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Abstract

This article presents and investigates performance of a series of robust multivariate non-

parametric tests for detection of location shift between two multivariate samples in random-

ized controlled trials. The tests are built upon robust estimators of distribution locations

(medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled

and scaled versions. The nonparametric tests are robust to outliers and do not assume that

the two samples are drawn from multivariate normal distributions. Bootstrap and permuta-

tion approaches are introduced for determining the p-values of the proposed test statistics.

Simulation studies are conducted and numerical results are reported to examine perfor-

mance of the proposed statistical tests. The numerical results demonstrate that the robust

multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are

more efficient than those based on medians and the extended U statistic. The permutation

approach can provide a more stringent control of Type I error and is generally more powerful

than the bootstrap procedure. The proposed robust nonparametric tests are applied to

detect multivariate distributional difference between the intervention and control groups in

the Thai Healthy Choices study and examine the intervention effect of a four-session moti-

vational interviewing-based intervention developed in the study to reduce risk behaviors

among youth living with HIV.

Introduction

In randomized controlled trials, effectiveness (or efficacy) of a treatment effect is constantly

characterized by the difference between distributional locations of a treatment group and its

control group. Hypothesis testing is the primary statistical inference approach in examining

treatment effects in clinical trials, when it is conducted to detect whether there exists any

PLOS ONE | https://doi.org/10.1371/journal.pone.0195894 April 19, 2018 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Jiang X, Guo X, Zhang N, Wang B, Zhang

B (2018) Robust multivariate nonparametric tests

for detection of two-sample location shift in clinical

trials. PLoS ONE 13(4): e0195894. https://doi.org/

10.1371/journal.pone.0195894

Editor: Qizhai Li, University of the Chinese

Academy of Sciences, CHINA

Received: January 29, 2018

Accepted: April 2, 2018

Published: April 19, 2018

Copyright: © 2018 Jiang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Dr. Xuejun Jiang’s research was partially

supported by Natural Science Foundation of China

(11101432), Natural Science Foundation of

Guangdong Province of China (2017A030313012),

and Shenzhen Sci-Tech Fund

(JCYJ20170307110329106). Dr. Xu Guo’s

research was partially supported by National

Natural Science Foundation of China (11601227

and 11626130) and Natural Science Foundation of

https://doi.org/10.1371/journal.pone.0195894
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195894&domain=pdf&date_stamp=2018-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195894&domain=pdf&date_stamp=2018-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195894&domain=pdf&date_stamp=2018-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195894&domain=pdf&date_stamp=2018-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195894&domain=pdf&date_stamp=2018-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195894&domain=pdf&date_stamp=2018-04-19
https://doi.org/10.1371/journal.pone.0195894
https://doi.org/10.1371/journal.pone.0195894
http://creativecommons.org/licenses/by/4.0/


difference between distributional locations of the treatment group and the control group.

When the primary endpoint is one-dimensional and normally distributed for both study

groups, the two-sample t test is the standard tool. Yet, the two-sample t test may not be valid

when normality assumption is violated. The two-sample t test is not robust to outliers and

heavy-tail distributions. A number of robust nonparametric tests have been developed in the

literature as a complement of the two-sample t test. The classic Wilcoxon-Mann-Whitney test

[1] that used the rank sum is a nonparametric counterpart of the two-sample t test. Yuen [2]

and Keselman et al. [3] recommended to construct the tests using trimmed means. Recently,

Fried and Dehling [4] proposed a series of robust nonparametric tests for detecting univariate

two-sample location difference. These tests were constructed based upon unscaled and prop-

erly scaled robust location estimators of distributions, including medians and Hodges-Leh-

mann estimators. The numerical studies reported by Fried and Dehling [4] showed that the

test statistics were robust to outliers and non-normality and efficient in detecting univariate

two-sample location shift. Mathur [5] proposed a strictly nonparametric bivariate test con-

structed from an extended U statistic and concluded that the test statistic did not depend on

the covariance structure of the underlying population and was more powerful than the existing

tests.

In randomized controlled trials, effectiveness of a treatment effect can be defined by not a

single or two, but multiple primary endpoints, and significance of the treatment effect is then

determined by multivariate location shift between the two multivariate distributions of the

treatment and control groups. In these clinical trials, multivariate hypothesis testing proce-

dures are needed to detect a potential location shift between two samples that are drawn with a

multivariate primary endpoint. The conventional univariate two-sample t test was extended to

the multivariate setting by Hotelling [6] and the proposed test statistic was denominated

Hotelling’s T2 statistic. The Hotelling’s T2 test inherits the limitations of univariate two-sample

t test, because it is still not robust to multivariate outliers and not valid when the multivariate

normality assumption is violated. This motivated the development of multivariate two-sample

location tests. Hettmansperger and Oja [7] developed a multivariate sign test for detecting

location deviation among multiple multivariate samples. Hettmansperger et al. [8] introduced

affine invariant analogues of the two-sample Mann-Whitney-Wilcoxon rank sum test. Neu-

haus and Zhu [9] proposed multivariate distribution-free permutation test statistics that were

built upon projected univariate versions of multivariate data. Henze et al. [10] introduced a

class of consistent tests, in which the test statistic is a weighted integral of the squared modulus

of the difference of the empirical characteristic functions of one multivariate sample and

another multivariate sample plus a location shift.

In this article, we extend the robust nonparametric test statistics proposed by Fried and

Dehling [4] and Mathur [5] to the multivariate setting. A series of robust multivariate non-

parametric tests are proposed using the component-wise medians, Hodges-Lehmann location

estimators, and an extended U statistic. Univariate test statistics for detecting multivariate two-

sample location shift are constructed for the robust multivariate nonparametric tests as (i)

unscaled maximum of the component-wise medians or the Hodges-Lehmann estimators, (ii)

scaled maximum of the component-wise medians or the Hodges-Lehmann estimators, (iii)

maximum of the scaled component-wise medians or the Hodges-Lehmann estimators, or (iv)

the extended U statistic. A bootstrap approach and a permutation approach are introduced for

determining the p-values of the proposed test statistics. We conduct simulation studies to

examine performance of the proposed robust nonparametric test statistics in detecting multi-

variate two-sample location shift. The numerical results given by the bootstrap procedure

demonstrate that the proposed robust multivariate nonparametric tests constructed from the

Hodges-Lehmann estimators are more efficient than those based on medians and the extended
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U statistic. The permutation approach can provide a more stringent control of Type I error

and is more powerful than the bootstrap procedure. To demonstrate the use of these proposed

robust multivariate nonparametric tests, the proposed hypothesis tests are applied to detecting

the intervention effect of the Thai Healthy Choices study [11], a study that promotes a four-

session motivational interviewing-based intervention to reduce risk behaviors among youth

living with HIV (the Thai Healthy Choices study was designed jointly by Wayne State Univer-

sity and the Thai Red Cross AIDS Research Center, and implemented in Bangkok, Thailand).

The scientific contribution of this article is multifold. First, a series of new robust nonpara-

metric test statistics are proposed for detecting location shift between two multivariate samples

collected from the treatment and control groups, respectively, in clinical trials. Both a boot-

strap approach and a permutation approach are introduced to implement the proposed tests

for seeking corresponding p-values. These provide the practitioners a variety of choices with

two distinct implementation approaches to test on treatment effects when the normality

assumption for the samples is violated. Second, comprehensive numerical studies are con-

ducted and the results show explicit benefits from using the proposed tests over the Hotelling’s

T2 and the extended U tests in term of controlling Type I error and boosting statistical power.

Third, the article presents a representative example, the Thai Healthy Choices study, and

shows how the proposed robust nonparametric hypothesis testing procedures can be imple-

mented to test on the treatment or intervention effect in a clinical trial.

Tests on two-sample location shift

Consider two random samples {X1, � � �, Xm} and {Y1, � � �, Yn} with p-dimensional independent

multivariate observations Xi 2 R
p, i = 1, � � �, m, and Yj 2 R

p, j = 1, � � �, n, for which

X1; � � � ;Xm�
i:i:dFðxÞ

and

Y1; � � � ;Yn�
i:i:dGðxÞ:

The null hypothesis of equality of F(x) and G(x) and its alternative hypothesis that there is a

location shift in the two multivariate distributions are

H0 : FðxÞ ¼ GðxÞ versus H1 : FðxÞ ¼ Gðx þ DÞ: ð1Þ

A natural idea to test the above hypotheses is to compare location estimators of the two distri-

butions. Sample means �X and �Y can be used to fulfil this mission, which leads to the promi-

nent Hotelling’s T2 test. However, the Hotelling’s T2 test is constructed under the multivariate

normal distributions, and therefore perform poorly when there are outliers or the underlying

true distributions of the two samples do not follow multivariate normal distributions.

Tests based on unscaled median difference and Hodges-Lehmann

estimators

Here, we propose a series of robust nonparametric test statistics based on robust estimators for

distribution locations as competitors of the Hotelling’s T2 test statistics. A general approach to

construct such nonparametric tests is to estimate the location difference Δ and then reject the

null hypothesis H0 if Δ is far from zero. As usual, we can replace difference of sample means

with difference between two sample medians:

D̂1 ¼ medfY1; � � � ;Yng � medfX1; � � � ;Xmg: ð2Þ
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In (2), med{X1, � � �, Xm} and med{Y1, � � �, Yn} are the p-dimensional median vectors of the two

samples. The median vector of a sample is defined as the vector of component-wise medians.

That is, the kth component of med{X1, � � �, Xm} is the median of X1k, � � �, Xmk, where Xik is the

kth component of p-dimensional observation Xi for i = 1, � � �, m, and the kth component of

med{Y1, � � �, Yn} is the median of Y1k, � � �, Ynk, where Yjk is the kth component of p-dimen-

sional observation Yj for j = 1, � � �, n. In practice, however, D̂1 cannot be directly used as a test

statistic for the pair of hypotheses in (1), since D̂1 is a p-dimensional vector and is not a scalar.

Therefore, the following maximum of absolute values of the p medians within D̂1 can be con-

sidered:

D̂max
1
¼ maxfjD̂11j; jD̂12j; � � � ; jD̂1pjg;

where D̂1k is the kth component of D̂1 for k = 1, � � �, p. Under the null hypothesis D̂max
1

should

be close to zero, whereas under alternative hypothesis it deviates from zero.

Noted that, although the direct sample medians med{X1, � � �, Xm} and med{Y1, � � �, Yn} in

(2) are robust estimators for the locations of two samples, these medians are not very efficient

as each of them exploits little information in the sample data. To balance efficiency against

robustness, two types of Hodges-Lehmann estimators were developed [12, 13]. Multivariate

analogs of the univariate Hodges-Lehmann estimators are

D̂2 ¼ medfYj � Xi; i ¼ 1; � � � ;m; j ¼ 1; � � � ; ng

and

D̂3 ¼
medfYi þ Yj; 1 � i < j � ng

2
�
medfXi þ Xj; 1 � i < j � mg

2
;

where the p-dimensional multivariate median vectors are likewise defined as in (2). The test

statistics using the multivariate Hodges-Lehmann estimators to detect location shift between

two multivariate samples are then proposed as the absolute component-wise maximum of D̂2

and D̂2:

D̂max
2
¼ maxfjD̂21j; jD̂22j; � � � ; jD̂2pjg

and

D̂max
3
¼ maxfjD̂31j; jD̂32j; � � � ; jD̂3pjg:

where D̂2k and D̂3k are the kth component of D̂2 and D̂3, respectively, for k = 1, � � �, p.

Tests based on scaled median difference and Hodges-Lehmann estimators

Because D̂max
1

, D̂max
2

and D̂max
3

only measure the component-wise maximum variability between

the two samples, a scaled version of each is required to construct a more robust nonparametric

test statistic. To this end, a related measure of the variability within the two samples are needed

for the procedure of standardization. For D̂max
1

, the following p-dimensional median vector is

the measure of component-wise differences between the two samples:

S1 ¼ 2medfZi; i ¼ 1; � � � ;mþ ng;

where ðZ1; � � � ;ZmþnÞ
0
¼ ðX1 �

~X ; � � � ;Xm �
~X ;Y1 �

~Y ; � � � ;Yn �
~Y Þ0 is the joint median-cor-

rected sample and ~X ¼ medfX1; � � � ;Xmg and ~Y ¼ medfY1; � � � ;Xng. Then, the absolute
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component-wise maximum of S1 is defined as

Smax
1
¼ 2maxfmedfjZij; i ¼ 1; � � � ;mþ ngg;

and the standardized version of D̂max
1

can be formulated as

T1 ¼ D̂max
1
=Smax

1
:

For D̂max
2

and D̂max
3

, the following p-dimensional median vectors of the absolute set of differ-

ences in the samples and within the joint median-corrected sample can be taken as the mea-

sure of component-wise differences within the two samples:

S2 ¼ medfjXi � Xjj; 1 � i < j � m; jYi � Yjj; 1 � i < j � ng

and

S3 ¼ medfjZi � Zjj; 1 � i < j � mþ ng:

Then, the absolute component-wise maximum of them are defined as

Smax
2
¼ maxfmedfjXi � Xjj; 1 � i < j � m; jYi � Yjj; 1 � i < j � ngg

and

Smax
3
¼ maxfmedfjZi � Zjj; 1 � i < j � mþ ngg;

respectively. The scaled versions of D̂max
2

and D̂max
3

are consequently constructed as

T2 ¼ D̂max
2
=Smax

2
and T3 ¼ D̂max

2
=Smax

3
;

and

T4 ¼ D̂max
3
=Smax

2
and T5 ¼ D̂max

3
=Smax

3
:

Alternative standardization procedure of D̂max
1

, D̂max
2

, and D̂max
3

can also be applied, which is

to standardize each component of them and then take the maximum of all standardized com-

ponents. This alternative standardization procedure leads to the following test statistics for

detecting a multivariate two-sample location shift:

T�
1
¼ max

jD̂11j

S11

;
jD̂12j

S12

; � � � ;
jD̂1pj

S1p

( )

;

T�
2
¼ max

jD̂21j

S21

;
jD̂22j

S22

; � � � ;
jD̂2pj

S2p

( )

;

T�
3
¼ max

jD̂21j

S31

;
jD̂22j

S32

; � � � ;
jD̂2pj

S3p

( )

;

T�
4
¼ max

jD̂31j

S21

;
jD̂32j

S22

; � � � ;
jD̂3pj

S2p

( )

;
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and

T�
5
¼ max

jD̂31j

S31

;
jD̂32j

S32

; � � � ;
jD̂3pj

S3p

( )

;

for l = 1, 2, � � �, 5, in which Slk denotes the kth element of Sl, l = 1, 2.3. Under the null hypothe-

sis, the proposed test statistics Tl and T�l , l = 1, 2, � � �, 5, should be close to zero, whereas they

should be far from zero under the alternative hypothesis. When the dimension p is equal to 1,

these test statistics degenerate to the test statistics introduced by Fried and Dehling [4] and

Tl ¼ T�l for l = 1, 2, � � �, 5.

Tests based on U statistics

An U-statistic recently proposed by Mathur [5] was designated to test a bivariate two-sample

location shift. Here, we extend it to serve for detecting the multivariate two-sample location

shift. Specifically, the extended U test statistic for multivariate sample location detection is

defined as

U ¼
Xn

i¼1

Xm

j¼1

IðD2

1i > D2

2jÞ ð3Þ

where D2
1i ¼ k Xi k

2 is the Euclidean distance from {X1, � � �, Xm} to origin and D2
2j ¼ k Yj k

2 is

the Euclidean distance from {Y1, � � �, Yn} to origin. The null hypothesis is rejected if the

observed value of the extended U statistic exceeds a critical value of U obtained by

permutation.

Implementation: A bootstrap procedure

Here, a bootstrap procedure is introduce to numerically approximate the p-values of the pro-

posed robust nonparametric tests. Suppose two random samples with p-dimensional indepen-

dent multivariate observations X1; � � � ;Xm �
i:i:d FðxÞ and p-dimensional independent

multivariate observations Y1; � � � ;Yn �
i:i:d GðxÞ are collected. The null hypothesis H0: F(x) = G(x)

and its alternative hypothesis for a location shift in the two multivariate distributions H1: F(x)

= G(x + Δ) are considered. To conduct hypothesis testing on such a pair of hypotheses, distri-

butions of the above proposed test statistics are generally unknown in finite samples. There-

fore, a bootstrap method can be adopted to approximate the underlying distribution of a test

statistic and subsequently determine the corresponding p-value. In the bootstrap procedure, a

pseudo sample fX�i ; i ¼ 1; � � � ;mg is drawn from the pooled sample {Xi, Yj; i = 1, � � �, m, j = 1,

� � �, n} with replacement, and another pseudo sample fY�j ; j ¼ 1; � � � ; ng is drawn from the

same pooled sample also with replacement. Let V denote any one of the investigated test statis-

tics, and let V� be the bootstrap version of V that is calculated from the paired bootstrap

pseudo samples fX�i ; i ¼ 1; � � � ;mg and fY�j ; j ¼ 1; � � � ; ng. Then, the null hypothesis is

rejected if V is larger than the (100% � α) quantile of the bootstrap distribution of V�, where α
is the level of significance of hypothesis testing. It has been confirmed in the literature that the

above bootstrap procedure can produce a valid approximation to the test statistic V [14–16].

Implementation: A permutation procedure

A permutation procedure is a competitive alternative to the bootstrap procedure to derive crit-

ical values for the proposed robust nonparametric tests. In the permutation procedure, the

pooled sample {Xi, Yj; i = 1, � � �, m, j = 1, � � �, n} is repeatedly split to two pseudo samples
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fX�i ; i ¼ 1; � � � ;mg and fY�j ; j ¼ 1; � � � ; ng without replacement. Let V� denoted the permuted

version of a investigated test statistic V, and V� is calculated from the paired permuted pseudo

samples fX�i ; i ¼ 1; � � � ;mg and fY�j ; j ¼ 1; � � � ; ng. Then, the null hypothesis is rejected if V is

larger than the (100% � α) quantile of the permutation distribution of V�, where α is the level of

significance of hypothesis testing.

Simulation studies

This section reports numerical results from a simulation study that was conducted to demon-

strate merits of the proposed hypothesis tests and compare them with Hotelling’s T2. In this

simulation study, we aim at examining and comparing performance of the proposed hypothe-

sis tests for detecting a location shift among different pairs of two samples. The sample {X1,

� � �, Xm} was generated from F(x) and the sample {Y1, � � �, Yn} was generated from G(x). Four

different pairs of distributions of F(x) and G(x) were considered: (i) F(x) was a p-dimensional

multivariate normal distribution Np(1p, Sp), where 1p is a p-dimensional vector with each com-

ponent equal to one and Sp is the variance-covariance matrix, and G(x) was the location shift

distribution Np(1p + Δ, Sp), (ii) F(x) was a p-dimensional multivariate t distribution with 1

degrees of freedom t1(1p, Sp), and G(x) was the location shift distribution t1(1p + Δ, Sp) (iii) F
(x) was a p-dimensional multivariate t distribution with 3 degrees of freedom t3(1p, Sp), and G
(x) was the location shift distribution t3(1p + Δ, Sp), and (iv) F(x) was the p-dimensional joint

distribution of the diagonal elements of a Wishart random matrix that followed the Wishart

distribution Wp(3, Sp), where 3 is the degree of freedom and Sp is the scale matrix, and

G(x) = F(x + Δ) was the location shift distribution. In this simulation study, two variance-

covariance matrices were taken to generated the simulation data: one is an independent vari-

ance-covariance matrix Ip×p, which is a p × p identify matrix, and another one is a non-inde-

pendent variance-covariance matrix with diagonal elements equal to 1 and non-diagonal

elements equal to 0.5. The dimension p of the two samples was set to be 4, and the sample sizes

were set as n = m = 10, 25, and 50. In this simulation study, the location vector Δ in each of

four distributions was specified as Δ = (0.5δ, δ, δ, 2δ)0, in which δ varied to take a value of 0,

0.5, 1, 1.5, or 2. The proposed test statistics D̂max
1

, D̂max
2

, D̂max
3

, Tl and T�l , l = 1, 2, � � �, 5, as well as

Hotelling’s T2 and the extended U statistic, were applied in two-sample multivariate hypothesis

testing to detect the location shift. A total number of 1000 simulation data sets were generated

from each pair of specified distributions of the two samples, and then the proposed hypothesis

testing was implemented using these investigated test statistics. The rejection rate was subse-

quently calculated as the frequency that the null hypothesis H0: F(x) = G(x) was rejected

among the 1000 simulation data sets by each of the investigated hypothesis test statistics.

When δ = 0, the pair of true distributions of the two samples have the identical location, and

thus the rejection rate is corresponding to simulated Type I error of the hypothesis tests.

When δ 6¼ 0, the pair of true distributions of the two samples reside in different locations, and

the rejection rate is corresponding to simulated power of the hypothesis tests. In this simula-

tion study, the number of bootstrap samples was set to be 500 and the significance level was set

to be 0.05.

The simulation results of the test statistics based on the bootstrap procedure are presented

in S1–S6 Tables. S1–S3 Tables report the Type I errors and power obtained from the simulated

paired samples that were generated using the independent variance-covariance matrix with

different sample sizes. S4–S6 Tables report the Type I errors and power obtained using the

non-independent variance-covariance matrix. It is observed that, when the samples were gen-

erated from two multivariate normal distributions with a location shift, Hotelling’s T2,

extended U statistic, and Tl and T�l , l = 2, 3, performed the best among all the investigated test
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statistics in term of Type I errors and power as δ varied. There was not sufficient numerical

evidence that the Hotelling’s T2 statistic outperformed other five statistics. The tests based on

the Hodges-Lehmann estimators D̂max
2

, D̂max
3

, Tl and T�l , l = 2, 3, 4, 5, were more powerful than

those based on medians D̂max
1

, T1 and T�
1
. The choice of the measure of variability within the

two samples (i.e., the choice of either S2 or S3 and the choice of either Smax
2

or Smax
3

) had very lit-

tle impact on the performance of test statistics.

When one sample was generated from a multivariate t distribution or a Wishart distribu-

tion and another sample was generated from its location shift counterpart, the performance of

the proposed robust nonparametric test statistics outperformed the Hotelling’s T2 and

extended U statistics in detecting the location shift between the two samples. The power of

these robust test statistics was mostly larger than the power given by the Hotelling’s T2 and

extended U statistics. Among the nonparametric test statistics, as in the case of multivariate

normal distributions, the tests based on the Hodges-Lehmann estimators were more powerful

than those based on the medians. The scaled nonparametric tests generally outperform their

unscaled counterparts. The nonparametric tests based on Tl and T�l , l = 2, 3, are most powerful

among the investigated test statistics, and the Type I errors given by these four test statistics

are mostly close to 0.05. The powers given by the investigated test statistics consistently

increased as the location difference between two samples and sample sizes were enlarged.

The simulation results of the test statistics based on the permutation approach are presented

in Tables 1–6. Tables 1–3 report the Type I errors and power obtained from the simulated

paired samples that were generated using the independent variance-covariance matrix with

different sample sizes. Tables 4–6 report the Type I errors and power obtained using the non-

Table 1. Type I errors (δ = 0) and power (δ 6¼ 0) given by the investigated test statistics based on permutation approach in detecting location shift between two sam-

ples generated from the four pairs of F(x) and G(x) with variance-covariance matrix I4×4 and sample sizes n = m = 10.

Type I errors (δ = 0) and power (δ 6¼ 0)

G(x) δ value T2
D̂max

1
D̂max

2
D̂max

3
T1 T2 T3 T4 T5 T�

1
T�

2
T�

3
T�

4 T�
5 U

(i) 0 0.040 0.054 0.061 0.058 0.053 0.059 0.057 0.062 0.067 0.056 0.059 0.057 0.058 0.050 0.063

0.50 0.411 0.353 0.437 0.443 0.334 0.418 0.421 0.433 0.430 0.250 0.358 0.361 0.370 0.371 0.576

1.00 0.970 0.932 0.977 0.979 0.895 0.977 0.977 0.976 0.977 0.797 0.940 0.941 0.940 0.939 0.993

1.50 1.000 0.998 1.000 1.000 0.995 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(ii) 0 0.018 0.038 0.048 0.048 0.045 0.048 0.050 0.045 0.052 0.038 0.053 0.050 0.049 0.053 0.054

0.50 0.044 0.118 0.098 0.092 0.136 0.105 0.110 0.094 0.101 0.163 0.143 0.152 0.116 0.125 0.053

1.00 0.115 0.367 0.286 0.230 0.464 0.325 0.330 0.271 0.273 0.523 0.478 0.501 0.391 0.422 0.087

1.50 0.233 0.643 0.561 0.438 0.768 0.623 0.617 0.533 0.528 0.813 0.809 0.804 0.717 0.731 0.165

2.00 0.398 0.802 0.764 0.653 0.922 0.844 0.834 0.770 0.758 0.930 0.938 0.942 0.860 0.881 0.258

(iii) 0 0.026 0.049 0.052 0.054 0.049 0.059 0.056 0.061 0.059 0.048 0.053 0.056 0.060 0.058 0.053

0.50 0.174 0.241 0.262 0.249 0.240 0.269 0.266 0.264 0.265 0.247 0.273 0.286 0.283 0.279 0.083

1.00 0.720 0.747 0.810 0.798 0.751 0.818 0.814 0.827 0.813 0.690 0.811 0.823 0.804 0.811 0.364

1.50 0.945 0.965 0.985 0.979 0.968 0.988 0.988 0.983 0.985 0.953 0.982 0.983 0.984 0.985 0.810

2.00 0.993 0.997 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967

(iv) 0 0.023 0.055 0.059 0.047 0.049 0.056 0.063 0.051 0.046 0.047 0.039 0.047 0.041 0.053 0.064

0.50 0.084 0.101 0.113 0.116 0.087 0.118 0.120 0.118 0.133 0.099 0.114 0.120 0.113 0.117 0.130

1.00 0.306 0.300 0.334 0.327 0.309 0.351 0.364 0.343 0.360 0.274 0.341 0.379 0.347 0.376 0.345

1.50 0.652 0.661 0.729 0.667 0.654 0.753 0.759 0.701 0.714 0.589 0.718 0.766 0.689 0.720 0.612

2.00 0.905 0.904 0.946 0.907 0.897 0.954 0.959 0.933 0.938 0.859 0.966 0.963 0.934 0.939 0.865

https://doi.org/10.1371/journal.pone.0195894.t001
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Table 2. Type I errors (δ = 0) and power (δ 6¼ 0) given by the investigated test statistics based on permutation approach in detecting location shift between two sam-

ples generated from the four pairs of F(x) and G(x) with variance-covariance matrix I4×4 and sample sizes n = m = 20.

Type I errors (δ = 0) and power (δ 6¼ 0)

G(x) δ value T2
D̂max

1
D̂max

2
D̂max

3
T1 T2 T3 T4 T5 T�

1
T�

2
T�

3
T�

4 T�
5 U

(i) 0 0.037 0.048 0.047 0.052 0.045 0.049 0.049 0.050 0.052 0.045 0.044 0.040 0.051 0.047 0.049

0.50 0.847 0.660 0.765 0.770 0.611 0.762 0.768 0.770 0.770 0.557 0.755 0.753 0.744 0.751 0.863

1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.983 1.000 1.000 1.000 1.000 1.000

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(ii) 0 0.016 0.053 0.067 0.060 0.052 0.062 0.064 0.065 0.064 0.047 0.052 0.054 0.045 0.046 0.049

0.50 0.032 0.287 0.211 0.179 0.299 0.227 0.223 0.194 0.190 0.365 0.272 0.293 0.235 0.251 0.061

1.00 0.141 0.829 0.703 0.628 0.867 0.737 0.728 0.674 0.672 0.902 0.816 0.823 0.788 0.793 0.107

1.50 0.304 0.987 0.960 0.939 0.994 0.974 0.975 0.958 0.958 0.993 0.987 0.990 0.976 0.982 0.267

2.00 0.485 1.000 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000 0.990 0.459

(iii) 0 0.040 0.051 0.051 0.044 0.053 0.052 0.049 0.046 0.041 0.043 0.043 0.046 0.044 0.047 0.048

0.50 0.432 0.523 0.544 0.545 0.496 0.550 0.548 0.545 0.547 0.494 0.587 0.595 0.579 0.580 0.108

1.00 0.954 0.989 0.987 0.987 0.976 0.989 0.990 0.990 0.979 0.989 0.991 0.990 0.987 0.991 0.662

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0 0.039 0.050 0.056 0.052 0.053 0.055 0.056 0.050 0.050 0.045 0.059 0.053 0.053 0.056 0.070

0.50 0.179 0.171 0.214 0.181 0.162 0.226 0.232 0.190 0.199 0.148 0.221 0.240 0.195 0.228 0.201

1.00 0.659 0.606 0.775 0.651 0.576 0.784 0.791 0.684 0.683 0.544 0.764 0.795 0.658 0.701 0.623

1.50 0.957 0.929 0.984 0.954 0.930 0.989 0.991 0.965 0.968 0.915 0.989 0.991 0.965 0.975 0.912

2.00 0.998 0.999 0.999 0.995 0.989 1.000 1.000 0.998 0.999 0.984 0.997 0.999 0.996 0.998 0.992

https://doi.org/10.1371/journal.pone.0195894.t002

Table 3. Type I errors (δ = 0) and power (δ 6¼ 0) given by the investigated test statistics based on permutation approach in detecting location shift between two sam-

ples generated from the four pairs of F(x) and G(x) with variance-covariance matrix I4×4 and sample sizes n = m = 50.

Type I errors (δ = 0) and power (δ 6¼ 0)

G(x) δ value T2
D̂max

1
D̂max

2
D̂max

3
T1 T2 T3 T4 T5 T�

1
T�

2
T�

3
T�

4 T�
5 U

(i) 0 0.047 0.054 0.045 0.046 0.055 0.046 0.046 0.046 0.045 0.044 0.048 0.041 0.042 0.045 0.057

0.50 1.000 0.974 0.999 0.997 0.970 0.999 0.998 0.998 0.999 0.950 0.999 0.998 0.999 0.999 0.999

1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(ii) 0 0.012 0.051 0.055 0.054 0.049 0.054 0.056 0.055 0.054 0.045 0.054 0.057 0.054 0.050 0.055

0.50 0.043 0.734 0.589 0.565 0.750 0.602 0.601 0.580 0.571 0.732 0.605 0.604 0.578 0.580 0.126

1.00 0.171 1.000 0.988 0.983 1.000 0.999 0.999 0.997 0.997 0.999 0.998 0.994 0.997 0.997 0.569

1.50 0.345 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.926

2.00 0.531 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996

(iii) 0 0.046 0.052 0.048 0.043 0.052 0.055 0.058 0.052 0.053 0.49 0.048 0.048 0.046 0.045 0.052

0.50 0.854 0.905 0.921 0.926 0.908 0.923 0.924 0.926 0.927 0.887 0.898 0.919 0.916 0.921 0.226

1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0 0.042 0.047 0.053 0.051 0.052 0.049 0.052 0.051 0.054 0.053 0.047 0.047 0.051 0.050 0.055

0.50 0.471 0.392 0.591 0.440 0.378 0.589 0.600 0.448 0.461 0.364 0.601 0.620 0.429 0.458 0.376

1.00 0.982 0.954 1.000 0.967 0.926 1.000 1.000 0.971 0.975 0.930 0.999 0.999 0.977 0.980 0.902

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0195894.t003
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Table 4. Type I errors (δ = 0) and power (δ 6¼ 0) given by the investigated test statistics based on permutation approach in detecting location shift between two sam-

ples generated from the four pairs of F(x) and G(x) with the non-independent variance-covariance matrix and sample sizes n = m = 10.

Type I errors (δ = 0) and power (δ 6¼ 0)

G(x) δ value T2
D̂max

1
D̂max

2
D̂max

3
T1 T2 T3 T4 T5 T�

1
T�

2
T�

3
T�

4 T�
5 U

(i) 0 0.034 0.056 0.052 0.044 0.052 0.044 0.052 0.038 0.048 0.048 0.046 0.056 0.040 0.050 0.064

0.50 0.358 0.294 0.364 0.356 0.290 0.332 0.324 0.332 0.328 0.240 0.296 0.298 0.304 0.316 0.178

1.00 0.974 0.906 0.962 0.964 0.874 0.946 0.944 0.952 0.948 0.752 0.924 0.922 0.922 0.928 0.632

1.50 1.000 0.995 1.000 0.979 1.000 1.000 1.000 1.000 1.000 0.823 1.000 1.000 1.000 1.000 0.958

2.00 1.000 0.995 1.000 1.000 0.998 1.000 1.000 1.000 1.000 0.966 1.000 1.000 1.000 1.000 1.000

(ii) 0 0.014 0.044 0.038 0.048 0.044 0.040 0.044 0.044 0.054 0.046 0.044 0.050 0.056 0.040 0.052

0.5 0.050 0.136 0.104 0.112 0.162 0.112 0.112 0.110 0.114 0.134 0.112 0.134 0.102 0.110 0.072

1.0 0.252 0.384 0.318 0.276 0.422 0.364 0.384 0.324 0.348 0.452 0.388 0.382 0.346 0.350 0.156

1.5 0.530 0.742 0.690 0.578 0.824 0.734 0.722 0.670 0.652 0.762 0.744 0.762 0.614 0.652 0.310

2.0 0.638 0.844 0.814 0.732 0.898 0.862 0.870 0.828 0.804 0.916 0.856 0.870 0.7720 0.788 0.456

(iii) 0 0.024 0.064 0.044 0.040 0.058 0.044 0.044 0.044 0.042 0.046 0.048 0.046 0.042 0.046 0.060

0.5 0.212 0.252 0.282 0.268 0.238 0.266 0.272 0.264 0.270 0.196 0.218 0.236 0.246 0.254 0.082

1.0 0.742 0.740 0.784 0.784 0.730 0.780 0.794 0.782 0.782 0.602 0.732 0.750 0.722 0.720 0.312

1.5 0.958 0.972 0.986 0.984 0.952 0.986 0.986 0.986 0.982 0.900 0.970 0.970 0.966 0.968 0.674

2.0 0.994 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 0.980 0.998 1.000 0.994 1.000 0.9000

(iv) 0 0.030 0.046 0.047 0.051 0.036 0.051 0.052 0.056 0.053 0.053 0.054 0.048 0.055 0.051 0.066

0.5 0.069 0.080 0.095 0.096 0.085 0.102 0.102 0.086 0.099 0.085 0.092 0.112 0.096 0.112 0.090

1.0 0.226 0.262 0.299 0.295 0.251 0.310 0.319 0.311 0.308 0.199 0.293 0.321 0.2780 0.299 0.174

1.5 0.491 0.583 0.711 0.617 0.582 0.719 0.725 0.651 0.661 0.427 0.625 0.681 0.5470 0.598 0.307

2.0 0.740 0.851 0.936 0.865 0.835 0.933 0.931 0.885 0.881 0.680 0.870 0.897 0.789 0.850 0.476

https://doi.org/10.1371/journal.pone.0195894.t004

Table 5. Type I errors (δ = 0) and power (δ 6¼ 0) given by the investigated test statistics based on permutation approach in detecting location shift between two sam-

ples generated from the four pairs of F(x) and G(x) with the non-independent variance-covariance matrix and sample sizes n = m = 20.

Type I errors (δ = 0) and power (δ 6¼ 0)

G(x) δ value T2
D̂max

1
D̂max

2
D̂max

3
T1 T2 T3 T4 T5 T�

1
T�

2
T�

3
T�

4 T�
5 U

(i) 0 0.033 0.043 0.053 0.059 0.047 0.052 0.058 0.064 0.057 0.046 0.057 0.052 0.062 0.059 0.056

0.50 0.687 0.629 0.732 0.738 0.608 0.736 0.730 0.731 0.734 0.544 0.703 0.715 0.706 0.715 0.587

1.00 1.000 0.988 1.000 1.000 0.992 1.000 1.000 1.000 1.000 0.974 1.000 1.000 1.000 1.000 0.994

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(ii) 0 0.011 0.054 0.063 0.065 0.055 0.061 0.060 0.062 0.058 0.063 0.059 0.054 0.063 0.059 0.042

0.50 0.067 0.291 0.212 0.187 0.320 0.226 0.226 0.208 0.212 0.343 0.244 0.248 0.226 0.232 0.076

1.00 0.243 0.809 0.693 0.641 0.845 0.736 0.731 0.681 0.681 0.853 0.737 0.737 0.694 0.692 0.273

1.50 0.446 0.982 0.951 0.918 0.995 0.961 0.955 0.947 0.942 0.991 0.966 0.968 0.947 0.953 0.589

2.00 0.623 0.998 0.998 0.999 0.998 0.995 0.995 0.994 0.997 0.999 0.997 0.998 0.995 0.997 0.813

(iii) 0 0.028 0.047 0.050 0.057 0.052 0.050 0.051 0.049 0.040 0.045 0.049 0.043 0.054 0.055 0.064

0.50 0.377 0.515 0.554 0.536 0.516 0.550 0.549 0.544 0.536 0.486 0.547 0.556 0.537 0.542 0.101

1.00 0.915 0.980 0.988 0.981 0.975 0.992 0.992 0.986 0.988 0.985 0.983 0.984 0.980 0.981 0.658

1.50 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 0.980

2.00 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0 0.040 0.038 0.051 0.054 0.040 0.050 0.055 0.052 0.039 0.054 0.044 0.051 0.056 0.047 0.054

0.50 0.155 0.150 0.209 0.199 0.167 0.219 0.221 0.198 0.208 0.125 0.209 0.222 0.185 0.211 0.178

1.00 0.529 0.612 0.771 0.632 0.606 0.788 0.798 0.656 0.682 0.556 0.761 0.791 0.659 0.699 0.573

1.50 0.874 0.927 0.976 0.925 0.918 0.981 0.983 0.950 0.949 0.911 0.978 0.980 0.934 0.943 0.869

2.00 0.985 0.994 1.000 0.995 0.998 1.000 1.000 0.998 0.996 0.995 1.000 1.000 0.996 0.995 0.981

https://doi.org/10.1371/journal.pone.0195894.t005
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independent variance-covariance matrix. It is observed that, when the samples were generated

from two multivariate normal distributions with a location shift, the performance of all the test

statistics are comparable. Moreover, when one sample was generated from a multivariate t dis-

tribution or a Wishart distribution and another sample was generated from its location shift

counterpart, the performance of the proposed robust nonparametric test statistics outper-

formed the Hotelling’s T2 and extended U statistics in detecting the location shift between the

two samples as it was shown by the bootstrap procedure. The tests based on the Hodges-Leh-

mann estimators D̂max
2

, D̂max
3

, Tl and T�l , l = 2, 3, 4, 5, were slightly powerful than those based on

medians D̂max
1

, T1 and T�
1
. A cross comparison of the Type I errors and power given by the

bootstrap approach and the permutation approach showed that the permutation approach was

able to provide a more stringent control of Type I error and was generally more powerful than

the bootstrap procedure. The performance of the nonparametric tests Tl and T�l , l = 2, 3, 4, 5

did not differ when the permutation approach is applied. Although in Tables 1–6 the scaled

nonparametric test statistics cannot be distinguished from their unscaled counterparts, these

results were not generalizable since Fried and Dehling [4] had explicitly demonstrated the

advantages of the scaled nonparametric test statistics over the unscaled ones.

Naturally, the proposed nonparametric test statistics function properly without the multi-

variate normality assumption that the classical Hotelling’s T2 test requires and therefore are

robust to non-normality and outliers. This is the primary reason that we observe in the simula-

tion studies that the proposed tests were comparable to the the Hotelling’s T2 and the extended

U tests when the two samples were simulated from multivariate normal distributions and they

outperform the two tests when normality does not hold for the simulated samples.

Table 6. Type I errors (δ = 0) and power (δ 6¼ 0) given by the investigated test statistics based on permutation approach in detecting location shift between two sam-

ples generated from the four pairs of F(x) and G(x) with the non-independent variance-covariance matrix and sample sizes n = m = 50.

Type I errors (δ = 0) and power (δ 6¼ 0)

G(x) δ value T2
D̂max

1
D̂max

2
D̂max

3
T1 T2 T3 T4 T5 T�

1
T�

2
T�

3
T�

4 T�
5 U

(i) 0 0.036 0.046 0.051 0.053 0.056 0.053 0.053 0.048 0.048 0.052 0.055 0.055 0.047 0.049 0.055

0.50 0.994 0.955 0.991 0.993 0.993 0.994 0.993 0.992 0.992 0.942 0.991 0.990 0.988 0.987 0.929

1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(ii) 0 0.011 0.052 0.049 0.046 0.053 0.050 0.049 0.045 0.049 0.049 0.051 0.052 0.049 0.051 0.052

0.50 0.059 0.734 0.589 0.565 0.752 0.602 0.601 0.583 0.572 0.732 0.603 0.602 0.578 0.580 0.126

1.00 0.275 1.000 0.992 1.000 1.000 0.996 0.995 0.989 0.990 1.000 0.993 0.992 0.985 0.985 0.569

1.50 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.926

2.00 0.658 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996

(iii) 0 0.037 0.063 0.052 0.053 0.062 0.061 0.050 0.052 0.053 0.057 0.057 0.058 0.057 0.054 0.053

0.50 0.746 0.905 0.923 0.928 0.908 0.923 0.924 0.926 0.927 0.898 0.919 0.918 0.921 0.920 0.226

1.00 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.967

1.50 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(iv) 0 0.038 0.047 0.053 0.054 0.049 0.054 0.051 0.049 0.053 0.052 0.047 0.051 0.047 0.051 0.046

0.50 0.369 0.392 0.591 0.440 0.378 0.592 0.600 0.448 0.461 0.364 0.601 0.620 0.429 0.458 0.374

1.00 0.932 0.953 0.992 0.964 0.948 0.996 0.994 0.973 0.977 0.935 0.996 0.995 0.970 0.973 0.902

1.50 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

https://doi.org/10.1371/journal.pone.0195894.t006
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Statistical analysis of the Thai Healthy Choices study

This section introduces the Thai Healthy Choices study and reports the analysis results from

hypothesis testing on effect of a four-session motivational interviewing-based intervention

developed in the study to reduce risk behaviors among youth living with HIV [11]. The pro-

posed nonparametric robust test statistics Tl and T�l , l = 1, 2, � � �, 5, as well as Hotelling’s T2 and

extended U statistic, were applied in the hypothesis testing procedure to detect multivariate

difference between intervention and control groups in the study.

The Thai Healthy Choices study

The Thai Healthy Choices study was conducted at the Thai Red Cross AIDS Research Center

in Bangkok [11]. Thai youth living with HIV and attending the Thai Red Cross AIDS Research

Centre clinics in Bangkok, who were interested in participation in the study, were referred by

their physicians to the study team. The participants eligible to enroll in the study are those

between 16 and 25 years old, HIV-positive, and understanding spoken and written Thai

enough to participate in study assessments and sessions. Upon completion of consent, partici-

pants were randomized in a one-to-one ratio to receive either an designed intervention

approach named Healthy Choices (intervention group) or general health education (control

group). At the baseline visit, participants completed the assessments. After the baseline visit,

participants began to attend either four Healthy Choices sessions in intervention group or four

general health education sessions in control group, based on randomization. The sessions in

both groups occurred at 1, 2, 6 and 12 weeks after the baseline visit. Each session took approxi-

mately 60 min. The assessments similar to the baseline visit were conducted at 1 month after

the fourth session and again at 6 months after the fourth session in both groups.

The intervention group received Healthy Choices, a four-session individual-level Motiva-

tional Interviewing (MI) counseling that targeted two of three possible risk behaviors, includ-

ing sexual risks, alcohol use, and antiretroviral adherence. The intervention was delivered in

Thai by an MI-trained interventionist. The details of the intervention have been published

elsewhere [11]. Session 1 focused on eliciting the participants view of the behavior, exploring

barriers as well as sociocultural factors affecting risks and building motivation to initiate the

change plan. Session 2 followed a similar format with a focus on the second targeted behaviors.

Sessions 3 and 4 were to formalize the personalized behavior change plan, reinforce commit-

ment to change, and identify strategies to maintain healthy behaviors and to prevent relapse.

All MI strategies to enhance motivation were used throughout all sessions. The control group

received four individualized sessions of general health education unrelated to HIV risk behav-

iors. Session 1 focused on healthy diet, Session 2 on exercise, and Session 3 on smoking and

healthy sleep habits. Session 4 was an overall review of the participants knowledge learned dur-

ing the prior sessions. The contents of the sessions were adapted from the health education

materials published by the Thai Ministry of Public Health. All sessions were delivered didacti-

cally by a research assistant who read the contents of the health education manual to the partic-

ipant. The research assistant received no MI training and was instructed to avoid discussing

HIV-related topics, including sexual behavior, HIV disclosure, alcohol and substance use, and

medication adherence with the participant.

There were six primary clinical measures for the success of the investigated intervention.

(1) HIV sexual risk score. An HIV sexual risk scoring system was empirically created based on

eight sexual behavior characteristics: sexual intercourse, condom use, number of partners,

HIV status of partners, anal sex, receptive anal sex, receptive vaginal sex, and alcohol use with

sex. A score (ranging from 1 to 13) was calculated for each participant at each study visit based

on the individuals sexual activities in the previous 30 days. The purpose of the scoring system

Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials
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was to provide a broad view of the quantifiable magnitude of an individuals sexual risk. (2)

Viral load. Blood samples for plasma HIV viral loads were obtained at baseline, 1 month fol-

low-up, and 6 months follow-up in both study groups and were analyzed by COBAS Ampli-

Prep/Amplicor HIV-1 Monitor Test, version 1.5 (Roche Molecular Systems, Branchburg, NJ),

with the lower limit of detection at 50 copies/ml. (3) HIV stigma. Participants completed the

12-item HIV Stigma Scale, which was developed from Berger’s 40-item HIV Stigma Scale [17].

The measure contains four stigma subscales, with three items per each subscale, representing

personalized stigma, disclosure concerns, negative self-image, and public attitude stigma.

Cronbach’s α was 0.80 in the present study. (4) Mental health. Participants completed the

12-item Thai General Health Questionnaire covering depression, anxiety, social impairment,

and somatic complaints. All items were rated on a four-point Likert scale, ranging from 1 (not

at all) to 4 (much more than usual). The scores were averaged and a mean score�2 was con-

sidered clinically significant. Cronbach’s α was 0.85 in the present study. (5) Self-efficacy on

confidence in avoiding multiple sex partners, and (6) self-efficacy on confidence in using con-

doms. The Self-Efficacy for Health Promotion and Risk Reduction questionnaire contains 6

items on confidence in using a condom and 3 items on confidence in avoiding sex with multi-

ple partners. Items were rated on a 5-point Likert scale ranging from 1 (very sure I cannot) to

5 (very sure I can). Cronbach’s α was 0.89 in the this study. Figs 1–3 display the histograms of

HIV sexual risk scores, self-efficacy on avoiding multiple partners, and self-efficacy on con-

dom use for treatment and control groups at baseline and 6-month visits. Figs 4–6 display the

Fig 1. Histograms of HIV sexual risk scores for treatment and control groups at baseline and 6-month visits.

https://doi.org/10.1371/journal.pone.0195894.g001
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boxplots of visual load, HIV stigma, mental health for treatment and control groups at baseline

and 6-month visits.

Hypothesis testing on intervention effect

In the Thai Healthy Choices study, effect of the four-session motivational interviewing-based

intervention were simultaneously evaluated by six primary clinical measures: namely HIV sex-

ual risk score, viral load, HIV stigma, mental health, self-efficacy of condom use, and self-effi-

cacy of avoiding multiple sex partners. One approach to determine whether the intervention

effect is statistically significant is to conduct a hypothesis test using the nonparametric robust

test statistics to determine whether the intervention group and the control group are different

in terms of the 6-dimensional multivariate clinical measure at the end of the study (i.e., at

6-month visit). A total number of 74 HIV-positive men who have sex with men were included

in this analysis: 37 individuals in intervention group and 37 individuals in control group [18].

Among all participants, 16 of them had missing values and these missing values were replaced

with the sample mean of the corresponding variables in each group.

Differences between sample means, medians and two Hodges-Lehmann location estimators

of intervention and control groups are reported in S7 Table for each individual clinical mea-

sure. These differences demonstrate that the intervention effect may be driven by HIV sexual

risk score and HIV stigma. Hypothesis tests were conducted to formally determine whether

there was distributional difference between intervention and control groups at baseline and

Fig 2. Histograms of self-efficacy on avoiding multiple partners for treatment and control groups at baseline and

6-month visits.

https://doi.org/10.1371/journal.pone.0195894.g002
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6-month visits. The null hypothesis was that probability distributions of the multivariate clini-

cal measure for intervention and control groups are identical, and the alternative hypothesis

was that there was a location shift between the distributions of the multivariate clinical mea-

sure for intervention and control groups. The proposed test statistics Tl and T�l , l = 2, 3, 4, 5, as

well as Hotelling’s T2 and extended U statistic, are applied to detect the location shift. The

hypothesis testing results, including the values of test statistics and the corresponding p-values,

are reported in the upper panel in Table 7. For the baseline samples, all test statistics failed to

reject the null hypothesis at the significant level of 0.05, suggesting there was not any statisti-

cally significant difference between the probability distributions of the two groups at the base-

line visit. For the samples collected at the 6-month follow-up visit, the test statistics Tl and T�l ,

l = 2, 3, and Hotelling’s T2 statistic rejected the null hypothesis but others did not. This implied

that distributional locations of the samples collected from the two study groups may be statisti-

cally different after 6 months of intervention. Furthermore, we compared the two samples col-

lected at the baseline visit and the 6 month visit within each of the two study groups. The null

hypothesis was that probability distributions of the multivariate clinical measure are identical

at the baseline and the 6 month visits for the intervention group or for the control group, and

the alternative hypothesis was that there was a location shift between the distributions of the

multivariate clinical measure at the baseline and the 6 month visits within each group. The

hypothesis testing results are reported in the lower panel in Table 7. For the intervention

group, the test statistics T�
2

and T�
3

rejected the null hypothesis whereas others did not. For the

control group, none of the test statistics rejected the null hypothesis.

Fig 3. Histograms of self-efficacy on condom use for treatment and control groups at baseline and 6-month visits.

https://doi.org/10.1371/journal.pone.0195894.g003
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Fig 4. Boxplots of visual load for treatment and control groups at baseline and 6-month visits.

https://doi.org/10.1371/journal.pone.0195894.g004

Fig 5. Boxplots of HIV stigma for treatment and control groups at baseline and 6-month visits.

https://doi.org/10.1371/journal.pone.0195894.g005
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The analysis results of hypothesis testing conclude that there existed statistically significant

intervention effect for the four-session motivational interviewing-based intervention devel-

oped in the Thai Healthy Choices study to reduce risk behaviors among youth living with

HIV. Difference in probability distributions of the multivariate clinical measure for interven-

tion and control groups was detected after 6-month of intervention. Such difference was also

confirmed between baseline and 6-month follow-up visits for the intervention group.

Fig 6. Boxplots of mental health for treatment and control groups at baseline and 6-month visits.

https://doi.org/10.1371/journal.pone.0195894.g006

Table 7. Values of test statistics and corresponding p-values for comparison of intervention and control groups at baseline and 6-month visits and for comparison

of baseline (upper panel) and 6-month visits within each group (lower panel).

T2 T2 T3 T4 T5 T�
2

T�
3

T�
4 T�

5 U
Intervention vs. control at baseline Statistic value 1.076 0.033 0.033 0.100 0.100 0.500 0.500 1.000 1.000 652

p-value (bootstrap) 0.386 0.788 0.788 0.954 0.952 0.274 0.274 0.288 0.286 0.820

p-value (permutation) 0.386 0.880 0.880 0.982 0.982 0.198 0.246 0.364 0.342 0.768

Intervention vs. control at 6 month Statistic value 2.747 0.534 0.483 0.443 0.400 0.804 0.689 0.681 0.681 524

p-value (bootstrap) 0.019 0.024 0.048 0.138 0.164 0.040 0.048 0.184 0.184 0.144

p-value (permutation) 0.019 0.024 0.032 0.150 0.172 0.026 0.032 0.144 0.164 0.112

Baseline vs. 6 month for intervention Statistic value 1.719 0.167 0.167 0.207 0.207 0.667 0.667 0.758 0.758 774

p-value (bootstrap) 0.130 0.578 0.560 0.594 0.590 0.030 0.030 0.386 0.350 0.284

p-value (permutation) 0.130 0.706 0.704 0.552 0.552 0.034 0.026 0.376 0.360 0.292

Baseline vs. 6 month for control Statistic value 1.420 0.148 0.148 0.173 0.173 0.481 0.514 0.561 0.599 710

p-value (bootstrap) 0.220 0.364 0.360 0.620 0.614 0.230 0.142 0.286 0.270 0.576

p-value (permutation) 0.220 0.418 0.418 0.552 0.552 0.234 0.114 0.220 0.202 0.692

https://doi.org/10.1371/journal.pone.0195894.t007
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Conclusions

This article proposes a series of robust nonparametric test statistics for detecting location shifts

between two multivariate samples. The test statistics are constructed based upon the robust

estimators of distribution location, including the medians, the two Hodges-Lehmann estima-

tors, and the extended U statistic. Four classes of test statistics are proposed, which include (i)

maximum of the component-wise medians or the Hodges-Lehmann estimators, (ii) scaled

maximum of the component-wise medians or the Hodges-Lehmann estimators, (iii) maxi-

mum of the scaled component-wise medians or the Hodges-Lehmann estimators, and (iv) the

extended U statistic. The simulation studies suggest that the proposed robust nonparametric

test statistics are effective alternatives to the Hotelling’s T2. The simulation studies also show

that the nonparametric tests built upon the Hodges-Lehmann estimators are generally more

powerful than others. Numerous nonparametric hypothesis testing procedures have been pro-

posed for comparing a treatment group and a control group in clinical trials with a multivari-

ate endpoint, in the context of nonparametric Behrens-Fisher hypothesis testing problem

[19–22]. Further investigation that compares these hypothesis testing procedures with the pro-

cedures included in this article may be relevant.
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