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Abstract
Background. Surgical resection is a mainstay in the treatment of pediatric brain tumors to achieve tissue diag-
nosis and tumor debulking. While maximal safe resection of tumors is desired, it can be challenging to differentiate 
normal brain from neoplastic tissue using only microscopic visualization, intraoperative navigation, and tactile 
feedback. Here, we investigate the potential for Raman spectroscopy (RS) to accurately diagnose pediatric brain 
tumors intraoperatively.
Methods. Using a rapid acquisition RS device, we intraoperatively imaged fresh ex vivo brain tissue samples from 
29 pediatric patients at the Lucile Packard Children’s Hospital between October 2018 and March 2020 in a prospec-
tive fashion. Small tissue samples measuring 2-4 mm per dimension were obtained with each individual tissue 
sample undergoing multiple unique Raman spectra acquisitions. All tissue samples from which Raman spectra 
were acquired underwent individual histopathology review. A labeled dataset of 678 unique Raman spectra gath-
ered from 160 samples was then used to develop a machine learning model capable of (1) differentiating normal 
brain from tumor tissue and (2) normal brain from low-grade glioma (LGG) tissue.
Results. Trained logistic regression model classifiers were developed using our labeled dataset. Model perfor-
mance was evaluated using leave-one-patient-out cross-validation. The area under the curve (AUC) of the receiver-
operating characteristic (ROC) curve for our tumor vs normal brain model was 0.94. The AUC of the ROC curve for 
LGG vs normal brain was 0.91.
Conclusions. Our work suggests that RS can be used to develop a machine learning-based classifier to differen-
tiate tumor vs non-tumor tissue during resection of pediatric brain tumors.

Key Points

• Raman spectroscopy can rapidly differentiate normal brain from tumor tissue.

• Raman spectroscopy can rapidly differentiate normal brain from low-grade glioma tissue.

Pediatric brain tumors are the most common solid tumors in 
children and the leading cause of cancer deaths in children aged 
0-14 years old.1 Surgical resection is a mainstay of treatment in 
these patients both for tissue diagnosis and tumor debulking. 

Greater extent of surgical resection has been shown to improve 
progression-free survival and overall survival across many pe-
diatric brain tumor subtypes.2–5 While maximal resection of 
tumor is desired, neurosurgeons are limited by the challenge 
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of differentiating normal brain from tumor, in particular for 
low-grade tumors. Currently, intraoperative microscopic 
visual inspection, intraoperative navigation, intraoperative 
MR imaging (iMRI), and tactile feedback while manipulating 
tissue comprise the primary methods to differentiate tumor 
margins. The gold standard of intraoperative analysis of a 
“frozen” tissue sample by a pathologist is limited by the 
lengthy iteration time between samples, making it im-
practical for minute-to-minute surgical decision making. 
Furthermore, iMRI is resource intensive, only available in 
select centers, and is often technically cumbersome making 
obtaining more than one scan during a case a challenge. In 
response to this challenge, various advanced tissue imaging 
techniques have been investigated to enhance a surgeon’s 
ability to detect tumor, including intraoperative ultrasonog-
raphy, fluorescence microscopy, and more recently Raman 
spectroscopy (RS).6–13 Here, we sought to investigate 
whether RS can be used to rapidly diagnose pediatric brain 
tumor samples.

RS is an emerging, rapid, non-destructive imaging tech-
nique based on the Raman effect. In brief, when light is in-
cident on a molecule it can either be absorbed or scattered. 
There are two types of scattering: Rayleigh scattering and 
Raman scattering. The majority of scattered light is from 
Rayleigh scattering, which is light that is scattered back at 
the same energy as the incident light. Raman scattering 
makes up a small fraction of scattered light and describes 
light that is scattered with a different energy from the inci-
dent light due to an exchange of energy with a molecule’s 
bonds. In Raman scattering, the emitted light has a different 
energy, and thus a different frequency from incident light 
and this emitted light can be captured by a spectrophotom-
eter. RS takes advantage of Raman scattering for material 
identification as the different molecular compositions of 
a given tissue produce a unique Raman spectra or signa-
ture.14–18 There has been significant interest focused on 
the material identification properties of RS for enhancing 
detection of brain tumor margins intraoperatively. RS has 
been used to differentiate white matter from gray matter, 
tumor from surrounding necrosis, and even tumor from 
normal brain.11,19–21 Unfortunately, the bulk of RS studies 
to date have either been performed in the adult context, 
limited to pediatric frozen brain or formalin-fixed brain 
sections, or in animal models.22,23 In this work, we explored 

the potential of RS to detect pediatric brain tumor margins 
by creating a machine learning model using a dataset of pe-
diatric brain tumor tissue imaged with RS intraoperatively 
at the time of surgery.

Methods

Study Cohort

This study was approved by the Stanford University 
Institutional Review Board panel on Medical Human 
Subjects (IRB #43701). Written informed consent was 
obtained from the parent or legal guardian of all pediatric 
patients included in the study. All patients included in the 
study underwent brain tissue resection as part of tumor 
debulking or epilepsy surgery (normal controls) by our 
corresponding author (G.A.G.) between October 2018 and 
March 2020 at the Lucile Packard Children’s Hospital (Palo 
Alto, CA, USA) in a prospective fashion.

Study Design

Using a rapid acquisition RS device (Solais, Synaptive 
Medical, Toronto, ON, Canada) we intraoperatively im-
aged fresh ex vivo pediatric brain tissue (Figure 1). Core 
tumor or normal brain regions were localized using frame-
less stereotaxy. As tissue was resected it was immediately 
placed on saline moistened telfa inside of a petri dish and 
then placed in the Solais device for imaging (Figure 1A and 
B). Tissue samples were limited in size to 2-4 mm per di-
mension to ensure maximal spatial correlation between 
acquired Raman spectra and final histopathologic diag-
nosis (Figure 1C). In cases where a resected tissue sample 
was larger than 2-4 mm per dimension, it was divided in 
the field by the surgeon prior to imaging. Once a sample 
was placed in the Solais, using the device’s built-in camera 
to zoom, points were selected for Raman spectra acquisi-
tion. Raman points were selected in the center of the tissue 
sample and in avoidance of areas contaminated with blood 
products. Each tissue sample had between 1 and 5 Raman 
points selected for spectra acquisition, with approximately 
5 seconds required for spectra acquisition. The short 

Importance of the Study

Here, we show with standard machine learning 
techniques that Raman spectroscopy can be 
used to rapidly classify pediatric brain tumors. 
To the best of our knowledge, we have curated 
the largest dataset of Raman spectra gener-
ated from fresh pediatric brain tissue labeled 
with their corresponding final histopathology 
diagnosis. The accuracy of our tissue classi-
fiers which can distinguish normal brain from 
tumor tissue (89.8%), and the more difficult 
task of normal brain from low-grade glioma 

tissue (86.2%), has the potential to improve the 
extent of surgical resection, which for many 
pediatric brain tumor subtypes is associated 
with improved survival. Through future studies 
with larger datasets, across multiple institu-
tions, we seek to apply Raman spectroscopy 
to not only distinguish normal brain from any 
tumor or LGGs, but more specifically classify 
tumors by their type, WHO grade, and molec-
ular subclassification.
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nosis (Figure 1C). In cases where a resected tissue sample 
was larger than 2-4 mm per dimension, it was divided in 
the field by the surgeon prior to imaging. Once a sample 
was placed in the Solais, using the device’s built-in camera 
to zoom, points were selected for Raman spectra acquisi-
tion. Raman points were selected in the center of the tissue 
sample and in avoidance of areas contaminated with blood 
products. Each tissue sample had between 1 and 5 Raman 
points selected for spectra acquisition, with approximately 
5 seconds required for spectra acquisition. The short 
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Figure 1. Overview of intraoperative, ex vivo, Raman spectra acquisition workflow. (A) Tissue resected using frameless stereotaxy. (B) Tissue 
sample placed in Solais device located in operating room. (C) Sample size limited to 2-4 mm per dimension (length × width × height) and placed on 
saline moistened telfa inside of petri dish. (D) Raman points selected for spectra acquisition. (E) Example of Raman spectra generated in seconds. 
(F) All tissue samples sent for individual histopathology review after Raman spectra acquisition.
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acquisition time allowed for high throughput analysis of 
multiple samples per patient (Figure 1D and E). After tissue 
had been imaged, individual pieces were separately la-
beled and catalogued, placed in formalin, and transported 
to the Stanford Hospital neuropathology laboratories 
for final histopathological diagnosis as RS is a label-free, 
non-destructive imaging technique (Figure 1F). Using the 
above-described approach, a large labeled library of brain 
tissue samples, which were analyzed with RS, and which 
also underwent formal histopathological review, was cre-
ated for the development of a tissue classifier.

Raman Spectroscopy

Raman spectra were acquired using the Solais (Synaptive 
Medical) (Figure 1B). The Solais is a multi-purpose, research 
device capable of visible light imaging, RS, and polarization-
sensitive optical coherence tomography. The Lucile Packard 
Children’s Hospital is the only children’s hospital in the United 
States to have used this device. The Solais’ Raman micro-
scope has an excitation wavelength of 785  nm, excitation 
power of 50 mW, bandpass of 200-3000 cm−1, and spectral 
resolution of 6 cm−1. All Raman spectra were obtained using 
an averaging number of 5 and an accumulation time of 1 
second. Each Raman point has an approximate depth pene-
tration of 1 mm and a field-of-view of 200 microns. Accuracy 
and calibration of the Solais device were assessed with 
spectra acquisition on a silicon standard prior to each case.

Model Development

Data preprocessing.—Spectra were individually 
normalized by the maximum intensity value. The model 
pipeline consisted of principal component analysis (PCA) 
for dimensionality reduction from 1614 features to 100 
features, followed by L2-normalized logistic regression 
trained using the limited-memory Broyden-Fletcher-
Goldfarb-Shanno optimization algorithm. The number of 
output dimensions for PCA was chosen so that >95% of the 
variance in the training dataset would be represented.

Model evaluation.—Performance metrics were calculated 
using leave-one-patient-out cross-validation (LOPOCV), 
where all samples and spectra associated with each pa-
tient were held out from the training set at a time. The 
model was tested on all spectra and samples from this 
held-out patient, and then the process was repeated for 
all patients included in each classification task. Predictions 
for all patients were then aggregated to calculate perfor-
mance metrics. Each prediction is a probabilistic value and 
is thresholded using Youden’s J metric to report accuracy, 
sensitivity, and specificity.

Results

Patients

A total of 29 pediatric patients were included in this 
study yielding 160 unique tissue samples and 678 unique 

Raman spectra (Table 1). Tumor tissue was obtained 
from 20 patients. Normal tissue was obtained from 12 
patients. In specific cases, normal tissue samples were 
obtained from patients from which tumor tissue samples 
were also obtained. A total of 11 unique tumor diagnoses 
were obtained from the 20 patients with tumors, 8 of 
whom had low-grade gliomas (LGGs) (Table 2). LGGs in-
cluded ganglioglioma, angiocentric glioma, and pilocytic 
astrocytoma. Samples with indeterminate final pathology 
were excluded from our labeled library. Specifically, we ex-
cluded a single patient who underwent resection of what 
radiographically was favored to be an LGG, but whose final 
pathology returned inconclusive for all 15 submitted tissue 
samples.

Tumor vs Normal Brain

A total of 20 patients yielding 105 tissue samples and 459 
Raman spectra had a final pathology classification as ne-
oplastic tissue. A  total of 12 patients yielding 55 tissue 
samples and 219 Raman spectra had a final pathology 
classification as normal brain tissue. Figure 2A shows a 
representative tumor vs normal brain spectra with asso-
ciated 95% confidence interval variance bands. Figure 2B 
shows a PCA-based two-dimensional sorting of tumor 
spectra from normal brain spectra. Figure 2C shows the 
receiver-operating characteristic (ROC) curve of a trained 
logistic regression model tasked with classifying tissue 
samples as either tumor or normal brain. The classifier 
achieved an area under the curve (AUC) of 0.94 with an 
accuracy of 89.8%, sensitivity of 84.9%, and specificity 
of 92.3%.

LGG vs Normal Brain

A total of 8 patients yielding 44 tissue samples and 196 
Raman spectra had a final pathology classification as LGG. 
The same normal brain dataset consisting of 12 patients 
yielding 55 tissue samples and 219 Raman spectra that 
were used to create the tumor vs normal brain classifier 
was used to develop the LGG vs normal brain classifier. 
Figure 3A shows a representative LGG vs normal brain 
spectra with associated 95% confidence interval variance 

  
Table 1. Number of Patients, Samples, and Spectra per 
Classification Task

Classification Number of 
 Patients 

Number of 
Samples 

Number 
of Spectra 

Total 29 160 678

Tumor vs Normal

Tumor 20 105 459

Normal 12 55 219

LGG vs Normal

LGG 8 44 196

Normal 12 55 219

Abbreviation: LGG, low-grade glioma.
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bands. Figure 3B shows a PCA sorting LGG spectra from 
normal brain spectra. Figure 3C shows the ROC curve of 
a trained logistic regression model tasked with classifying 

tissue samples as either LGG or normal brain. The classifier 
achieved an AUC of 0.91 with an accuracy of 86.2%, sensi-
tivity of 91.3%, and specificity of 81.2%.

  
Table 2. Number of Patients, Samples, and Spectra per Tumor Subtype

Tumor Pathologies Number of Patients Number of Samples Number of Spectra 

Pilocytic astrocytoma 4 22 93

Ependymoma 4 15 64

Ganglioglioma 3 18 85

Medulloblastoma 1 8 26

Glioblastoma 1 7 34

Teratoma 1 2 9

ATRT 1 6 27

Choroid plexus papilloma 2 15 68

Embryonal tumor 1 7 32

Craniopharyngioma 1 1 3

Angiocentric glioma 1 4 18

Abbreviation: ATRT, Atypical Teratoid Rhabdoid Tumor.
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Figure 2. Tumor vs normal. (A) Representative tumor vs normal brain spectra with associated 95% confidence interval variance bands. (B) PCA-
based two-dimensional sorting of tumor spectra from normal brain spectra. (C) ROC curve of a trained logistic regression model tasked with classi-
fying tissue samples as either tumor or normal brain using LOPOCV. Abbreviations: LOPOCV, leave-one-patient-out cross-validation; PCA, principal 
component analysis, ROC, receiver-operating characteristic curve.
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Discussion

Here, we show that with standard machine learning tech-
niques, the material identification properties of RS can 
be harnessed for rapid classification of pediatric brain 
tumors. To the best of our knowledge, we have curated 
the largest dataset of Raman spectra generated from 
fresh pediatric brain tissue labeled with their corre-
sponding final histopathology diagnosis. The accuracy 
of our tissue classifiers distinguishing normal brain from 
tumor (89.8%), and the more difficult task of normal 
brain from LGGs (86.2%), has translational potential for 
clinical impact as the extent of resection for most pedi-
atric brain tumors, including LGGs and ependymomas, 
is associated with improved progression-free survival 
and overall survival.5,24,25 Our classifier discriminating 
normal brain from LGGs is of particular importance as 
(1) LGGs are the most common pediatric brain tumors 
accounting for ~30% of all pediatric brain tumors and (2) 
by nature of being WHO grade I, LGGs are the most sim-
ilar to normal brain, and thus the most difficult to distin-
guish visually intraoperatively.26 For example, a recent 

multicenter study showed that 43.6% of pediatric LGG 
patients required additional surgery after a single iMRI 
scan.27

While our study represents the largest labeled dataset 
of fresh pediatric brain tissue currently published, it 
is still limited by a relatively small sample size in the 
context of the large datasets which are more optimal 
for training machine learning models. Through future 
studies with larger datasets across other institutions, 
we seek to apply RS to not only distinguish normal 
brain from any tumor or LGGs, but more specifically 
classify tumors by their type, WHO grade, and possibly 
molecular subgroup. We envision that future work by 
our group and others will develop RS into a fully de-
veloped and easily deployed tool in the neurosurgeon’s 
armamentarium.

Keywords

machine learning | pediatric brain tumors | Raman 
spectroscopy
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Figure 3. Low-grade glioma vs normal. (A) Representative low-grade glioma vs normal brain spectra with associated 95% confidence interval 
variance bands. (B) PCA-based two-dimensional sorting of low-grade glioma spectra from normal brain spectra. (C) ROC curve of a trained logistic 
regression model tasked with classifying tissue samples as either tumor or normal brain using LOPOCV. Abbreviations: LOPOCV, leave-one-patient-
out cross-validation; PCA, principal component analysis, ROC, receiver-operating characteristic curve.
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Figure 3. Low-grade glioma vs normal. (A) Representative low-grade glioma vs normal brain spectra with associated 95% confidence interval 
variance bands. (B) PCA-based two-dimensional sorting of low-grade glioma spectra from normal brain spectra. (C) ROC curve of a trained logistic 
regression model tasked with classifying tissue samples as either tumor or normal brain using LOPOCV. Abbreviations: LOPOCV, leave-one-patient-
out cross-validation; PCA, principal component analysis, ROC, receiver-operating characteristic curve.
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