
1Scientific REPOrTs | 7: 15212  | DOI:10.1038/s41598-017-15065-6

www.nature.com/scientificreports

Gas sensors boosted by two-
dimensional h-BN enabled transfer 
on thin substrate foils: towards 
wearable and portable applications
Taha Ayari1,2, Chris Bishop3, Matthew B. Jordan1,2, Suresh Sundaram4, Xin Li1, Saiful Alam1,2, 
Youssef ElGmili1, Gilles Patriarche5, Paul L. Voss1,2, Jean Paul Salvestrini1,2 & Abdallah 
Ougazzaden1,2

The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor 
performance, lower the cost and extend the applications to wearable, mobile or disposable systems. 
The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and 
to transfer them to the flexible substrate without any degradation of the performances. In this work, we 
develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible 
substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) 
nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic 
surface on metallic foil. This technique results in a modification of relevant device properties, leading to 
a doubling of the sensitivity to NO2 gas and a response time that is more than 6 times faster than before 
transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement 
via transfer to more suitable substrates, and is promising for next-generation wearable and portable 
opto-electronic devices.

AlGaN/GaN-based sensors with catalytically active gate electrodes are an interesting sensing technology due to 
their many advantageous material properties, such as high thermal and chemical stability1, which have demon-
strated sensitivity and suitability for detection of diesel exhaust gases2,3. With appropriate transfer technique, 
AlGaN/GaN sensors have promising potential to be integrated into wearable applications. This would enable 
the development of a wearable and portable air pollutant monitoring platform to collect air pollutant data (spe-
cies and concentration) continuously. Such a system requires inexpensive, miniaturized (micro-scale), rapidly 
responding and highly sensitive gas sensors that can be operated on malleable and lightweight substrates. Existing 
Metal Organic Vapour Phase Epitaxy (MOVPE) for GaN-based sensors uses fabrication on a rigid substrate, typ-
ically sapphire or silicon, and epi-layers cannot be easily released from the substrate because of the strong bond-
ing. Several options for the release of epi-layers exist including fielded laser lift-off4 for GaN devices and chemical 
etching of the growth substrate5 or a sacrificial layer6. These techniques have many limitations in practice, notably 
high cost, long process times, and limitations in size.

Van der Waals epitaxy, which involves the growth of sp3 bonded semiconductor layers on 2D materials7, allows 
active layer release from its substrate and transfer to a foreign support8,9. This promises to reduce manufacturing 
cost by permitting re-use of the native substrate. It can also enable device integration into low-cost substrate foils, 
which can be used for foldable, wrapped, rollable and portable systems10. Hexagonal boron nitride (h-BN) is a 
III-N material which exhibits a two-dimensional structure when grown as monolayers of nanometer thicknesses, 
similar to graphene. It is particularly compatible with growth of wurtzite III-N devices in a single growth run. 
AlGaN/GaN HEMT and InGaN-based LEDs have been grown and fabricated on h-BN11,12, but large-scale device 
fabrication has not been yet demonstrated.
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In this work, we report wafer-scale fabrication of AlGaN/GaN gas sensors grown on 2-inch sapphire wafers 
with a sacrificial 2D layered h-BN by MOVPE. In addition to transferring sensor devices to a flexible substrate, 
we demonstrate an enhancement in gas sensing performance of these devices. This is in part due to the effect 
of foreign substrate choice on the temperature in the two-dimensional gas (2DEG) channel of the AlGaN/GaN 
heterostructure, which is validated by thermal modeling and Raman spectroscopy. We also analyze the strain 
changes in the semiconductor materials after release from the sapphire layer, and consider its effect on device per-
formance. The sensors are tested before and after transfer to the flexible substrate with significant improvements 
in both sensitivity and response time after the transfer. This approach for engineering of GaN-based sensors is a 
key step in the pathway towards economically viable, flexible sensors with improved performances that could be 
integrated into wearable applications.

The mechanism for boosted gas sensor operating on a foreign substrate like a flexible carrier is illustrated in 
Fig. 1. The 2D h-BN (the crystallographic phase of the grown h-BN has been demonstrated in a previous study13) 
layer enables the release of the device and its transfer to an acrylic adhesive layer. This layer is expected to confine 
the heat generated by self-heating, leading to higher operating temperature of the gas sensor, which is known to 
contribute to an increase of the sensitivity and an improvement of the response time2.

Structural characterization of AlGaN/GaN structure on sapphire.  The AlGaN/GaN structure 
was grown by MOVPE on 2-inch h-BN/sapphire substrates (Fig. 2a). The high-resolution X-ray diffraction 
(HRXRD) 2θ − ω scan of the grown layers on h-BN/sapphire is presented in Fig. 2b. The satellite peaks from 
the Al0.25Ga0.75N/GaN heterostructure were clearly observed, along with GaN (002) and Al0.14Ga0.86N (002) dif-
fraction planes. Simulation, shown in blue, confirms the Al content and the thicknesses of the different layers in 
the structure. The broadness and the low intensity of the AlGaN buffer compared to the simulated one are due 
to the 3D morphology of this layer as shown in the elemental EDX mapping of Al in Fig. 2d. The high resolution 
TEM image in Fig. 2c is a direct evidence of the crystal phase and quality of the 5 nm thick h-BN layer. An abrupt 
interface without inter-diffusion along the Al0.25GaN0.75/GaN can be seen in energy dispersive X-ray spectroscopy 
(EDX) element mapping in Fig. 2d.

Electrical characterization of AlGaN/GaN devices on sapphire.  The process fabrication has been 
adapted for device structures on 2D h-BN. For instance, no ultrasonic cleaning is used, rapid thermal annealing 
conditions such as gas flow rate and temperature ramping were optimized, and contact with liquids was limited 

Figure 1.  Our approach for the growth, fabrication, release and transfer (see Method section for details) of 
boosted AlGaN/GaN gas sensor to a flexible sheet using h-BN as a buffer and release layer.
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during each step to prevent spontaneous delamination14. The resulting processed device is shown in Fig. 3a. 
Transfer length measurements (TLM) performed on several locations of the wafer show an average specific con-
tact resistivity of 3 × 10−5 Ω.cm−2, indicating good ohmic contact behavior. Wafer mapping of the current-voltage 
characteristics reveal more than 1000 functional AlGaN/GaN devices on the 2-inch wafer (Fig. 3b,c); processing 
optimizations can further improve the yield. We also note that more than 100 devices exhibit more than 70% gate 
pinching, which we have quantified as [Ids(Vgs = 0 V) − Ids(Vgs = −6V)/Ids(Vgs = 0 V)]*100 at Vds = 10 V. This is a 
direct indication that these devices have good control of the carrier concentration in the 2DEG by the gate contact 
(Fig. 3d).

Sensor measurements: before and after transfer.  AlGaN/GaN gas sensors with greater than 80% 
gate pinching were tested under NO2 gas for a concentration of 100 ppm at 30 °C, both as-grown on the origi-
nal sapphire substrate and after transfer to a tape with acrylic adhesive. Exposure to the gas leads to decreased 
drain-source current. From the transient response and recovery curves, we have calculated sensitivity as 
S = [|I0 − Igas|/I0]*100, where I0 is the initial current under pure N2 and Igas is the steady state current after the test 
gas has been applied. This metric gives a normalized measure of the change in device current under gas exposure. 
We have also determined the response time τ defined by the time between 10% and 90% of the initial and final 
steady state values under gas exposure. The average sensitivity S was found to be 2.8% ± 1.4% with an average 
response time of 361 s ± 140.8 s for around 20 tested devices. Figure 4a presents one of the best response we 
obtained before the transfer, S and τ were calculated to be equal to 6.5% and 385 s respectively. Working devices 
after the transfer to the new substrate have undergone the same testing procedure. The results indicate an average 
sensitivity S = 12% ± 1.2% with a response time ranging from 7 s to 61 s. Figure 4b shows result from the same 
device, used in Fig. 4a, after its transfer. This sensor presents a doubling in sensitivity, a six times lower response 
time and a faster recovery after gas exposure. We also note that a repeated measurement with 9 test cycles during 
more than three consecutive hours has been performed after the transfer exhibiting similar response and no sig-
nificant drift, as shown in Fig. 4c.

The observed large enhancement in sensitivity and response time after transfer may be attributed to sev-
eral root causes. Our choice of the final support is expected to enable the confinement of the heat generated by 
self-heating. As seen in Fig. 5, thermal modeling results show that the tape with electrically conductive acrylic 
adhesive used in this study is predicted to yield a device operating temperature ranging between 105 °C and 128 °C.  

Figure 2.  (a) Photo of the grown AlGaN/GaN on h-BN, (b) High resolution X-ray diffraction 2θ − ω scans of 
the grown AlGaN/GaN heterostructure on h-BN using Al0.14Ga0.86N as a nucleation layer (NL), the red curve 
is the measurement and the blue curve presents the simulation result. The inset is a schematic of the grown 
structure. (c) High resolution TEM image showing the interface between the 2D layered h-BN and the AlGaN 
nucleation layer. (d) Energy dispersive X-ray spectroscopy (EDX) elemental mapping of Al.
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In addition, we have performed Raman spectroscopy measurements on the E2 GaN line before and after transfer 
at different temperatures and with different input powers, based on the method reported in ref.15. The Raman 
measurements show that pre-transfer self-heating results in a sensor temperature of 60 °C in the active region. 
After transfer, the sensor temperature was measured to be 120 °C. These results are consistent with thermal simu-
lations presented in Fig. 5. It also explains the drop in I0 after transfer since device temperature is inversely related 
to the electron mobility in the 2DEG16.

To verify whether this increase in device operating temperature is the primary reason behind the boosted 
performances, we have operated a pre-transfer sensor (on h-BN/sapphire) at 120 °C and compared the perfor-
mance to the transferred sensor. The sensitivity and the response time of a pre-transfer device were measured as a 
function of temperature. The results show that the sensitivity has only increased by a factor of 1.06 when varying 
the stage temperature from 30 °C to 120 °C, and the response time has decreased by a factor of 2.47. Because these 
factors are less than those resulting from the transfer (1.94 and 6.31, respectively), it suggests that other reasons 
in addition to thermal effects are behind the post-transfer performance enhancement.

The effects from strain changes in the semiconductor layers after the transfer may play a role and should be 
considered. Raman spectroscopy results, performed at room temperature both before and after transfer, show a 
relaxation of the GaN layer after the transfer. The E2 peak of GaN has shifted towards less compressive strains, as 
presented in Fig. 6a, which agrees with the reported results in ref.11 and indicates an increase of the 2DEG carrier 
density. This is necessarily linked with an increase in the surface state charges to maintain the electrostatic neu-
trality17, and can consequently contribute to the enhancement in sensitivity since the gas molecules are chemically 
absorbed to surface charges after dissociation on the Pt sensing layer18.

To further confirm the increase in 2DEG carrier density, we have conducted C-V measurements at different 
frequencies between the gate and the source of a device before and after its transfer to the adhesive tape. From 
the C-V profiling in Fig. 6b, we observe a 39% increase in maximum capacitance measured at 1 kHz after transfer 
which is directly related to the 2DEG carrier density at the AlGaN/GaN interface.

It is clear that temperature increase and stress release are both valid causes for the performance boost but 
other effects as surface charge traps density could be also investigated. Another possible factor for the enhanced 
sensor performance could be related to modification of the strain in the Pt sensing layer during transfer, which is 
known to change the catalyst efficiency19,20 and hence it may also contribute to the decreased response time. More 
in depth study should be carried out to better understand the individual contributions of each of these factors to 
the total increase of device performance.

In conclusion, we have demonstrated wafer-scale fabrication of AlGaN/GaN gas sensors grown on an 
ultra-thin h-BN layer on a 2-inch sapphire substrate. The h-BN layer allowed the transfer of the devices to a 
flexible and heat insulating acrylic tape. Gas sensing measurements have been carried out before and after the 

Figure 3.  (a) Photo of the wafer-scale processed AlGaN/GaN sensors, (b) IDS-VDS characteristic of an AlGaN/
GaN device with 2 µm gate length (c) Wafer mapping of the gate pinching, with white areas representing 
masked-off regions that include TLM patterns (d) Histogram of the pinching distribution across the wafer.
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transfer showing greatly improved performance on the flexible substrate. We have considered the effects of the 
post-transfer substrate choice on the device operating temperature which has been shown to increase through 
Raman spectroscopy and thermal simulations. The boosted sensor performance may also be attributed to struc-
tural modifications that increase the number or the accessibility of surface states at the platinum/GaN cap inter-
face and/or enhance the catalytic reaction in the sensing layer. The approach for device engineering demonstrated 
in this work provides new options towards the development of GaN-based flexible sensors with enhanced device 
performance, improved economic viability, and an expanded range of applications.

Methods
Material growth.  Materials growth was performed in an Aixtron MOVPE CCS 3 × 2″ system on a 2 inch 
(0001) sapphire substrate. Triethylboron (TEB), Trimethylgallium (TMGa), Trimethylaluminum (TMAl) and 
Ammonia (NH3), were used as B, Ga, Al and N sources respectively. First, an h-BN layer (3–5 nm) was grown 

Figure 4.  Response of an AlGaN/GaN sensor, with a gate size of 2 μm × 200 μm, to NO2 gas for a concentration 
of 100 ppm at 30 °C. (a) Before the transfer, (b) after the transfer to the flexible template and (c) Repeated 
measure after the transfer showing the stability of the transferred device after 9 cycles.

Figure 5.  Thermal simulation of the operating device temperature Vs thermal conductivities of different post-
transfer supports.
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on the sapphire substrate at 1300 °C. Then, a nucleation AlGaN layer (250 nm) with an Al mole fraction of 14% 
was grown at 1100 °C. We subsequently grew an AlGaN/GaN heterostructure consisting of a 1-µm-thick GaN 
buffer layer and a 25-nm-thick AlGaN barrier layer with an Al composition of 25%, which was confirmed by XRD 
measurements. Finally, a 3 nm GaN cap layer was grown. High resolution X-ray diffraction (HRXRD) scans were 
done in Panalytical X’pert Pro MRD system with Cu Kα radiation.

Device processing.  The use of sacrificial h-BN for wafer-scale fabrication of gas sensors poses a processing 
challenge because spontaneous delamination of the grown structure can occur during device processing when the 
wafer is subject to various mechanical strains. In our experience, careful control and optimization of each fabrica-
tion step is required. The source, drain, and contacts were defined by optical lithography. The deposit of the source 
and drain metallization contact structure consisted of electron beam evaporated Ti/Al/Ni/Au (12/200/40/100 nm) 
multilayers followed by a rapid thermal annealing at 870°C for 30 s under nitrogen atmosphere. The gate contact 
was deposited using Pt sputtering with a thickness of 15 to 20 nm at a pressure of 6 mTorr, providing a catalyti-
cally active sensing layer. Gate dimensions are Lg = 2 µm and Wg = 200 µm, with a total drain to source spacing 
of 6 µm. Electron beam evaporated Ti/Al/Ni/Au (12/200/40/100 nm) pads were deposited to facilitate electrical 
contacting of the devices.

After sensor processing, electrical characterization was performed using an automated probe station to test the 
electrical behavior of the devices. Then, the sapphire layer was removed by fixing supports to both the sapphire 
and active layer sides with a thermoplastic polymer, and applying pressure so that the Van der Waals bonds in the 
h-BN layer are broken. The active layers are then transferred to a flexible substrate; we have chosen to use a tape 
with acrylic adhesive for thermal insulation. The top support is removed by heating the thermoplastic at 60 °C 
and rinsing the residues with DI water.

Experimental testing of gas sensors.  A subset of the transferred sensor devices has been tested as 
gas sensors before and after their transfer to copper flexible tape. For experimental testing, the sensors were 
connected with probes in a gas chamber and linked to a Keithley 236 I-V measurement system. Gas sources of 
pure N2 and NO2 with 100 ppm concentration were supplied to the testing chamber via an MCQ gas mixer uti-
lizing separate mass flow controllers for each gas line. Pressure, concentration, temperature, and flow rate were 
all controlled and kept constant during the measurements. All experiments were carried out at atmospheric 
pressure. The substrate temperature was controlled using an external temperature controller with a heater 
and fixed at 30 °C. A flow rate of 100 sccm was used and with all external factors controlled, we can attribute 
changes in the steady state signal to the gas detection mechanism described in [2]. For each measurement, the 
signal under pure N2 was used as a reference for comparison with the signal under the test gas in a background 
of nitrogen.

Thermal modeling.  Thermal simulations have been performed along with the temperature measurements 
made on pre- and post-transfer devices by means of Raman spectroscopy. One would expect that the primary 
difference between the two devices would be a higher temperature post-transfer, because of the low thermal 
conductivity of the 35 micron thick electrically conductive acrylic adhesive between the transferred devices and 
the copper film. The simulations show that this is the case. In addition, they show that in the vertical direction in 
the AlGaN/GaN structure, the temperature is very nearly uniform, with less than 0.1 °C temperature difference, 
which implies that the vertically averaged temperature measured by Raman spectroscopy is within 0.1 °C of that 
of the Pt/AlGaN interface. Thermal conductivities used in the simulation are 130 W/m.K for GaN, 25 W/m.K for 
Al0.14Ga0.86N, 20 W/m.K for Al0.25Ga0.75N, 19 W/m.K for Ti, 205 W/m.K for Al, 90 W/m.K for Ni, 314 W/m.K for 
Au, 72 W/m.K for Pt, and 385 W/m.K for copper. The temperature at the 25-micron thick copper film is 30 °C, the 
same as the chuck holder.

Figure 6.  (a) Raman spectra at E2 peak of GaN on h-BN/sapphire (black), released from the sapphire (red) 
and transferred to an adhesive acrylic tape (red). (b) Capacitance-voltage measured at 1 kHz and 100 kHz on a 
device before and after its transfer. Both Raman and C-V results indicate an increase in the 2DEG density after 
the release and transfer to the acrylic adhesive tape.
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In simulations, the temperature at the Pt/AlGaN interface on a post-transfer device during 5 V operation 
depends strongly on the thermal conductivity of the electrically conductive acrylic adhesive. Non-conductive 
acrylic has a thermal conductivity of approximately 0.2 W/m.K, while the thermal conductivity of commercial 
conductive acrylic adhesives ranges from 0.5 to 5 W/m.K. As our tape is not meant to be highly thermally con-
ductive, its thermal conductivity is estimated to be between 0.5 and 0.8 W/m.K which is consistent with Raman 
results.

Raman spectroscopy.  Raman shift spectra were measured by LabRam HR EVOLUTION Raman spectros-
copy with laser excitation at 532 nm. For calibration, the GaN E2 Raman shift as a function of temperature was 
measured through the platinum gate on a non-operating sensor before lift-off. The E2 shift moved from 568.25 
cm−1 at 30 C to 564 cm−1 at 300 C in a line. Then with the sample holder set to 30 C, the Raman shift was measured 
during operation with VDS = 5 V, before and after the transfer.
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