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Abstract

The identification of suitable model parameters for biochemical reactions has been recognized as a 

quite difficult endeavor. Parameter values from literature or experiments can often not directly be 

combined in complex reaction systems. Nature-inspired optimization techniques can find 

appropriate sets of parameters that calibrate a model to experimentally obtained time series data. 

We present SBMLsimulator, a tool that combines the Systems Biology Simulation Core Library 

for dynamic simulation of biochemical models with the heuristic optimization framework EvA2. 

SBMLsimulator provides an intuitive graphical user interface with various options as well as a 

fully-featured command-line interface for large-scale and script-based model simulation and 

calibration. In a parameter estimation study based on a published model and artificial data we 

demonstrate the capability of SBMLsimulator to identify parameters. SBMLsimulator is useful for 

both, the interactive simulation and exploration of the parameter space and for the large-scale 

model calibration and estimation of uncertain parameter values.

Keywords

Systems Biology Markup Language (SBML); ordinary differential equation (ODE) modeling; 
simulation; parameter estimation

licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
*Author to whom correspondence should be addressed; alexander.doerr@uni-tuebingen.de; Tel.: +49-7071-29-77174; Fax: 
+49-7071-29-5091.
†These authors contributed equally to this work.
Author Contributions
AlD and RK contributed equally, implemented the majority of the source code, and declare shared first authorship. AnD initialized and 
coordinated the project, drafted the manuscript, and supervised the work together with AZ. All authors contributed to the 
implementation, read and approved the final manuscript.

Conflicts of Interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Computation (Basel). Author manuscript; available in PMC 2020 March 24.

Published in final edited form as:
Computation (Basel). 2014 December ; 2(4): 246–257. doi:10.3390/computation2040246.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/


1. Introduction

The dynamic simulation of quantitative biological models belongs to the key aspects of 

research in systems biology [1]. Biological network models are typically encoded in 

Extensible Markup Language (XML)-based description formats [2], such as the Systems 

Biology Markup Language (SBML) [3]. In the most common scenario, such a model can be 

interpreted in terms of an ordinary differential equation (ODE) system with additional 

constructs, such as discrete events, delays, or algebraic rules [4,5]. A graphical display of the 

resulting curves can greatly facilitate the analysis of the system. The calculation of these 

dynamics requires the initial values of each model component to be known, including the 

concentration of reactive species as well as parameters, such as Michaelis constants. 

However, in many cases some of these values are missing or at least uncertain [6,7]. This 

makes their estimation or adjustment with respect to given experimental data necessary [8] 

(e.g., available in Gene Expression Omnibus [9] or KiMoSys databases [10]). To this end, 

heuristic optimization routines can be applied to fit the model to the experimental data. 

Nature-inspired optimization methods are known to handle even highly nonlinear 

optimization problems [11]. The basic idea of these methods is that many natural processes 

can be seen as optimization tasks, for instance the evolution of a population or the flight of a 

swarm of birds. In several applications, the Java™ framework EvA2 [12] has been shown to 

be promising for the optimization of biological systems [11,13–16].

Many systems biology simulation and optimization frameworks are available, e.g., AMIGO 

[17], SBToolbox2 [18], SBML-PET [19], COPASI [20], or Potters-Wheel [21]. The focus of 

SBMLsimulator is to provide the scientific community with an easily usable and flexible 

parameter estimation tool that understands and supports all aspects of the modeling format 

SBML through all of its levels and versions. Programs that do not completely cover the full 

standard, might have run-time advantages under certain conditions, but cannot guarantee that 

all models can be solved. Important features of SBMLsimulator include that it (a) is a free 

platform-independent open-source solution (b) does not depend on any commercial software 

(c) fully supports all specifications of SBML (d) comes with an easily usable program 

layout.

The SBMLsimulator project unifies two powerful libraries in one tool with a common user 

interface. Consequently, SBMLsimulator benefits from all the optimization algorithms 

provided by EvA2 [12] and as well as from all the modeling languages and ODE solvers that 

the Systems Biology Simulation Core Library (SBSCL) makes available. This modular 

program design opens the door to independently extend and exchange both libraries. 

SBMLsimulator hence evolves with the improvements of either one of its underlying 

libraries. With little effort, SBMLsimulator can then be modified to take advantage on all 

enhancements. The SBSCL already supports all elements of SBML and comprises several 

ODE solvers including a solver for stiff ODE systems (for a comparison of SBSCL to 

related simulation frameworks see [5] and the up-to-date comparisons of the SBML standard 

compliance [22]). EvA2 provides a plethora of nature-inspired heuristic optimization 

algorithms, such as evolution strategies [23], genetic algorithm [24], differential evolution 

[25], and particle swarm optimization [26], and many more. Teams of core developers 

Dörr et al. Page 2

Computation (Basel). Author manuscript; available in PMC 2020 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



maintain both open-source libraries SBSCL and EvA2 that can also be easily extended by 

the scientific community.

2. Implementation

The simulation of a model is done with the SBSCL [5] and JSBML [27] is used as internal 

data structure for model representation. The SBSCL outputs the simulation results in a 

specific format, which enables SBMLsimulator to plot the time course of the model’s 

species.

The basis of all those routines is a target function for model calibration, the so-called fitness 
function. Given a set of parameter values and experimental data, this function returns a value 

to EvA2 that reflects the quality of the current model configuration. That is, how precise the 

given set of parameters can reproduce the experimental data. For model calibration, the 

fitness is a distance function between simulation output and experimental data. Both, 

simulation and distance, are computed by the SBSCL. EvA2 optimizes the parameters of the 

model with respect to the fitness function. Hence, EvA2 tries to find a parameter set that 

accounts for the smallest possible deviation of simulation results and the given experimental 

data set. Before a parameter estimation can be performed, optimization targets and search 

intervals need to be specified by the user (see description in Results section).

The estimation with EvA2 can take several hours or days, as for each fitness evaluation a 

simulation has to be conducted. Hence, the time of one simulation run greatly influences the 

time needed for parameter estimation. Such parameter estimations will often be conducted in 

the command-line mode, which is an alternative to the graphical user interface (GUI) that 

SBMLsimulator launches by default. However, in the GUI mode the simulation results of the 

current parameter combination producing the best fitness are always plotted in 

SBMLsimulator. This enables the user to investigate intermediate results.

3. Results and Discussion

SBMLsimulator is straightforward to use and runs on every platform where a Java Virtual 

Machine is available. Its graphical user interface provides an intuitive way for displaying the 

curves of model entities chosen by the user. In addition, it comprises a graphical and 

command-line user interface that both provide a connection to EvA2. The program estimates 

all uncertain quantities with respect to given time-series of metabolite or gene expression 

values.

3.1. Graphical User Interface

The graphical user interface (see Figure 1) comprises several separated sub-windows for the 

presentation of simulation results as well as for settings that can be modified by the user: at 

the lower part of the GUI, SBMLsimulator enables the user to choose the numerical solver 

and to set the start and end point as well as the step size of the simulation. For some solvers 

an error tolerance can also be specified under Edit/Preferences. The user also has the choice 

between different quality functions for calculating the distance between simulated and 

experimental data. The upper left part of the window allows the user to select, which model 
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quantities should be plotted. Furthermore, the compartment, parameter and initial values of 

metabolites can be modified in the middle left part. Finally, the simulation of the model with 

the chosen settings can be conducted by one of the GUI’s control elements.

A dedicated dialog assists with the import of experimental data. SBMLsimulator suggests 

the most intuitive mapping of columns in the experimental data to model quantities. The user 

can then confirm this suggestion or adapt the mapping accordingly. The given experimental 

data are plotted together with the simulation results (as shown in Figure 1) in the user 

interface in order to facilitate the comparison with the simulation results of the model. 

Furthermore, after model simulation, the distance of the simulated data to the loaded 

experimental data is computed and displayed at the bottom of the SBMLsimulator window.

Besides the main window (Simulation), which shows the simulation results and enables the 

modification of simulation settings, there are also windows for displaying the simulation 

data (Computed data) and the imported experimental data (Experimental data) in table 

format. Furthermore, the user has the possibility to investigate the structure of the model in 

another window (Model).

Besides a comparison with simulated values, the import of experimental data facilitates a 

parameter estimation with respect to that data is possible. The user needs to specify the 

parameters as well as their ranges in a dedicated window. An alternative provided to set the 

parameters in this window, is to import a text file listing the parameters to estimate and their 

ranges. After the user has chosen the parameters and their limits, the user can select the type 

of evolutionary algorithm and change specific settings of the desired routine in EvA2. Eva2 

lets the user choose between a large number of different optimization routines including hill 

climbing [29], simulated annealing [30], evolution strategies [23,31] with support for 

covariance matrix adaptation [32], genetic algorithm [24], differential evolution [25,33], and 

particle swarm optimization [26,34,35] as well as multi-modal approaches [15].

3.2. Parameter Estimation Study

In order to assess the capabilities of SBMLsimulator, we estimated the parameters of a 

model by Bucher et al. [28] explaining the biotransformation of atorvastatin (model 

BIOMD0000000328 of BioModels Database [36]). We first obtained an artificial data set by 

simulating the model with the respective start and end time described in the publication. We 

saved the simulated data and extracted time points similar to those used in the publication. 

This data set was then read in by SBMLsimulator, the parameters were deleted from the 

model, and optimization with EvA2 was launched with respect to the artificial data set using 

differential evolution [25]. The same parameters as in the publication were estimated with 

the intervals given in Table 1.

Here initial minimum/maximum stands for the interval, in which the parameters are 

randomly initiated, and minimum/maximum for the interval during the estimation procedure. 

We chose the same intervals for initiation and parameter estimation. The numerical 

integration was conducted with a Rosenbrock solver [37] (absolute error tolerance: 10−12, 

relative error tolerance: 10−6), as this routine is suitable for solving stiff differential equation 
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systems. As fitness function we used the relative squared error, which has been suggested by, 

e.g., Dräger et al. [11,38].

During an optimization, SBMLsimulator plots the best simulation curves together with the 

respective data each time it has finished processing a new generation of parameter 

combinations. Figure 1 shows such an intermediate result for the artificial data set. Hence, 

the user can nicely see how the distance between the simulated time course and data set 

drastically decreases over time. For such large-scale parameter estimations it is most suitable 

to run SBMLsimulator in command-line mode, because it can take a long time (see Section 

5) and this task can then be performed on a computer cluster. Running parameter estimations 

on a computer cluster is also recommended, because estimations are usually conducted 

multiple times. This is done because an optimization run can get stuck in a local optimum of 

the fitness function. Another reason for repeating a parameter estimation multiple times is 

that this is a straightforward way to assess whether the estimated quantities are identifiable 

[39]. In order to test the identifiability of the parameters with SBMLsimulator, we estimated 

the model quantities of the atorvastatin biotransformation model 100 times on a computer 

cluster. Afterwards those 50% of the parameter estimates with the best fits were extracted 

and the distributions of the estimated quantity values were plotted (see Figure 2). It can be 

seen that the estimated parameter values had a low standard deviation, which means that 

SBMLsimulator could reliably identify these parameters. A very high standard deviation of 

a parameter would in contrast to that have suggested that this parameter could not be 

identified.

The results of this experiment show that our linkage of parameter estimation and simulation 

works well.

4. Conclusions

With SBMLsimulator we provide a freely usable platform-independent tool for simulation 

and parameter estimation of biochemical models, which fully supports all SBML elements. 

It combines two powerful toolboxes under one graphical interface: SBSCL for simulation 

and the nature-inspired optimization framework EvA2 for estimation of uncertain parameter 

values. SBMLsimulator is useful for both, the interactive simulation and exploration of the 

parameter space and for the large-scale model calibration. With a parameter estimation study 

based on a published model we have demonstrated its capability to identify model 

parameters with respect to experimental data. SBMLsimulator allows users to easily run 

models and to calibrate them to their experiments, to learn about simulation, or to gain new 

insight into the model’s behavior by modifying individual parameters or model components. 

All this is facilitated by the platform independence of SBMLsimulator. Since the SBSCL is 

also an open-source library, the user can even modify how different elements of a model are 

interpreted and learn from deviating simulation results. For large-scale simulation 

experiments, the use of native libraries can offer an advantage with respect to calculation 

speed. However, with a comprehensive command-line interface SBMLsimulator can also 

easily be deployed on a computer cluster to perform several simulations in parallel. A 

comprehensive users’ guide is available on the project’s homepage, which describes all 

program features and their use in detail.
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In future versions of SBMLsimulator we are planning to include the possibility that the 

parameter search is conducted in log-scale. As the parameters are often of different 

magnitudes, this log-scale can be of advantage [16]. In order to satisfy the growing interest 

in other modeling languages like the Cell Markup Language (CellML) [41], SBMLsimulator 

should also be able to simulate models given in a different format. To this end, the SBSCL 

needs to be extended and after some minor modifications SBMLsimulator will gain the 

capability to simulate models in different formats, such as the simulation of models given in 

CellML similar to CellMLSimulator [42].

5. Availability and Requirements

The current version of SBMLsimulator is available at the project’s homepage as a runnable 

Java™ archive file (JAR) together with a documentation of the program.

Project name: SBMLsimulator

Project homepage: http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator/

Contact: sbmlsimulator@googlegroups.com

Operating systems: Platform independent, i.e., for all systems for which a Java™ Virtual 

Machine (JVM) is available.

Programming language: Java™

Other requirements: Java™ Runtime Environment (JRE) 1.6 or above

License: GNU Lesser General Public License (LGPL) version 3
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Abbreviations/Nomenclature

AMIGO Advanced Model Identification in systems biology using Global 

Optimization

COPASI COmplex PAthway SImulator

CellML Cell Markup Language

GUI graphical user interface

JAR Java™ archive file
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JRE Java™ Runtime Environment

JSBML Java™ SBML

JVM Java™ Virtual Machine

LGPL GNU Lesser General Public License

ODE ordinary differential equation

SBML Systems Biology Markup Language

SBML-PET SBML Parameter Estimation Tool

SBSCL Systems Biology Simulation Core Library

XML Extensible Markup Language
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Figure 1. 
The graphical user interface (GUI) of The Systems Biology Markup Language 

(SBML)simulator. The figure shows the main window of SBMLsimulator after importing 

the model by Bucher et al. [28]. SBMLsimulator enables the user to modify initial quantities 

(middle left part of window) and to choose the quantities for plotting (upper left). 

Furthermore, at the bottom of the window the user can specify settings for simulation, such 

as the integration routine, the simulation start and end time, the simulation step size, and the 

quality function for comparing the simulated data to experimental data. The simulation can 

be started by clicking on the simulation button. The right part shows an intermediate 

solution, whereby the original values are depicted by shapes and the simulated values 

dependent on the current set of parameters are shown as curves. In the given state, the 

parameter optimization already found a set of parameters that fit the predefined values with 

a small error.
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Figure 2. 
Distribution of parameters estimated with SBMLsimulator. One hundred parameter 

estimations with SBMLsimulator for the model by Bucher et al. [28] were run on a 

computer cluster. The distribution of the 50 estimations with the best fitness values is shown 

here. For each parameter the estimated values were divided by the original parameter value 

prior to plotting. It is obvious from the plot that all parameters were estimated closely 

around their original values. The figure has been created with R software package [40].
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