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Abstract: Tremendous advances in crop biotechnology related to the availability of molecular tools
and methods developed for transformation and regeneration of specific plant species have been
observed. As a consequence, the interest in plant molecular farming aimed at producing the de-
sired therapeutic proteins has significantly increased. Since the middle of the 1980s, recombinant
pharmaceuticals have transformed the treatment of many serious diseases and nowadays are used
in all branches of medicine. The available systems of the synthesis include wild-type or modified
mammalian cells, plants or plant cell cultures, insects, yeast, fungi, or bacteria. Undeniable benefits
such as well-characterised breeding conditions, safety, and relatively low costs of production make
plants an attractive yet competitive platform for biopharmaceutical production. Some of the vegetable
plants that have edible tubers, fruits, leaves, or seeds may be desirable as inexpensive bioreactors
because these organs can provide edible vaccines and thus omit the purification step of the final
product. Some crucial facts in the development of plant-made pharmaceuticals are presented here in
brief. Although crop systems do not require more strictly dedicated optimization of methodologies at
any stages of the of biopharmaceutical production process, here we recall the complete framework
of such a project, along with theoretical background. Thus, a brief review of the advantages and
disadvantages of different systems, the principles for the selection of cis elements for the expres-
sion cassettes, and available methods of plant transformation, through to the protein recovery and
purification stage, are all presented here. We also outline the achievements in the production of
biopharmaceuticals in economically important crop plants and provide examples of their clinical
trials and commercialization.

Keywords: recombinant proteins; crop plants; molecular farming; biofactories

1. Introduction

The pharmaceutical market for recombinant biopharmaceuticals is enormous and is
constantly growing. This is fully justified since recombinant proteins have transformed the
treatment of a broad range of diseases and are used in practically all branches of medicine.
To meet the needs of this demanding market, efficient and economical expression platforms
for the production of therapeutic proteins are sought. Among the most commonly used
production systems are bacterial, mammalian, yeast and insect cells, cell suspensions,
or filamentous fungi [1]. They all have advantages and disadvantages that are briefly
summarized in the subsequent section, as comparing them has already been the subject of
many excellent reviews [1–4].

The concept of using plants as a platform for producing recombinant proteins emerged
in the second half of the 1980s. Then, in 1986, human growth hormone was produced in
tobacco cells [5], while in 1989, methods of antibody production in tobacco plants were
conceived [6]. The results of the above-mentioned research resulted in a patent being
issued [7]. Later, in 1990, the production of human serum albumin in tobacco and potato
cells became possible [8]. The years that followed brought numerous academic studies
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which proved unequivocally that it is possible to produce a wide range of biopharmaceuti-
cals in various plant platforms. Moreover, in some cases, the entire production process of
plant-made pharmaceuticals (PMP) has been completed with commercialization, which
will be discussed later in the publication. The subsequent significant developments in
recombinant protein production in plants are shown in Table 1.

Table 1. Crucial facts in the development of plant-made pharmaceuticals.

Year Achievement Bioreactor Stage of Drug
Development References

1998

Production of secretory
antibody IgG-IgA against

tooth decay caused by
Streptococcus mutans

tobacco plants

approved;
brand name–(CaroRX®,

Planet Biotechnology INC,
Hayward, CA, USA)

Juarez et al. [9]

1998 First plant-made vaccine (LTB) potato clinical trial (phase 1) oral
administration route Tacket et al. [10]

2004, 2005, 2014

Establishment and
development of a new strategy
(magnifection) for increasing

recombinant protein
production in plant platform

Nicotiana benthamiana

several pharmaceuticals, e.g.,
vaccines for Non-Hodgkin’s

lymphoma completed
clinical trials in 2013

Gleba et al. [11–13]

2006
Newcastle disease (NDV)

vaccine licensed for veterinary
use

maize licensed for veterinary use Guerrero-Andrade et al. [14]

2008

Plants have been shown to be
a fast and efficient system for

producing an influenza
vaccine

N. benthamiana laboratory/pre-clinical stage D’Aoustet et al. [15]

2012 Production of taliglucerase
alfa for Gaucher’s Disease carrot cells approved by FDA

ELELYSO™ Yao et al. [3]

2015

Clinical trial (I phase) of
plant-made vaccine against

cancer (follicular lymphoma)
demonstrated its safety

tobacco plants clinical trial
(phase 1) Tuse et al. [16]

2015

Obtaining experimental drug
(comprising three chimeric
monoclonal antibodies) for

Ebola virus

tobacco plants
clinical trials phase 1 and 2;
in 2015 ZMapp was granted
fast-track status by the FDA

Yao et al. [3]

2015

Production of immuoadhesin
(DPP4-Fc) which prevents the

MERS-CoV from infecting
lung cells

tobacco plants pre-clinical phase Yao et al. [3]

2021 Production of potential
vaccine against SARS-CoV-2 cowpea pre-clinical Ortega-Rivera et al. [17]

2021
Production of

CoVLP—potential vaccine
against COVID-19

N. benthamiana clinical trials (phase 3) Gobeil et al. [18]

COVID-19, coronavirus disease; NDV, Newcastle disease; FDA, Food and Drug Administration; MERS-CoV,
Middle East respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Recombinant DNA technology (recDNA technology) has made it possible to cross
interspecies barriers and thus acquire new plant varieties with desirable traits. Genetic
modifications of crop plants mainly concern improving their utility or resistance to changing
environmental conditions [19]. Nevertheless, some studies are strictly focused on the
production of therapeutic proteins in plants, including vegetables. What arouses great
interest in cultivated plants as platforms for the production of therapeutic proteins is the
fact that they are the basis of the human diet, and what is more, the edible tissues of these
plants can be used, for example, as edible vaccines. This means that the costly step of
purifying the final product (therapeutic protein) is omitted, which significantly reduces the
overall cost of production. Among the key challenges for the plant oral delivery system
one can name the accumulation of a stable and optimal dose of biopharmaceuticals. This
requires the administration of the drug in question in the form of tissue pulp/bulk. Usually,
the plant material undergoes a lyophilization process that ensures adequate content and
stability. Then, the candidate for a drug, as in the case of any other substance, regardless
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of the administration route, must be tested and meet the Food and Drug Administration
(FDA) and European Medicines Agency (EMA) criteria of preclinical and clinical trials in
good laboratory, manufacturing, and clinical practice (GLP, GMP, GCP) standards. The
detailed directions for human health, established by OECD are available on the institution’s
website [20].

Initially, model plants were used for the production of recombinant proteins, as they
were very well known in the field of genomics, transcriptomics, and metabolomics. More-
over, as these plants are susceptible to genetic transformation, fully optimized protocols
for regeneration and cultivation under both in vitro and ex vitro conditions have been
developed for them [21,22]. Nevertheless, they have several features that exclude them
from their intended use in molecular farming technology. For example, the small size
of Nicotiana tabacum or Arabidopsis thaliana seeds favours the leaves for the production of
recombinant proteins. Unfortunately, the large amount of water they contain can promote
the proteolysis process, which will preclude the extraction of the final protein product.
Additionally, the extraction and purification of therapeutic proteins from tobacco is ex-
pensive due to the presence of alkaloids (e.g., nicotine) that are toxic to humans. Crops,
including soybean, rapeseed, common bean, maize, wheat, and rice, seem to be free from
these drawbacks [22–24]. Therefore, they can be successfully used as a factory for molecular
farming and as a subject of biofortification, aiming at the production of crops with increased
nutritional value, which can be obtained through genetic engineering [23,25].

2. Advantages and Disadvantages of Pharmaceuticals Production in Available
Expression Systems

The process of developing the production of a specific therapeutic protein in any
system (including crop plants) consists of several stages, each being extremely complex.
First, a particular protein with the desired therapeutic activity should be selected and
subjected to very precise molecular analysis. This knowledge will form the basis of opti-
mizing the expression of this protein in the selected plant system and even in a specific cell
compartment. The next step is to introduce the gene encoding the desired protein into the
recipient’s genome, using the appropriate transformation method and host organism (here,
the plant). It should be emphasized that it is also indispensable to estimate the expected
costs of obtaining a protein product based on the work with the prototype host [26].

When planning the production process, several important factors should be considered,
including production costs, market demand, and the efficiency of the production method,
as well as product safety and stability. The final product synthesized in a plant should be
identical in terms of biochemical/pharmacological properties to that produced with the
methods used so far. Currently, the most commonly used systems for the production of
recombinant proteins are cultures of genetically modified mammalian cells, insects, yeast,
fungi, or bacteria [27]. Taking into account the uncomplicated synthesis technology as
well as its costs, bacterial or fungal cells are one of the most popular production systems
for therapeutic proteins. Nevertheless, both bacteria and fungi have some drawbacks
that limit them only to the production of selected proteins. One of the main obstacles
relates to the differences in the course of metabolic pathways—the process of translation,
folding, and post-translational modification of proteins (e.g., glycosylation) that affects
the structure of the product obtained, as well as its biological activity [22]. While in the
case of mammalian or insect cells there are no such limitations, the economic reasons,
such as the need to use expensive culture media, make the market price of the final
product very high [27]. Furthermore, the production costs of therapeutic proteins in
mammalian or insect cell systems are raised by the influence of biological factors on
the behaviour of the cultures in question. These include the sensitivity of the culture
to changes in physicochemical conditions. Similarly, the yeast platform, which can be
used as an alternative for therapeutics synthetized in an insoluble form in bacteria, is
not able to perform the desired glycosylation. This disadvantage includes the inability
to provide high-mannose type N-glycosylation, typical for the cells of higher eukaryotes.
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Considering all the limitations of the systems being discussed and the growing market
demand for therapeutic proteins, plants seem to be an interesting alternative for their
production. The key advantages of plant systems are the ease of cultivation, low costs, ease
of production scaling, low or lack of any risk of contamination with pathogens, the ability
to carry out most post-translation modifications of proteins, and finally, lack of ethical
doubts [1]. However, despite having so many advantages, plant systems also have several
drawbacks: differences in protein glycosylation patterns between plants and animals can
cause allergies, while pollution with secondary metabolites, pesticides, or herbicides can be
harmful to people. Moreover, the long period of the plant growth can be listed as another
disadvantage [1,22,28].

3. Molecular Tools for Therapeutic Protein Production in Crop Plants

Over the past decades a number of transformation methods facilitating the devel-
opment of molecular farming technology were established and improved. The most
widely used among them are particle bombardment and the Agrobacterium transformation
method [29]. Different strategies available for the transfer of transgenes into host plant cells
were reviewed and summarized in detail by Keshavareddy et al. [30].

In the process of obtaining transgenic plants, apart from selecting an appropriate
method for the transformation of crop plant tissues and an effective method for selection
and regeneration, constructing a gene expression cassette is an extremely important step.

All the issues that have arisen in the production of biopharmaceuticals in transgenic
plants are summarized in a schematic diagram (Figure 1).
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Figure 1. Schematic diagram of the production of biopharmaceuticals in transgenic plants.

A well-designed and experimentally tested expression cassette will allow for achieving
the optimal/satisfactory level of transgene expression in a given tissue or plant develop-
ment stage or under specific environmental induction conditions. A standard expression
cassette contains a transgene or transgenes under the control of the appropriate promoter
and set of regulatory sequences. Expression of transgenes is dependent on the type of
promoter used, which may reveal a constitutive (e.g., Zea mays ubiquitin promoter, ZmUbi1),
inducible (e.g., Rosa bourboniana an early wound inducible promoter, RbPCD1pro), or tissue-
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specific (e.g., the wheat low-molecular-weight glutenin promoter, LMWG1D1) pattern of
expression [31–33]. Due to the increasing number of sequenced plant genomes, as well as
remarkable progress in sequencing technology and transcriptome analysis, the number of
promoters available for plant transgenesis has increased significantly [31]. Among most
frequently used are cauliflower mosaic virus 35S (CaMV35S), glutelin, zein, arcelin, E8,
and actin promoters. A detailed review of promoters and cis-acting regulatory elements
was made by Biłas et al. [34] and Ali and Kim [32]. Typically, well-known plant-derived
promoters are active in transgenic plants, although they may show activity different from
that observed in species they originated from. In this context, the level of transgene activity
depends on the length of the promoter region selected [32]. Nevertheless, there are cases of
a variable level of transgene expression activity. Hence, it seems necessary to first evaluate
the activity of the selected promoter experimentally in relation to the genetic background
of the plant selected for transformation. Considering this problem and the importance of
determining the individual module functions of the cis elements, designing synthetic pro-
moters (e.g., mPtDrl02 promoter) seems a good solution. These types of promoters would
contain functional modules that would precisely define their action, including specificity
and strength [33,34]. Such an approach would allow the intended goal to be achieved—i.e.,
obtaining plants with the desired agronomic traits or synthesis of therapeutic proteins,
biopharmaceuticals, or industrial enzymes at a high level.

Apart from a promoter, an expression cassette should include regulatory elements of a
type, which depends on the host, expression time and localization, and protein application.
Hence, the construct may carry the sequences for enhancers, silencers, and/or insulators.
Moreover, the 5′UTR and 3′UTR sequences (untranslated region) affecting, i.a., translation
process should be properly chosen. Regarding the final localization in cell compartments,
short signal sequences (e.g., HDEL) can be fused to the transgene sequence. At this stage of
cassette design, a decision on the selection and monitoring of transformant must be made
as well. Therefore, selection or reporter genes (e.g., gus, gfp, kan) should be present within
the expression construct [34–36].

Advances in the assembly of large DNA fragments, where the exact number and
arrangement of transgenes are determined, as well as increase in the efficiency of DNA
cloning methods, have contributed significantly to the acceleration of the process of con-
structing a multigene expression cassette construct [37]. Currently, scientists have at their
disposal a large array of kits/systems for implementing the intended strategy of construct-
ing an expression cassette for plant transformation [38,39]. The most commonly used
include Golden Gate and derived methods such as MoClo (for chloroplast engineering),
Golden Braid, and Green Gate, which are based on the use of type II restriction enzymes [37].
However, the latter feature is not entirely desirable in the case of large multigene constructs,
due to numerous recognition sites. To overcome such obstacles, systems based on rare-
cutting enzymes have been developed—e.g., the COLORFUL Circuit system (which allows
up to five cassettes to be inserted) or the AssemblX system [38,40].

One of the most recent technological innovations in the life science sector is genome
editing (GE). This powerful technology has been used to engineer genomes using var-
ious editing tools, including zinc-finger nucleases (ZFNs) and transcription activator-
like endonucleases (TALENs). The clustered regularly interspaced short palindromic
repeats (CRISPR)/ CRISPR-associated9 (Cas9) endonuclease system is also one of the
GE’s strategies, which originally evolved prokaryotic organisms as a defence system. The
CRISPR/Cas9 system is a very precise tool based on a selective site-directed mutagenesis
strategy for RNA-guided genome-editing. This tool exploit is designed to guide RNAs
that identify a protospacer adjacent motif (PAM) sequence occurring downstream of the
target-DNA [41]. The CRISPR/Cas 9 system was successfully implemented to engineer
genomes of various plants, including crops showing resistance to environmental stresses,
nutrient content enrichment, and yield improvement [42]. Most recently, the CRISPR/Cas9
strategy was used to edit DCL2 and DCL4 genes dicer-like in N. benthamiana plants. This
resulted in plants with a double knock-out of these genes, which consequently affected the
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increased accumulation of GFP protein and human fibroblast growth factor 1 (FGF1) in
comparison with WT and RNA-dependent RNA polymerase 6-knockout N. benthamiana
plants [43]. Such results are extremely promising in view of the requirements for increased
production of recombinant proteins in plant cells.

The introduction of GM plants or their products onto the market requires the knowl-
edge and monitoring of the presence of individual genetically modified components.
Therefore, an indispensable step is to the identify them at the molecular level. A wide
variety of methods for this purpose are used (Figure 2).
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4. Available Strategies for Plant Host Transformation

After the expression cassette is constructed, the recombinant DNA must be introduced
into the host cell (here, into the plant cell). Generally, two main routes are used for the
production of recombinant proteins in plant systems: stable and transient expression
of the transgene. Direct (e.g., particle bombardment) and indirect (bacterium-mediated
transformation) methods are used to modify the nuclear genome in order to obtain the
stable expression, whilst chloroplast transformation uses only direct methods. In the case
of transient expression—providing rapid synthesis of the desired proteins, usually taking
a couple of days—viral infection or agroinfection is used [13]. As a result of the stable
transgene expression, stable transgenic lines are generated, where a recombinant protein is
produced in subsequent generations. Typically, in the early stages of designing a method
for the production of the selected recombinant protein, a model plant (e.g., N. tabacum,
N. benthamiana, A. thaliana) [27] is selected as the producer. Then, attempts are made to
obtain the synthesis of the protein of interest in the target plant, including crops of high
economic importance [25,44]. It should be emphasized that the production of a given
recombinant protein may not be effective, which may be the consequence of the position
effect, gene silencing, or protein degradation, among other things. To overcome these
obstacles, the production of recombinant proteins is directed to cellular compartments
including chloroplast, endoplasmic reticulum, vacuole, cytosol, or apoplast [45,46]. This
sorting of proteins is accomplished by adding appropriate signal sequences (e.g., KDEL)
to the gene construct [47]. In addition, some differences in the pattern of glycosylated
proteins create a problem with the quality of the therapeutic proteins of plant origin
(Tables 2 and 3). The consequence of this may be the risk of allergies and even anaphylactic
shock after taking such a drug [48]. Several approaches have been developed to overcome
this obstacle, including (i) placing human glycosyltransferases in the plant genome to
modify protein glycosylation pathways [49,50]; (ii) knocking out or knocking down specific
plant glycosyltransferases [51,52]; (iii) accumulating target proteins in cell compartments
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where plant-specific glycosylation does not take place (endoplasmic reticulum) or where
proteins are not glycosylated (cytosol or plastids) [45,46].

In addition to modifying the nuclear genome, the plastid genome is also extensively
studied in respect of the stable expression of recombinant proteins. Two routes are mainly
used for the transfer of the chloroplast genome: the biolistic method and transfer via
polyethylene glycol (PEG). The first strategy is to deliver coated DNA molecules using
a gene shotgun. This method can be applied to any plant species by adjusting biolistic
bombardment parameters, including chamber vacuum pressure, distance to plant tissue,
and particle size [53]. The second strategy is to place the protoplasts in the presence
of PEG, which facilitates the uptake of naked DNA by the cells [54]. More recently, a
new approach was used by Kwak et al. [55], where nanoparticles consisting of chitosan-
complexed single- walled carbon nanotubes (CS-SWNTs) were used to deliver DNA to
chloroplasts. As a result of electrostatic interactions between negatively charged DNA
and positively charged nanoparticles, conjugates are formed that can easily penetrate into
mesophyll cells through the pores of the stomata. In order to obtain maximum efficiency of
transformation, as in the case of nuclear transformation, it is important to choose the right
promoter, regulatory sequences, and insertion sites. Promoters commonly used in plastid
transformation are Nicotiana tabacum promoter from the plastid encoded photosystem II
protein D1 precursor (psbA); N. tabacum promoter from the plastid rRNA operon(rrn); or
Chlamydomonas reinhardtii/N. tabacum chloroplast RuBisCo large subunit (rbcL) and the
untranslated UTR regions: ggagg, T7g10, rbcL, psbA, atpB; 3 UTRs: psbA, rps16, rbcL, petD;
trnl/trnA, rbcL/accD, trnfM-trnG, trnV/rps12, trnN-trnR, ycf3-trnS [54]. Transplastomic
technology has many advantages over the modification of the nuclear genome, including
the high level of transgene expression (from 46% to more than 75% of total soluble protein)
resulting from a large number of copies of the chloroplast genome (about 10,000 copies
of the chloroplast genome in a single cell), coverage for the simultaneous expression
of multiple transgenes, ability to properly assemble and produce disulfide bridges, the
lack of silencing effect due to site-specific transgene integration into the plastid genome,
and the possibility of relatively easy elimination of marker genes. Moreover, the vast
majority of crops do not contain plastids in pollen; therefore, the transgene will not spread
through it [51–53]. To date, the engineering of the chloroplast genome of edible leafy crops
(e.g., Lactuca sativa or Brassica) has been of great interest due to the crops’ use as a potential
source of edible vaccines, and the chloroplast transformation protocols of many important
crops (e.g., carrot, cotton, eggplant, potato, tomato, soybeans) have been successfully
established [54,56].

An alternative approach for obtaining transgenic plants that produce high levels of
proteins in a few days is transient expression. It is based on the use of Agrobacterium (agroin-
fection/agroinfiltration) or a properly engineered plant virus system (e.g., Bromoviruses,
Comoviruses, Gemniviruses, Potexviruses, Potyviruses, and Tobamoviruses) to introduce a
transgene. In addition, this technology does not generate high costs due to its simplicity,
and it has no requirements for expensive equipment. Leaf blades of ex vitro growing
plants are most often infiltrated using a syringe, spraying method (agrospray), or vacuum
infiltration. Additionally, in order to enhance transformation efficiency, the infiltration
medium is enriched with surfactants [35,45].

A significant breakthrough in the improvement in transient expression was the de-
velopment of the MagnICON®(Icon Genetics GmbH, Halle, Germany) system, based on
the deconstructed viral vector system, which allowed for a very fast accumulation of het-
erologous proteins in an extremely short time [45]. The MagnICON® system combines
the advantages of three biological systems: (i) exploitation of Agrobacterium as a viral
vector provider, which eliminates the need to produce separate RNA vectors; (ii) rapid and
efficient levels of viral RNA expression (without the risk of creating infectious particles);
(iii) the ability to conduct eukaryotic post-translation modifications of complex proteins.
Taking into account these advantages of magnifection, it is fully justified to state that it is a
biologically safe, low-cost, and fast technology [13].
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Since then, the transient expression system has been constantly refined and developed.
To this day, it has been used in the production of various therapeutic proteins (e.g., mono-
clonal antibodies, vaccine subunits, growth factors, cytokines) and diagnostic and industrial
enzymes. The application nature of this system for the production of recombinant proteins
was summarized by Gleba et al. [13]. The plants transformed through the discussed system
include N. benthamiana, eggplant, hot peppers, lettuce, melons, tomatoes, and orchids [57].
Taking into account the benefits of the transient expression system in plants, it can be an
excellent response to the demands of the pharmaceutical market, which is to meet the
need for the production of therapeutic proteins with high efficiency in a short time. This is
extremely important, especially in the light of recent world events, including the COVID-19
pandemic. An example is the study by Diego-Martin et al. [58], where transient expres-
sion in N. benthamiana was used to produce six recombinant anti-SARS-CoV-2 monoclonal
antibodies at laboratory scale and a pilot upscaling of two of those six antibodies.

5. Downstream Processing Strategies and Purifications

The synthesis of recombinant proteins in plants at a high level is quite a challenge, but
so is their recovery from plant material. This stage is extremely important, and moreover,
generates significant costs (80–90%) in the entire production process [1].

5.1. Protein Extraction

One major challenge is the effective and comprehensive extraction of proteins from
plant tissues. This stage is critical, as it determines the quality as well as the concentration
of the target protein. It should be emphasized that plant tissues are very difficult to destroy
for full extraction of intracellular products, due to the high content of lignohemicellulose
compounds in their cell walls. Widely used intracellular extraction methods are not
applicable to plants and fungi. Standard methods of protein extraction are based on
the lysis of cells by mechanical (homogenization) or chemical methods (osmotic shock,
enzymatic digestion). Next, the resulting biomass is suspended in an appropriate buffer,
which provides appropriate pH and salinity, among other factors. At this stage, it is
necessary to add protease inhibitors to protect the target proteins against proteolysis [1].
In the next step, the obtained mixture is purified. The most commonly used extraction
method from plant tissues is CTAB or SDS-based buffers [35,59]. Commercially available
kits such as Qiagen DNeasy Mericon Kit or Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden,
Germany) can also be used [59].

A common approach used with plant expression systems is to use modifications so
that recombinant proteins accumulate in various plant tissues (e.g., fruit, seeds, leaves,
roots). The disadvantage of such a strategy, apart from the high cost of protein recovery,
is the necessity to harvest the plants, which means that it is not possible to continuously
synthesize target proteins. Therefore, an interesting solution seems to be production with
the use of a strategy based on the system of secretion of proteins to the medium. The
secretion-based system is successfully used in bacterial or mammalian cell cultures [60].
This technology has also been implemented in plant cell suspensions [61] or hairy root
cultures [62] and whole plants (hydroponic cultures) [63]. Nevertheless, as mentioned
earlier, plant cells secrete many of host proteins into the medium, including proteases that
degrade recombinant proteins. Hence, the process of their recovery and purification poses
a significant challenge.

Guttation is another non-destructive way that allows for the recovery of recombinant
proteins produced by plants. It is the natural plant mechanism for removing water together
with various dissolved substances. It is assumed that by regulating the physicochemical
parameters (e.g., aeration, temperature, light, humidity, nutrition, phytohormones supple-
mentation), the intensity of the guttation process and thus the recovery of target proteins
can be influenced [64]. Despite the enormous potential of this technique, it requires further
research and improvements.
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In many systems based on the production of recombinant proteins by whole plants,
modifications are made so that the target proteins remain in selected cell compartments
or are secreted into the apoplast. One of the known techniques for recovering soluble
proteins from the apoplast is the method of vacuum infiltration–centrifugation. In this
procedure, omitting the step of homogenization of plant tissues in order to recover proteins
significantly reduces the costs of the entire process [46].

5.2. Clarification

Before the mixture obtained after extraction is properly purified, it undergoes a clarifi-
cation process. This is a necessary step due to the fact that as the tissue disrupts, numerous
contaminants are released, including chlorophyll, polysaccharides, soluble proteins, RNA,
DNA, and phenols, with the latter impurities being especially disadvantageous because
they can be responsible for structural or conformational changes in target proteins [65].
Usually, to obtain a well-clarified extract, filtration and centrifugation are used together,
which significantly increases the costs of downstream processing. The filters are disposable,
and often the clarification process requires the use of several filtrations using various filters
dedicated to different pollutants [27]. Additionally, flocculants are used to increase the
filtration efficiency. They are high molecular weight polymers carrying a strong positive
or negative charge. Charged flocculants facilitate the separation of molecules from fluids
by increasing their aggregation. However, it should be emphasized that the behaviour of
polymers is determined by many factors (e.g., molecular weight and charge density, pH,
conductivity of the medium), which may also significantly affect the degree of recombinant
protein recovery. Therefore, appropriate selection of flocculants is recommended in order to
optimize the entire process. Among the flocculants frequently used for the precipitation of
crude particles from plant extracts are the following: Praestol, Magnafloc, Sedipur (Solenis
LLC, Wilmington, DE 19803, United States), Lupamin, Polymin, Lupasol, Catiofast GM
(BASF AG, Ludwigshafen, Germany), ZETAG (Brenntag NV, Deerlijk, Belgium) [66].

5.3. Protein Purification

Despite the fact that the technology of producing therapeutic proteins in plants has
changed and developed since the idea of molecular farming was born, the purification stage
is still the most important hindrance. Generally, recombinant proteins (synthesized in any
system) intended for human or animal therapy must be of a high degree of purity. Hence,
the purification procedure is focused on obtaining proteins free from any contamination,
while maintaining their correct chemical structure and biological function [67,68]. The cost
of protein purification accounts for 45% to 92% of the overall manufacturing process [1].
However, it is difficult to competently compare both the purification and total production
cost of 1 g of recombinant protein since the values found in the literature are often based
on different calculation methods and also depend on protein complexity, etc. According to
the report cited by Schillberg and Finer [27], the cost of 1 g of a human antibody produced
from transgenic tobacco tissues was estimated at EUR 1137, where, as it is important to
note, the downstream processing accounts for 84% of the total cost. By contrast, techno-
economic models allow for the production of 1 g of purified algae-derived lectin that the
costs only USD 106 [69]. In this case, the downstream processing cost of algae-derived
lectin is estimated at 50% of the total cost. The difference is significant and assigned mainly
to the cost of the first antibody purification step. However, it must be emphasized that
the aforementioned techno-economic models did not estimate capital equipment, total
capital investment costs, local taxes, and other expenses of this kind. Nevertheless, even
the data from the first example are extremely promising, as they may suggest that due
to the cost of protein production in plants, they can compete with other frequently used
systems for the production of therapeutic proteins, such as mammalian or bacterial cells.
The lower up-front investment in the case of plants, along with purification methods still
being optimized on the one hand, and the relatively low risk of producing a misfolded
protein on the other hand, seem to confirm the plant potential.
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When planning plant-derived protein purification strategies, other factors such as high
recovery, ease, and repeatability should be considered in addition to economic considera-
tions. In order to meet the strict purity requirements of the biopharmaceutical industry in
the production of therapeutics, chromatography is used during purification of the protein
product [67]. Chromatography is undeniably the method of choice, although it is mostly
used for small-scale purification of recombinant proteins. Depending on the specificity
of the proteins isolated (e.g., size, hydrophobicity, charge, etc.), various types of chro-
matography are used, including affinity chromatography (AF), immobilized metal affinity
chromatography (MAC) or ion exchange chromatography (IEX), hydrophobic interaction
chromatography (HIC), reverse-phase chromatography (RPC), and size exclusion chro-
matography (SEC). These methods were discussed in detail by Owczarek et al. [1]. Due
to the cost and complex nature of the above-mentioned methods, their application on a
large scale poses a major challenge. Hence, non-chromatographic methods are currently
enjoying great interest [70,71].

5.3.1. Elastin-Like Polypeptides

Elastin-like polypeptides (ELPs) are biopolymers that contain repeats of a hydrophobic
pentapeptide (Val-Pro-Gly-Xaa-Gly), where Xaa (guest residue) can be any amino acid
except proline because it deprives the elastin-like polypeptides of specific features. ELPs
possess the ability of a so-called reverse phase transition—i.e., they pass from a soluble
form in solutions to an insoluble form. Interestingly, this phenomenon is reversible and
closely correlated with the phase transition temperature (Tt) for the biopolymers being
discussed here. Due to their feature, ELPs have become an attractive tool for quick and easy
purification of recombinant proteins. The resulting insoluble protein–ELP aggregates can be
easily separated from impurities and collected by centrifugation [70]. ELPs can be bound to
inteins to release the recombinant protein from the ELP complex. Inteins (protein-splicing
elements) are capable of self-cleavage as a result of changes in the pH of the solution under
the influence of thiol residues [72]. ELPs in combination with inteins offer an effective
and inexpensive system for the purification of recombinant proteins produced in plants.
Furthermore, the use of ELPs in fusion proteins positively influences recombinant protein
expression [73].

5.3.2. Oleosin Fusion Expression System

Oleosins are amphipathic proteins naturally occurring in plants. They prevent oil bod-
ies from coalescing during seed maturation. Their presence has also been found in pollen.
Due to their unique physicochemical properties, oleosins have been applied in a number
of procedures, including protein purification [74]. It should be emphasized that these
oleosins can be very easily separated from other cellular components by centrifugation [75].
Oleosin::recombinant protein fusion is found in oil bodies in transgenic seeds. Generally, to
obtain the desired product from the seed, the latter must be ground and treated with an ap-
propriate aqueous buffer and then subjected to a series of centrifugations and washes with
the buffer, changing the salts and pH of the environment. The oleosin::recombinant protein
fusion site is designed to include a unique cleavage site to allow separation of the desired
protein from the oleosin that will remain in the oil bodies. Finally, the oil bodies together
with the oleosin are removed by centrifugation, while the recombinant protein undergoes
further processing [74]. Due to the simplicity of this purification method, as well as to the
fact that it is not time-consuming compared with more sophisticated chromatography, it
was patented, in many cases with a pharmaceutical application [74].

6. Production of Pharmaceutical Proteins in Crop Plants

Established in the 1980s, the concept of using plants to produce therapeutic and
non-pharmaceutical proteins has been intensively developed during the last decade, and
the results have been well documented in numerous publications. Many reports have
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unequivocally proved that plant systems are great candidates for the production of bio-
pharmaceuticals or potential vaccines for human or animals (Table 2).

Table 2. Selected therapeutic proteins (potential vaccine candidates and antibodies) produced in
edible crop plants.

Recombinant Protein Disease Plant Expression Level Reference

VP60 structural protein Rabbit haemorrhagic disease
virus (RHDV) potato 0.3% of TSP Castanton et al. [76]

Hemagglutinin protein of
rinderpest virus Rinderpest virus (RPV) peanut 0.2–1.3% of TSP Khandelwal et al. [77]

Spike (S) protein of
transmissible

gastroenteritis virus

Transmissible gastroenteritis
virus (TGEV) corn 13 mg/kg FW Lamphear et al. [78]

Spike (S) protein of Infectious bronchitis virus
(IBV) potato 2.39–2.53 µg/g FW Zhou et al. [79]

Hepatitis B virus
surface antigen Hepatitis B virus (HBV) potato 8.5 µg/g FW Thanavala et al. [80]

Fusion (F) protein of
Newcastle disease virus Newcastle disease virus (NDV) corn 3.0% of TSP Guerrero-Andrade et al. [14]

F4 fimbrial adhesion FaeG Enterotoxigenic E. coli alfalfa 1.0% of TSP Joensuu et al. [81]

Recombinant Norwalk virus
(rNV) capsid protein Norwalk virus (NV) tomato;

potato

0.4 g freeze-dried tomato
fruit containing 64 µg rNV

(40 g VLPs); 1 g freeze-dried
potato tuber containing

120 µg rNV (90 µg VLPs)

Zhang et al. [82]

Heat-labile toxin B
subunit (LTB) Enterotoxigenic E. coli soybean 2.4% of TSP Moravec et al. [83]

VP2 structural protein Infectious bursal disease
virus (IBDV) rice 40.21 µg/g FW Wu et al. [84]

Heat-labile toxin B
subunit (LTB) Enterotoxigenic E. coli carrot 3.0% of TSP Rosales-Mendosa et al. [85]

VP1 structural protein Foot and mouth disease virus
(FMDV) legume 0.1–0.5% of TSP Wang et al. [86]

Japanese encephalitis virus
(JEV) envelope protein E

Japanese encephalitis virus
(JEV)

Japonica
rice 1.1–1.9 µg/g FW Wang et al. [87]

UreB subunit Helicobacter pylori carrot 25 mµg/g Zhang et al. [88]

MLC chimeric recombinant
gene Vivax malaria rapeseed N/A Lee et al. [89]

E2 structural protein Bovine viral diarrhoea virus
(BVDV) alfalfa 1 µg/g FW Perez Aguirreburualde et al. [90]

scFvT84.66 Cancer (tumour marker) rice 3.8 µg/g FW Torres et al. [91]

scFvT84.66 Cancer (tumour marker) wheat and
rice 30 µg/g FW Stöger et al. [92]

HIV-1 p24 antigen HIV carrot 62 ng/g FW Lindh et al. [47]

6D8 Ebola virus lettuce 0.23–0.27 µg/g Lai et al. [93]

Protective antigen (PA) gene Anthrax Indian
mustard NR Gorantala et al. [94]

Altered peptide ligands of
type II collagen

rheumatoid arthritis
Rheumatoid arthritis rice NR Iizuka et al. [95]

Recombinant HCV
core protein Chronic liv er disease rapeseed 0.05% of TSP Mohammadzadeh et al. [96]

Fusion protein
CFP10-ESAT6-dIFN Tuberculosis carrot 28.140 µg of TSP Permyakova et al. [97]

2G12 Human immunodeficiency
virus (HIV) rice 46.4 µg/g DSW Vamvaka et al. [98]

Epithelial cell adhesion
molecule EpCAM–IgM Fc Cancer Chinese

cabbage NR Lee et al. [99]

TSP, total soluble protein; FW, fresh weight; DSW, dry seed weight; NR, not reported; VLPs, virus-like particles.

Usually, the first-to-try systems are model plants, which, as in the case of tobacco
leaves, offer desired biomass level. Nevertheless, the great economic importance of many
crop species constituting a human diet led to the development of transformation and
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regeneration procedures for them. So far, the possibility of producing recombinant proteins
in different fruits and vegetables (e.g., strawberries, bananas, potatoes, tomatoes, lettuce,
spinach, rice, safflowers, barley) has been proven [99–102]. Significant attention was
focused on leafy plants such as alfalfa, lettuce, or clover, which could serve as edible
vaccine producers, thus eliminating unpleasant injections and, above all, the purification
phase, which is associated with a reduction in overall production costs [103,104]. Plant
expression platforms have also been tested for the production of recombinant virus-like
particles (VLPs), which is an interesting vaccine strategy. These large-scale studies focused
on widespread viruses, including foot-and-mouth disease virus, norovirus, influenza
virus, poliovirus, and rotavirus [105–109]. The tremendous advances in the development
of virus-based transient expression have overcome two major problems: initially low
antigen accumulation and long production times. It has been shown that a high level
(1–2.3 mg/g LFW) of expression of norovirus VLPs in plants can be achieved using an
appropriately modified geminiviral vector [106].

Huang et al. [110] reported the production of recombinant human alpha-1-antitrypsin
(rAAT) glycoprotein, exploiting a chemically inducible cucumber mosaic virus (CMV) viral
amplicon expression system in transgenic N. benthamiana cell culture. By optimizing the
production process in a semicontinuous bioreactor, a 25-fold increase in the production of
extracellular functional rAAT (603 mg/L) was obtained.

Examples of Clinical Trials and Commercialization of Plant Recombinant Proteins

By 2021, more than twenty studies on therapeutic proteins for humans or animals,
produced on the basis of the crop plant system, had obtained the status of preclinical
research or clinical trials [4,111]. In many instances, N. tobacco, N. benthamiana, or A. thaliana
are the target species for the production of therapeutic proteins undergoing clinical trials [1].
Nevertheless, more and more often, the producers of the tested proteins are food crops
(Table 3). One of the notable cases is the production of recombinant glucocerebrosidase
(prGCD) (an enzyme protein) in a suspension of carrot cells (ProCellEx™, Protalix Bio-
therapeutics, Carmiel, Israel). This product, sold under the trade name Elelyso™ (Protalix
Biotherapeutics, Carmiel, Israel), was the first system of this kind approved by the FDA in
2012 and is used in enzyme replacement therapy to treat patients with Gaucher disease.
The USDA-approved oral veterinary vaccine against Newcastle disease obtained from corn
is another example [14].

Table 3. Different recombinant proteins produced in crop plants.

Recombinant Protein Plant Expression Level Plants Platform Reference

Human serum albumin potato 0.25 µg/mg (0.02% of TSP) leaf;
cell culture Sijmons et al. [112]

α 1-antitrypsin rice 4.6–5.7 mg/g dry cell cell culture Terashima et al. [113]

Aprotinin corn 0.069% of TESP total
extractable seed protein seeds Zhong et al. [114]

Human basic fibroblast
growth factor (bFGF) soybean 2.3% of TSP seeds Ding et al. [115]

Human recombinant
proinsulin corn 18.87 mg/L (0.42% of TSP) seeds (endosperm) Farinas et al. [116]

α 1-antitrypsin tomato 1.55% of TSP shoots Agarwal et al. [117]

Human interferon gamma rapeseed NR seeds Bagheri et al. [118]

Staphylokinase potato NR shoots Gerszberg et al. [36]

Lumbrokinase sunflower 5.1 g/kg seeds Guan et al. [119]

Proinsulin tomato NR shoots Soltanmohammadi et al. [120]

Human proinsulin strawberry 0.15% TSP shoots and roots Tavizi et al. [121]

Human gastric lipase (hGl) turnip 11 mg/L hairy root Ele Ekouna et al. [122]

Human alpha-L-iduronidase
(IDUA) rapeseed NR hairy root Cardon et al. [60]

L-asparaginase II (ansB) gene potato NR hairy root Mohammadi et al. [123]

TESP, total extractable seed protein; TSP, total soluble protein; NR, not reported.
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Human insulin was one of the first pharmaceutical proteins that was produced in
bacteria cells using recDNA technology. Over time, it transpired that fully functional insulin
can be successfully produced in the seeds of a plant (e.g., A. thaliana, Zea mays) [116,124].
Using the oleosin fusion strategy, the accumulation of the described protein was achieved
at the level of over 0.1% of TSP (total soluble protein) [124]. The above-mentioned solution
was used by SemBioSys Genetics Inc. (Calgary, AB, Canada) for the production of insulin
on an industrial scale. Currently, insulin obtained from safflower has passed the second
and third phase of clinical trials, and the results are very promising [102].

The production of therapeutic proteins in plant systems has attracted great attention
due to the lower cost of the plant material production. It was not only economic consid-
erations that made plants a suitable production system but also the possibility of rapidly
increasing the scale of target protein manufacturing. Furthermore, the pharmaceutical
industry should react very quickly to the needs of the market, especially in situations where
we deal with a pandemic and it is necessary to deliver a large number of vaccines in a short
time. The use of the MagnICON®technology in the leaves of N. benthamiana to produce
ZMapp, an experimental drug which is the mixture of three monoclonal antibodies, is such
an outstanding achievement. This drug was used to treat people during the 2014 Ebola
outbreak in West Africa, without having previously undergone any clinical trials assessing
its potential risks. Clinical trials (phases 1 and 2) for ZMapp were conducted in 2015 [3].
The study found that for those who received Zmapp, the risk of death was 40%. Although
the results were statistically insignificant and did not indicate whether ZMapp works, the
drug was shown to be safe and well tolerated [125].

Arntzten et al. pioneered the implementation of the concept of edible vaccines. They
demonstrated the possibility of producing antigens (HBsAg) against hepatitis B (HBV) in
tobacco leaves. Then, they used potato tubers to produce these antigens, which were orally
administrated to humans. According to their findings, increased systemic and mucosal
immunity was noted in 62.5% of volunteers after consuming three doses of transgenic
potato tuber (100 g per dose) [80]. These results quite clearly indicated the potential of a
plant-based vaccine in the global prevention system against hepatitis B.

The outbreak of the COVID-19 epidemic has sparked a race among biotech companies
to develop an effective vaccine against SARS-CoV-2. Researchers at the University of
California San Diego have proposed a cowpea-produced vaccine that is in the preclinical
testing phase [17]. This race was joined by Medicago, which developed CoVLP, a potential
vaccine produced in N. benthamiana leaves, which is currently in phase 3 of clinical trials.
Research results have proven that the CoVLP vaccine is safe and effective (it generates
10 times higher immune response compared with plasma of convalescent patients) [18].
Kentucky Bioprocessing has developed a vaccine (KBP)-201 that has passed phase 1 and
2 clinical trials [126]. Examples of plant made biopharmaceuticals at various stages of
development and implementation on the market are collected in Table 4.

Table 4. Examples of food crop PMPs at miscellaneous stages of development.

Crop Product Disease/Purpose Development
Stage/Study Company References

Banana (leaf) PRRSV (envelop
glycoprotein)

Porcine reproductive
and respiratory
syndrome virus

Development
National Taiwan

University, Taiwan,
Republic of China

Chan et al. [101]

Barley (seed)

Human epidermal
growth factor;

Human growth
hormone

burn treatment;
deficiency treatment Commercialisation ORF, SifCosmetics Park et al. [102]

Carrot (cells
suspension)

Alpha-galactosidase
(PRX-102) Fabry disease Phase 3 Protalix Bio-therapeutics

(Israel) Schiffmann et al. [127]

Carrot (cells
suspension)

Acetylocholesterase
(PRX105) Biodefense Phase 1 Protalix Bio-therapeutics

(Israel) Atsmon et al. [128]
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Table 4. Cont.

Crop Product Disease/Purpose Development
Stage/Study Company References

Carrot HIV-1 p24 Immunodeficiency
syndrome Development

Örebro Life Science
Center, Örebro

University,
Lindh et al. [129]

Carrot (cells
suspension)

Glucocerebrosidase
(Elelyso) Gaucher’s disease Approved by FDA

2012—on market
Protalix Bio-therapeutics

(Israel)
Zimran et al. [130]
Owczarek et al. [1]

Chinese cabbage
(seed)

Epithelial cell
adhesion molecule

(EpCAM)

Potential anticancer
vaccine candidate Development

National Institute of
Horticultural and Herbal

Science,
Rural Development

Administration, Korea/
Chung-Ang University,

Seoul, Korea

Lee et al. [37]

Corn Meripase® Cystic fibrosis Commercialisation Meristem Therapeutics
(France) Gayatonde et al. [131]

Corn Avicidin (antibodies) Colorectal cancer Phase 2 NeoRX/Monsanto (USA) Edgue et al. [132]

Indian mustard Protective antigen Potential anthrax
vaccine Development

School of Biotechnology,
Jawaharlal Nehru

University, New Delhi,
India

Gorantala et al. [94]

Lettuce MV-H protein Measles Virus NA

Monash University,
Melbourne/ MacFarlane

Burnet Institute for
Medical Research and

Public Health

Webster et al. [100]

Potato Albumin Diagnostic Commercialisation Synthon Park et al. [102]

Potato
Tomato

Norwalk virus capsid
protein Norovirus vaccine Phase 1;

Pre-clinical

Arntzten team, Arizona
State University;

Biodesign Institute and
School of Life Sciences

(USA)

Tacket et al. [133]
Huang et al. [134]

Tomato (fruit) IgA
Hand, foot, and
mouth disease

(HFMD)
Rotavirus

Development National Taiwan
University, Taipei Chen et al. [135]

Rice (seed)
Type II collagen
(CII256-271 and

APL6)
Rheumatoid arthritis Development

University of Tsukuba,
Tsukuba, Japan/ National

Institute of
Agrobiological Sciences,

Tsukuba, Japan

Iizuka et al. [95]

Rice (seed) Alpha subunit of
soybean Hypercholesterolemia Development

Kyoto University, Uji,
Kyoto, Japan/ Gifu

University, Gifu, Japan
Cabanos et al. [136]

Spinach Glycol protein Hepatitis B Phase 1 Institute of Biotechnology
and Antibiotics (Poland) Chen and Lai [137]

Spinach Rabies lycoprotein Vaccine Phase 1 Yusibow group,
Fraunhofer USA Yusibow et al. [138]

Strawberry
(fruits)

Canine interferon α
(oral vaccine)

Canine periodontal
disease (veterinary

purpose)
Commercialisation NAIST Park et al. [102]

GRAS, generally recognized as safe; NA, non-available; NAIST, National Institute of Agrobiological Sciences,
Tsukuba.

7. Conclusions

Considering the market capacity and how many pharmaceutical proteins are being
introduced into it, plant systems as producers remain a niche platform. Nevertheless, due
to the whole range of unique advantages (e.g., eukaryotic biosynthetic pathways, lack of
contamination with viral pathogens, lack of contamination with endotoxins, relatively low
production costs, etc.), plants are a competitive expression system compared with conven-
tional ones (e.g., bacteria, yeast, or human cells) for the production of various recombinant
proteins (pharmaceutical and non-pharmaceutical). The production of therapeutic proteins
in plants using a transient expression system, allowing the product to be obtained in just a
few days, is an undoubted advantage.
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Over the course of several decades, various strategies for the production of specific
pharmaceutical proteins for both humans and animals in plants have been developed
and refined. In many cases, this resulted in obtaining patents, in clinical trials, and as a
result, commercialization. Nevertheless, the path from the concept of the production of a
therapeutic protein in plant systems to its implementation on the market is extremely long
and difficult. This is due to many reasons. One of the main barriers to the implementation
of molecular farming on an industrial scale, especially in the field of pharmaceutical
production, is the fear of contamination of the natural ecosystem with pharmaceuticals and,
consequently, fear of contamination of the food chain. This is especially true when edible
crops (e.g., potato, tomato, rice, corn) are used as expression platforms for the production
of recombinant proteins. Due to the lack of information, the public is concerned that
drugs obtained in plant systems may pose a health risk by triggering allergic reactions.
It should be emphasized, however, that proteins manufactured in plants are subject to
the same quality control standards as pharmaceuticals produced in bacterial, animal or
yeast systems. Biopharmaceuticals produced in the world—in particular, those approved
by the WHO, the EU, or the USA—must meet certain requirements referred to as Good
Manufacturing Practice (GMP), Good Laboratory Practice (GLP), and finally Good Clinical
Practice (GCP) [1]. The biopharmaceutical production process is strictly controlled at
every stage, and what is more, the finished product is tested for toxicity or the presence of
viral contaminants. Sahoo et al. [28] provided a very detailed overview of the production
and approval of biopharmaceuticals. They pointed to the need to unify the regulations
governing the production of biodrugs, which would greatly facilitate their introduction
onto the market and sale in various countries. Another important aspect that slows down
the wider use of molecular farming in the production of biopharmaceuticals is the fact that
the industry prefers to rely on known and well-established technologies. Often, proprietary
technologies that have been developed limit the freedom of action and narrow the circle of
potential industrial business partners. The Pharma-Factory project [27] was created from
EU funds for large-scale commercial use of molecular farming. The main assumption of
this project is to support innovation in the field of molecular farming and, above all, to
remove technical regulations that hinder public acceptance and exit from the laboratory
research phase to the market. Considering the enormous potential of plants as producers of
therapeutic proteins, it seems reasonable that, apart from raising public awareness of this
topic, there is a great need to support research groups and the pharmaceutical industry in
their pursuit of the commercialization of as many necessary plant-derived drugs as possible.
This is extremely significant in order to improve the quality and comfort of human life,
which is of particular importance in the light of a crisis situation such as a pandemic.
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