was vacuum dried. The reaction yielded 1.8474 g
of purified product (36.0% yield). FTIR (ATR) νmax 3401.44, 2924.91, 2853.72, 1720.62, 1637.82, 1465.22,
1318.37, 1295.37, 1159.98, 1090.00, 953.85, 811.57, 655.18, 600.60 cm−1; 1H-NMR (DMSO-d6, 600 MHz) δ
6.08 (1H, s), 5.76 (1H, s), 4.52 (2H, m), 3.70 (2H, m), 3.46 (9H, s), 3.36 (2H, m), 3.09 (6H, s), 1.91 (3H, s),
1.67 (2H, m), 1.25 (16H, m), 0.57 (2H, m); 13C-NMR (DMSO-d6, 151 MHz) δ 165.8, 135.3, 126.5, 63.8,
61.6, 58.1, 50.4, 49.9, 32.3, 28.9, 28.8, 28.7, 28.6, 28.4, 25.7, 22.1, 21.7, 17.8, 8.6; MSEI+ m/z 113.0 (C6H9O2

•,
m/z = 113.1), 114.2, 364.3, 365.4, 366.4 (C18H42NO4Si•+, m/z = 364.3, 365.3, 366.3), 432.4, 433.4, 434.4
(C22H46NO5Si+, m/z = 432.3, 433.3, 434.3).

Due to the well-documented hygroscopic nature of QAs [33,34], all synthesized monomers were
stored under vacuum (25 mm Hg).

4. Conclusions

Four new polymerizable quaternary ammonium salt monomers with different alkyl chain lengths
and functional groups have been successfully synthesized by reacting a tertiary amine (DMAEMA)
with various commercially available alkyl halides. Their structures were characterized by FTIR, 1H,
13C and 1H-13C HSQC NMR and mass spectrometry and their thermal properties were evaluated.
Menschutkin reactions in solvents with relatively low dielectric constant provide a simple method
for rapid synthesis and purification of quaternary ammonium salts that may undergo unwanted
transformations in more polar or hygroscopic solvents.

Supplementary Materials: The supplementary figures are available online.
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