
ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fnins.2022.846623

Frontiers in Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 846623

Edited by:

Pedro Antonio Valdes-Sosa,

University of Electronic Science and

Technology of China, China

Reviewed by:

Laura Marzetti,

University of Studies G. d’Annunzio

Chieti and Pescara, Italy

Guido Nolte,

University Medical Center

Hamburg-Eppendorf, Germany

*Correspondence:

Fabio Baselice

fabio.baselice@uniparthenope.it

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 31 December 2021

Accepted: 21 February 2022

Published: 25 April 2022

Citation:

Sorrentino P, Ambrosanio M, Rucco R,

Cabral J, Gollo LL, Breakspear M and

Baselice F (2022) Detection of

Cross-Frequency Coupling Between

Brain Areas: An Extension of Phase

Linearity Measurement.

Front. Neurosci. 16:846623.

doi: 10.3389/fnins.2022.846623

Detection of Cross-Frequency
Coupling Between Brain Areas: An
Extension of Phase Linearity
Measurement
Pierpaolo Sorrentino 1,2, Michele Ambrosanio 3, Rosaria Rucco 2, Joana Cabral 4,5,

Leonardo L. Gollo 6,7, Michael Breakspear 7,8 and Fabio Baselice 3*

1 Systems Neuroscience Institute, Marseille, France, 2Hermitage Capodimonte Hospital, Naples, Italy, 3 Egineering

Department, University of Naples Parthenope, Naples, Italy, 4 Life and Health Sciences Research Institute (ICVS), University of

Minho, Braga, Portugal, 5Department of Psychiatry, University of Oxford, Oxford, United Kingdom, 6 Turner Institute for Brain

and Mental Health, Monash University, Melbourne, VIC, Australia, 7QIMR Berghofer Medical Research Institute, Brisbane,

QLD, Australia, 8Hunter Medical Research Institute, Newcastle, NSW, Australia

The current paper proposes a method to estimate phase to phase cross-frequency

coupling between brain areas, applied to broadband signals, without any a priori

hypothesis about the frequency of the synchronized components. N:m synchronization is

the only form of cross-frequency synchronization that allows the exchange of information

at the time resolution of the faster signal, hence likely to play a fundamental role in

large-scale coordination of brain activity. The proposed method, named cross-frequency

phase linearity measurement (CF-PLM), builds and expands upon the phase linearity

measurement, an iso-frequency connectivity metrics previously published by our group.

The main idea lies in using the shape of the interferometric spectrum of the two analyzed

signals in order to estimate the strength of cross-frequency coupling. We first provide a

theoretical explanation of the metrics. Then, we test the proposed metric on simulated

data from coupled oscillators synchronized in iso- and cross-frequency (using both

Rössler and Kuramoto oscillator models), and subsequently apply it on real data from

brain activity. Results show that the method is useful to estimate n:m synchronization,

based solely on the phase of the signals (independently of the amplitude), and no a-priori

hypothesis is available about the expected frequencies.

Keywords: cross frequency coupling, brain network, brain functional connectivity, phase coupling, phase linearity

measurement, PLM

INTRODUCTION

Brain areas need to constantly transfer information among themselves to put in place complex
behavioral responses to the environment (Bressler, 1995). Functional connectivity is defined as
the presence of statistical dependencies between the time-series representing the activity of brain
regions (Friston, 1994; Buzsáki and Draguhn, 2004). A variety of mechanisms through which this
communication occurs are summarized in Jensen and Colgin (2007), involving only the phase (Tass
et al., 1998) or also amplitude (Canolty et al., 2006). Each of these phenomena would underlie a
specific neuro-physiological mechanism (for a review, see Engel et al., 2013). In the literature, a
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wide number of metrics have been proposed to detect each of
these kinds of communication (Le Van Quyen and Bragin, 2007;
Tort et al., 2010). Furthermore, communication between brain
areas can occur either in iso-frequency or in cross-frequency.
Cross-frequency coupling (CFC) is the interaction occurring
between neuronal populations operating at different frequencies.
It has been postulated that this form of synchronization could
represent a suitable option to allow large-scale synchronizations
across distant areas in the brain (Varela et al., 2001; Canolty and
Knight, 2010), yielding the integration of distributed information
(Jirsa and Müller, 2013). Moreover, definite (both frequency and
spatial) patterns of CFC have been shown to be the neuro-
physiological substrate underlying the recruitment of areas
needed for the execution of tasks such as specific kinds of learning
(Schack and Weiss, 2005; Tort et al., 2009; Kendrick et al., 2011),
segregation of interfering inputs (Colgin et al., 2009), perception
(Doesburg et al., 2009; Siebenhühner et al., 2016), encoding of
reward (Cohen et al., 2009) or sensory processing (Seymour
et al., 2017). In human brain activity, two main forms of cross-
frequency coupling have been described so far. Firstly, the phase
of slow oscillations can modulate the amplitude of faster activity
(Vanhatalo et al., 2004; Palva et al., 2005). Furthermore, phase-
phase synchronization has also been described, whereby the
phases of “n” cycles of a signal are locked to “m” phase cycles
of another signal (Tass et al., 1998). This kind of cross-frequency
communication, classically defined as n:m synchronization, has
been observed previously in human brain data (Nikulin and
Brismar, 2006) and is the only mechanism capable of supporting
CFC at high temporal resolution (Fell and Axmacher, 2011).

Several metrics have been developed to capture the presence of
cross-frequency communication. For instance, phase-amplitude
coupling (Tort et al., 2010) can successfully detect the presence
of nested-synchronization, while metrics such as bicoherence
(Sigl and Chamoun, 1994) can detect cross-frequency, phase-
phase coupling. However, bicoherence is not a pure phase-
based metrics as its value depends also on the amplitude,
preventing an unambiguous interpretation of the involved
neuronal mechanisms (Palva et al., 2005). The biphase-locking
value, while purely based on the phase, also provides an estimate
of the phase-amplitude coupling (Darvas et al., 2009). Metrics
such as the phase-locking factor (Palva et al., 2005) detect
pure phase to phase locking, but require an accurate a priori
hypothesis about the frequencies involved in cross-frequency
synchronization. The procedure proposed by Cohen (2008), on
the other hand, while not requiring any a priori hypothesis,
focuses on phase-amplitude coupling.

Each approach has its own advantages and drawbacks and,
when one is dealing with specific task-related data, given that
a specific a priori hypothesis is available about the frequencies
across which synchronizationmight be occurring, the application
of these metrics is effective (Jirsa and Müller, 2013). However,
when dealing with resting-state data, the situation changes
because the signals contain several frequency bands interacting
with each other (possibly with more than one of the mentioned
mechanisms) at once.

Restricting the analysis to phase-to-phase coupling, we have
to consider that the bandwidth of the involved signals is so broad

and complex to potentially allow the simultaneous occurrence
of iso- and cross- frequency synchronizations at once (Varela
et al., 2001; Canolty et al., 2006; Jirsa and Müller, 2013; Cabral
et al., 2014). Disentangling these complex signals has proven to
be elusive when one does not know a priori if, when and where
cross-frequency is occurring within the brain. The aim of this
article is to develop a reliable estimation of phase-phase cross-
frequency communication between the broadband signals of two
brain regions, without a priori hypothesis on the frequencies at
which such a synchronization might occur. To do this, we build
and expand upon the phase linearitymeasurement (PLM), an iso-
frequency phase-based connectivity metrics recently developed
by our group (Baselice et al., 2019).

One issue is related to the amount of potential combinations
of frequencies and areas that one should test in order to look
for CFC throughout the brain and throughout the frequency
spectrum. Indeed, an attempt to identify the frequency at which
cross-frequency synchronization is present from the data by
selecting a number of combinations of possible frequencies
has been done (Sauseng et al., 2009), using the level of
synchronization across trials in order to statistically estimate
where cross-frequency synchronization was present.

To this regard, a new method has been recently proposed,
that does not require any a priori hypothesis and can estimate
cross-frequency synchronization (Volk et al., 2018). Such an
approach estimates from the data the “candidate frequencies”
where the CFC might be occurring. However, when performing
this procedure, a maximization of the correlation between the
signals is performed, hence reintroducing a form of dependency
from the amplitude. The issue of the communication between
different frequencies has also been addressed using a multiplex
network approach (Yu et al., 2017). The idea is that each layer
of the multiplex network represents, at a specific frequency, the
iso-frequency correlations between brain areas. However, the
cross-layers links are not estimated from the data. With the
methodology proposed in this article, we aim at providing a
data-informed estimate of which brain areas and frequencies
are involved in cross-frequency phase-to-phase coupling. The
novelty of this work lies in the fact that no a priori information
is required about the frequencies and the areas involved in
the CFC. On the contrary, our technique allows to start
from wide signal spectrum and to detect if cross-frequency is
occurring and, if so, to identify which frequency components
are involved per each signal. Firstly, we provide a theoretical
description of the metric. Secondly, the metric is tested in a
number of synthetic analytical models. We first used Rössler
oscillators, which capture the non-linearities of the brain.
Secondly, in order to simulate the simultaneous presence of iso
and cross frequency synchronization, we implemented several
Kuramoto oscillators, and introduced a lag between the generated
signals. This procedure is known to produce the appearance of
synchronization at a lower frequency bandwidth as compared
to the original signals (Niebur et al., 1991a). Hence, we tested
the ability of the newly proposed methodology, namely cross-
frequency phase linearity measurement (CF-PLM), to detect and
disentangle both kinds of synchronism. Furthermore, we mixed
the previously produced signals linearly, in order to obtain a
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case in which both iso-frequency and cross-frequency coupling
are simultaneously present, and we tested if the newly proposed
approach can disentangle such a situation. Finally, we tested
the metrics on source-reconstructed MEG data (acquired by the
MEG laboratory in Naples), and identified brain areas where
cross-frequency is present that are spatially consistent across the
tested subjects.

METHODS

Definition of the Interferometric Signal
Let us define x(t) and y(t) as the time series related to two
brain areas. By applying the Hilbert transform, their analytical
expression is obtained:

xan(t) = Ax(t)e
iφx(t) = xR(t)+ ixI(t) ,

yan(t) = Ay(t)e
iφy(t) = yR(t)+ iyI(t) . (1)

where variables A and φ represent the amplitude and the phase,
respectively. According to this mathematical description, signals
generated by brain areas can bemodeled as complex phasors with
time-varying amplitude and phase.

According to Baselice et al. (2019), their phase-to-phase
connectivity can be measured via a three steps procedure. Firstly,
the normalized interferometric component of the two signals z(t)
is computed:

z(t) =
xan(t)y

′
an(t)

|xan(t)||yan(t)|
= ei1φ(t) , (2)

where the symbol ′ indicates the complex conjugate. Note that
the complex interferometric function z(t) has an amplitude equal
to 1 [thus it is independent of the amplitudes of the signals Ax(t)
and Ay(t)], and a phase term 1φ(t) = φx(t) − φy(t) ∈ [−π ,π[,
which is the time-varying phase difference between the phases of
xan(t) and yan(t).

It is known that, due to the Hilbert transform, the analytical
expression and therefore the phase of a signal can be computed
only in case of a narrow frequency band. Although the considered
time series x(t) and y(t) are band limited, their frequency range
cannot be considered narrow, and thus an effective estimation
of the genuine phase is not guaranteed by the Hilbert transform
(Rosenblum et al., 2021). That said, in the following it will
only be required the knowledge of the phase difference term
1φ(t), instead of the genuine phases φx(t) and φy(t). It has been
shown that, for some tasks such as the quantification of the
frequency locking, the Hilbert-based estimation of the phase, i.e.,
the so-called protophase, could suit well (Kralemann et al., 2008).
Therefore, according to Baselice et al. (2019), we will assume the
phase term of z(t) as effective for our purpose, i.e., the coupling
measurement.

In particular, the behavior of the term 1φ(t) can be exploited
in order to measure phase connectivity between φx(t) and φy(t)
signals. Hence, the frequency analysis of the function z(t) is
carried out. Three different conditions could occur, as reported
in Figure 1. In case of no synchrony between the sources, the

FIGURE 1 | Interferometric phase signals in three different conditions:

independent sources (blue line), coupled iso-frequency sources (red line) and

coupled sources at different frequencies (yellow line).

interferometric phase values appear to be irregularly spread in the
[−π ,π[ range (blue line in Figure 1). In case of phase coupling,
the term 1φ(t) will be characterized by a linear trend. That
is, if the two sources have a similar oscillation frequency, the
phase of the interferometric signal will be constant or slowly
varying in time (red line in Figure 1) while in case of two sources
oscillating at different frequencies, a slope will appear (yellow line
in Figure 1).

Once the complex signal z(t) has been computed, the second
step for measuring the coupling consists in computing its power
spectrum by means of the Fourier transform:

SZ(f ) =

∣

∣

∣

∣

∣

∫ T

0
z(t)e−i2π ftdt

∣

∣

∣

∣

∣

2

, (3)

where [0,T] is the observation period. In order to have a
more reliable evaluation of the PSD function, we implemented
the periodogram estimator with a rectangular window and
confidence interval of 0.95 for the computation of SZ(f ) (Auger
and Flandrin, 1995). The shape of the power spectrum is strongly
influenced by the strength of the coupling occurring between the
two sources and by their central frequency, and hence it can be
exploited to estimate them (Baselice et al., 2019).

Phase Linearity Measurement
In Figure 2, the power spectra occurring in the different scenarios
are represented. The blue line does not show any peak, in
accordance with the absence of coupling between the sources.
This means that the power spectrum of z(t) is almost flat (blu
line of Figure 2) if its phase term 1φ(t) irregularly spreads in the
[−π ,π] range (blue line of Figure 1).

The red line shows an evident power peak around f = 0,
which is due to a linear behavior of the interferometric phase
1φ(t), i.e.:

1φ(t) = ϕxy + 1ft , (4)
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FIGURE 2 | Power spectral densities of the interferometric components (i.e.,

the power spectrum of the phases of the interferometric signal) in three

different conditions: independent sources (blue line), coupled iso-frequency

sources (red line), coupled sources at different frequencies (yellow line). The

presence of a power peak denotes the coupling between sources, while its

position indicates the difference in their resonant frequencies.

where the term 1f is related to the different central frequencies
of the two sources. In the case of iso-frequency coupling (IFC),
such a term is relatively small, resulting in a peak centered around
f = 0. In this case, the last step for measuring connectivity
strength consists in computing the percentage of power within
a narrow band [−B,B] around f = 0:

PLM =

∫ B
−B SZ(f )df

∫ ∞

−∞
SZ(f )df

. (5)

In Baselice et al. (2019) it has been shown that a B value of
1 Hz is a well balanced trade-off between the discrimination
capability and the estimation noise of the algorithm. The PLM
approach has shown a good performance in measuring the iso-
frequency coupling, i.e., in distinguishing between the case of the
blue line and the red line in Figure 2. Nevertheless, it has to be
modified in order to make it effective in analyzing the last case,
the cross-frequency coupling.

Cross-Frequency PLM
In the CFC condition, a non-minimal frequency difference 1f
occurs between the coupled components of the sources, and such
difference produces a shift in the interferometric spectrum, as
shown by the yellow curve of Figure 2. In this case, the coupling
is evident due to the presence of the peak, which is now centered
at f = 1f (6 Hz in the reported case) instead of f = 0. This
difference makes the PLM (Equation 5) unable to capture the
coupling, as the power is no longer concentrated in the [−B,B]
band. One should notice that the knowledge of the frequency
difference 1f would solve the problem, as the integration could
be shifted accordingly into the [1f −B,1f +B] frequency range.
However, this kind of a priori knowledge is not available at all
times, as it is often the case in resting-state, as well as in many
task-related settings. This situation can be handled by looking
for maxima (i.e., power peaks) in the interferometric power

FIGURE 3 | Scheme of the procedure for the identification of frequencies

involved in the coupling. When the frequency stop filters are not overlapped to

the frequencies involved in the coupling, the peak in the interferometric PSD is

present (top). When one filter overlaps with the frequency of the first (center),

or the second source (bottom), the peak disappears and there is a reduction in

the power.

spectrum SZ(f ). Once a local maximum is identified (besides the
one centered in 0), its power and position can be easily measured.
This is what the proposed methodology implements. In other
words, once the PSD function of Equation (3) is computed,
the global maximum is identified. By retrieving its position, the
difference between the two sources central frequencies 1f is
identified. Subsequently, the coupling strength is measured by
adapting the upper integral of Equation (5), i.e.:

CF-PLM =

∫ 1f+B

1f−B
SZ(f )df

∫ ∞

−∞
SZ(f )df

. (6)

Volume conduction or field spread is a common source of error
in case of coupling metrics for EEG or MEG data. Due to its
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definition, the CF-PLM is insensitive to this effect. The reason
is that the Volume Conduction effect produce a zero-lag copy
of the considered signal, with the same frequency. Therefore its
contribution to the interferometric PSD will be at f = 0, i.e., out
of the [1f −B,1f +B] integration band. However, the provided
information concerns the frequency difference between the two
sources, the central frequencies of the coupled components still
have to be determined. Hence, the last step is to identify the
oscillation frequencies of the two components involved in the
CFC. To this aim, a band-stop Gaussian-shaped frequency filter
has been adopted. The stop band is centered at fH and is 2B
large. The central frequency fH is moved in order to scan the
whole frequency range of the acquired signals, e.g., the [0.5, 48]
Hz range, as reported in Figure 3 (top). Let us focus on the signal
of the first source [i.e., x(t) of Equation (1)]. Once the filter is
overlapped to frequency components involved in the coupling
and removes them, the peak of the interferometric PSD SZ(f )
disappears, as shown in Figure 3 (center). The filter position
fH will reveal the frequency fx of x(t) involved in the coupling.
The same process is repeated for the second source y(t) for the
identification of fy, according to Figure 3 (bottom). After the
frequency scans, the two central frequencies of the components
involved in the CFC fx and fy are identified, while the amount
of coupling is related to the peak energy and is measured via
Equation (6).

RESULTS

The proposed methodology has been tested on both synthetic
and real datasets. In case of simulated data, two approaches
have been adopted for generating the cross-frequency coupled
signals, exploiting Rössler attractors and Kuramoto oscillators,
respectively. Inmore detail, the sensibility of the CF-PLMmetrics
to coupling strength has been analyzed by means of Rössler
attractors signals to which a frequency shift has been applied.
Furthermore, a modified version of the Kuramoto oscillators
implementing signals with different central frequencies has been
considered, in order to test the ability of the CF-PLM to
identify the two frequencies involved in the coupling. As a third
analysis, real data acquisitions have been considered for the final
validation of the approach.

Rössler Attractors
Two time series have been generated according to Rosenblum
et al. (2001):

ẋ1,2 = −2π f1,2y1,2 − z1,2 + ξ1,2 + c(x2,1 − x1,2)

ẏ1,2 = 2π f1,2x1,2 + 0.15y1,2

ż1,2 = 0.2+ z1,2(x1,2 − 10) (7)

with coupling strength c varying between 0 and 0.04, which
can be considered high coupling according to Rosenblum et al.
(2001). A frequency f1 equal to 10 Hz has been chosen, while
the duration and the sampling interval have been set equal to
420 s and 625 Hz, respectively. The two coupled time series
x(t) and y(t) have been generated with a central frequency
f1. Subsequently, the cross-frequency has been simulated by

FIGURE 4 | Mean values of CF-PLM measured in case of two Rössler

oscillators varying their coupling strength from 0 (no coupling) to 0.04 (high

coupling). Results are reported in case of different SNR values between 0 and

30 dB.

applying a frequency shift to the second attractor y(t) via the
modulation property of the Fourier transform:

y1f (t) = y(t)e−i2π1ft . (8)

For this analysis, we considered 1f = 7 Hz. The CF-PLM
has been computed between x(t) and y1f (t). Several analyses
have been conducted aiming at evaluating the sensitivity of
the proposed metrics with respect to the coupling strength of
the attractors, the Signal to Noise Ratio (SNR), i.e., the ratio
between signal and noise powers, and the frequency shift. In
Figure 4, the values measured by the CF-PLM as a function
of attractor’s coupling strength are reported in case of different
SNR levels (using white, additive noise). In more detail, a Monte
Carlo simulation with 50 iterations has been implemented and
the mean values are reported. As expected, the CF-PLM value
increases as a function of the coupling strength, for each of the
considered noise levels. Moreover, we tested the CF-PLM in case
of several frequency shifts, obtaining the curves with the same
behavior of those reported in Figure 4. A further analysis has
been conducted. In particular, the CF-PLM values have been
computed by varying the number of available samples of the two
Rössler attractors, again in case of different coupling strength.
Results are reported in Figure 5.

Kuramoto Oscillators
Three mutually coupled Kuramoto oscillators, namely
s1(t), s2(t), and s3(t), have been generated according to the
following model (Cabral et al., 2011):

dθn

dt
= 2π fn + k

3
∑

p=1

Csin(θp(t − τ )− θn(t)) (9)
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with n = 1, 2, 3, τ = 0.6 s and C = 1. The central frequencies
have been set equal to 10, 10, and 17 Hz, respectively. The first
oscillator (s1(t), f = 10 Hz) has been compared to the second
one (s2(t), f = 10 Hz), to the third one (s3(t), f = 17 Hz)
and to the sum of the last two (s2(t) + s3(t), f = 10 Hz and
17 Hz). The three PSDs of the interferometric signals SZ(f ) are
reported in Figure 6. The PSD peak in case of the iso-frequency
synchronization of two 10 Hz oscillators is clearly visible (the
power peak centered at 0 Hz of Figure 6A), as well as in case
the cross-frequency synchronization occurring between s1(t) and
s3(t) (the power peak centered around -7 Hz of Figure 6B).
Importantly, the case of multiple components simultaneously
synchronized in iso and cross-frequency is correctly handled,
with the two power peaks positioned at 0 and -7 Hz in Figure 6C.
It has to be underlined that the amplitudes of the considered
oscillations plays an important role. In other works, the two
peaks shown in Figure 6C have the same height because the
oscillators amplitude is similar. In case of different intensities,
the power represented by the peaks will be different, and in some
circumstances a masking effect could occur.

FIGURE 5 | CF-PLM values measured in case of two Rössler oscillators

varying the number of samples.

Since the Kuramoto oscillators are coupled with a time delay
between them, the frequency shift depends not only on the
natural frequencies of each oscillator but also on the coupling
strength between them (Niebur et al., 1991b; Choi et al., 2000). In
Figure 7, we show that the position of the interferometric peak is
shifted as a function of the coupling strength, thus validating the
existence of a cross-frequency interaction between the oscillators.
In other words, this shows that the presence of synchrony, at
the frequency that is predicted theoretically, is captured by the
metric (as opposed to merely capturing n:m phase relationships,
whose frequencies are not expected to be dependent from the
coupling strength).

Let us now analyze how the frequencies involved in the
connectivity process are identified. According to the processing
scheme previously described and reported in Figure 3, two stop-
band filters are implemented in the frequency domain. The
peak power reduction is computed when moving the central
frequencies of these filters within the [0, 20] Hz range. Results
are reported in Figure 8 for all the considered cases. When the
filter removes from the first signal the frequencies involved in

FIGURE 7 | Position of the interferometric peak while varying the global

coupling strength of two Kuramoto oscillators.

FIGURE 6 | Power spectra of the interferometric signals in case of coupled Kuramoto oscillators: iso-frequency (A), cross-frequency (B), iso and cross-frequency (C).
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FIGURE 8 | Results of the analysis for the identification of frequencies involved in the coupling in case of different Kuramoto oscillators: iso-frequency (A),

cross-frequency (B), and simultaneous iso- and cross- frequency (C). The center of each cross identifies the frequencies of the two oscillators.

the coupling, a power reduction is measured in the PSD peak. As
a consequence, a horizontal dark line will appear in the images
of Figure 8. Analogously, a vertical line will appear when the
corresponding frequency of the second source is removed. The
result is a cross-shaped image, with the center identifying the two
frequencies involved in the coupling. By looking at Figure 8, it is
evident that the maximum power reduction appears at (10, 10)
Hz in the case of s1(t), s2(t) coupling, at (10, 17) Hz in the case
of s1(t), s3(t) coupling, while in the simultaneous iso and cross-
frequency coupling two couples are correctly identified at (10, 10)
and (10, 17) Hz, respectively. All these results are in accordance
with what we expected, as the procedure correctly estimates both
the connectivity strength and the oscillator frequencies involved
in the coupling from the interferometric spectrum.

In order to have a benchmark, the dual-frequency coherence
(DFC) (Mellors et al., 1998), which is a normalized version of the
second order bispectrum (Thomson, 1982), and the n:m Phase
Synchronization Index (PSI) (Tass et al., 1998;Wacker andWitte,
2011) have been implemented. Given the two acquired signals
x(t) and y(t) and their Fourier transformX(ω) andY(ω), the DFC
can be defined as Shahbazi Avarvand et al. (2018):

DFC(ω1,ω2) =
| < X(ω1)Y

′(ω2) > |

< |X(ω1)|2 >1/2< |Y(ω2)|2 >1/2
, (10)

in which the symbol < . > stands for the average over trials
operation. In our case, we assumed the number of trials to be
equal to 1. The n:m PSI is defined as:

PSI(n,m) =
1

N

∣

∣

∣

∣

K
∑

k=1

exp[i(nφk
x −mφk

y )]

∣

∣

∣

∣

, (11)

in which the time series have been divided in K segments. We
computed the DFC for ω1 and ω2 in the [1, 20] Hz range, and
the n:m PSI for n and m values between 1 and 20, obtaining the
result reported in Figure 9. Compared to Figure 8B, it is evident
that DFC metrics is less effective in determining the frequencies
involved in the coupling as two maxima are present at a distance
of about 1 Hz, while the n:m PSI is not effective at all.

Real Data
Acquisition and Preprocessing
The acquisitions used for the analysis are from healthy subjects
acquired at the MEG facility in Naples1. The detailed procedure
used for the processing of the acquisitions has been described
in Sorrentino et al. (2018). In brief, subjects were seated in
a 163-magnetometers MEG system. The brain activity was
recorded twice for 3.5 min, with a small break to minimize the
chances of drowsiness. After the anti-aliasing filter, the data were
sampled at 1024 Hz, and filtered between 0.5 and 48 Hz with
a 4th order Butterworth IIR band-pass filter (Oostenveld et al.,
2011). During the acquisitions, the electrocardiogram (ECG)
and the electrooculogram (EOG) were also recorded (Gross
et al., 2013). Principal component analysis (PCA) was used
to reduce the environmental noise (Sadasivan and Narayana,
1996; Oostenveld et al., 2011). Subsequently, noisy channels were
removed manually through visual inspection by trained experts.
For each subject, supervised independent component analysis
(ICA) (Barbati et al., 2004) was performed to eliminate the ECG
and, if present, the EOG components from the MEG signals.
MEG data were then co-registered to the native MRI of the
subjects. We used the volume conduction model proposed by
Nolte (2003) and the linearly constrained minimum variance
(LCMV) beamformer (Van Veen et al., 1997) to reconstruct
the time-series related to the centroids of 90 regions-of-interest
(ROIs), derived from the automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002; Gong et al., 2009; Hillebrand
et al., 2016). For each source, we projected the time series
along the dipole direction explaining most variance by means of
singular value decomposition (SVD), obtaining a scalar value per
each source.

Connectivity Measurement
The power spectra of the interferometric signal for each couple
among the 90 sources have been computed. In the following, we
selected two couples of regions, i.e., the couple with the highest

1Ethics approval by Comitato Etico Campania Centro, Prot.n.93C.E./Reg. n.14-

17OSS.
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FIGURE 9 | Dual-Frequency Coherence (left) and n:m Phase Synchronization Index (right) results in case of CFC Kuramoto oscillators.

FIGURE 10 | Empirical CDF of the peaks distributions obtained by shuffling the signal phases in the frequency domain (blue lines). Values have been normalized with

respect to the highest CFC peak present in the data before shuffling (red line). The analysis refers to two cases: the highest CFC peak found among all couples of

regions (top), where the peak intensity is above the 99% of the distribution, and a couple of regions with an average CFC peak intensity (bottom), where the peak is in

the middle of the distribution.

CFC peak (among all couples of regions), and a region with
an average CFC peak intensity. To show that a high CFC peak
is unlikely to appear by chance, we have validated the analysis
against surrogates (Lancaster et al., 2018). Hence, the intensity of
the highest CFC peak, derived from 10000 random surrogates,
obtained by shuffling the phase of the signal in the frequency
domain, have been computed. In Figure 10 (top), we show that,
in the case of the high observed cross-frequency peak, the peak
intensity was above the 99th percentile of the surrogates. On the
contrary, in case of the average CFC peak [Figure 10 (bottom)],
its intensity was around the 50th percentile, as expected. To
further check the validity of our analysis in real subjects, we went
on to estimate the anatomical consistency of the CFC peaks per
each link across subjects. To do so, we proceeded as follows:
for each of the 2 subjects, for each source pair the intensity of
the strongest CFC peak has been measured (|1f | ≥ 2 Hz).
Subsequently, we binarized the CFC peak matrix according to a
threshold. To avoid a dependency of the result from the choice
of the threshold, we have repeated the analysis across a range
of thresholds, i.e., from the 1st to the 99th percentile. Then, we

have summed across the binary matrices obtaining one matrix
per subject which does not depend on any specific threshold.
Finally, the subject specific matrices were summed, showing that
the presence of a CFC peak is topographically consistent across
the two individuals. In the first row of Figure 11, the source
couples that are beyond a high number of thresholds, i.e., high
percentile values, are reported in progressively intense red. The
most evident points of this connectivity matrix are those related
to the strongest CFC peaks. We also projected such information
on a 3D brain template, as shown in Figure 12. In the second
row of Figure 11, the delta-frequencies corresponding to the
significant edges are reported.

Now we are going to focus on the couple of regions with the
highest CFC peak. In Figure 13A, the PSD of the interferometric
signal related to the right inferior parietal lobule and the orbital
part of the right superior frontal gyrus are reported. Results
are related to one epoch about 150 seconds long of a single
subject. A power peak positioned at 9.5 Hz is clearly visible,
which shows the presence of cross-frequency coupling. In the
following step the sources frequencies involved in the coupling
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FIGURE 11 | First row: peak intensity, second row: peak frequency from CF-PLM matrixof the 2 subjects obtained by filtering the interferometric peaks intensity. Rows

and columns are the considered sources (between 1 and 96 of the AAL atlas). The threshold values have been selected according to the percentiles of the

distribution, spanning between 1 and 100. The most intense red points characterizes the CF-PLM peaks with higher intensity.

FIGURE 12 | For one subject, the brain shows the intensity of the

cross-frequency coupling in each region. That is, based on the CFC matrix, the

weighted-degree has been computed for each region. The higher the value,

the more a given region is connected in cross-frequency to other metrics.

are determined. As explained earlier, the procedure consists in
filtering the two signals and measuring the power reduction of
the frequency peak. In Figure 13B, it is evident that the highest

reduction is found in case of f1 ≈ 11 Hz and of f2 ≈ 1.5 Hz.
The result obtained by the DFC, which is reported in Figure 13C,
is not effective in identifying the involved frequencies, as the
global maximum is hardly distinguishable. This result could be
explained as the DFC has not been designed for resting state
coupling analysis.

The same couple of regions has been analyzed also in
case of the second subject. The PSD of the interferometric
signal, which is reported in Figure 14, shows several
peaks, although the one located at around 10 Hz is
present also in this case. We have to underline that
this analysis is done on a single link of one subject,
so the amount of available data is very limited and
the estimation noise is not minimal. The frequency
identification step shows two couplings with the
same 1f .

A second pair of brain regions has been considered, namely
the left superior frontal gyrus and the left calcarine sulcus. The
PSD of the interferometric signal is reported in Figure 15A. Two
peaks are evident in this case, one centered in zero, related to
the iso-frequency coupling, and another one at -8 Hz, which
denotes a cross-frequency connectivity. By focusing on the latter,
the identified involved frequencies are reported in Figure 15B,
and are around 1 and 9 Hz. Also in this case, results are
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FIGURE 13 | Analysis of signals from areas 57 (right inferior parietal lobule) and 42 (orbital part of the right superior frontal gyrus). (A) PSD of the interferometric signal.

The peak related to the cross-frequency coupling, located at +9.5 Hz is clearly visible. (B) Frequencies identification via CF-PLM. The frequencies involved are f1 = 11

Hz (for source 57) and f2 = 1.5 Hz (for source 42). (C) Frequencies identification via Dual-Frequency Coherence. Although a dark area in case of f1 = 10 Hz is visible,

the two frequencies cannot be identified.

FIGURE 14 | Analysis of signals from areas 57 (right inferior parietal lobule) and 42 (orbital part of the right superior frontal gyrus) of the second subject. (A) PSD of the

interferometric signal. The peak related to the cross-frequency coupling, located at +10.5 Hz is visible. (B) Frequencies identification via CF-PLM. Two frequency

combinations can be identified.

FIGURE 15 | Analysis of signals from areas 7 (left superior frontal gyrus) and 25 (left calcarine sulcus). (A) PSD of the interferometric signal. Two main peaks are

visible, located at 0 Hz (related to the iso-frequency coupling) and -8 Hz (related to the cross-frequency coupling). (B) Frequencies identification via CF-PLM. The

frequencies involved are f1 = 1 Hz (for source 7) and f2 = 9 Hz (for source 25). (C) Frequencies identification via Dual-Frequency Coherence. A global maximum is not

visible, and thus the two involved frequencies cannot be identified.
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more convincing than the DFC (Figure 15C), which cannot be
exploited for the frequency identification.

DISCUSSION

In this article, we present a novel phase-based metrics capturing
the occurrence of cross-frequency synchronization in the resting-
state brain. The main advance of this work lies in the fact that
the proposed procedure detects cross-frequency synchronization
reliably, without a priori hypothesis about the frequencies of the
synchronized components.

It is important to notice that such a procedure lands itself
nicely to study if and where cross-frequency synchronization
is occurring in resting-state, when no specific task is taking
place, and hence no hypothesis about the frequencies of CFC
is available. Furthermore, this procedure only captures phase
synchronization, since the amplitude does not affect the estimate
(Tass et al., 1998). This is of particular relevance, provided that
a number of mechanisms are believed to operate simultaneously
in the brain in order to allow communication between neuronal
populations operating at different frequencies (Jensen and
Colgin, 2007), but n:m synchronization is the only neuronal
mechanism by which two neuronal population can influence
each other at the temporal accuracy of the fast-operating
neuronal population (Palva et al., 2005; Le Van Quyen and
Bragin, 2007). Hence, the results provided by our procedure are
interpreted in terms of a defined neurophysiological mechanism
(i.e., n:m synchronization), and are very noise-resilient while
being entirely independent from the amplitude of the signals.
The detection of cross-frequency coupling is specifically relevant
taking into account the phenomenon of frequency mixing, i.e.,
the appearance of new frequencies in neuronal circuitry when
incoming oscillations are non-linearly integrated (Haufler and
Paré, 2019).

Rössler Attractors
Firstly, we simulated synthetic data by using two Rössler
attractors, as they retain non-linear properties that are similar
to the ones displayed by real M/EEG data (Rosenblum et al.,
2000). In order to simulate CFC, we modified one of the
two attractors by applying a frequency shift. Similarly to
what is shown in our previous work presenting the PLM
(Baselice et al., 2019), one can appreciate that the peak
in the interferometric spectrum grows monotonically as a
function of the strength of synchronization between oscillators
(regardless of their frequencies). Furthermore, one can appreciate
that the interferometric spectrum peaks are at the frequency
corresponding to the shift that had been introduced. Hence,
the PSD allows the estimation of both the intensity of the
synchronization, as well as the difference between the frequencies
of the involved signals. In addition, the resiliency to noise has
been tested in this simulation, and a reliable estimate is possible
also with realistic amount of noise. By looking at the curves of
Figure 5, we can identify 105 as the minimum number of samples
for the CF-PLM convergence.

Kuramoto Oscillators
When dealing with real M/EEG signals, the case is more
complicated since each signal has a very rich frequency spectrum,
where the simultaneous presence of multiple components
synchronizing in iso- and cross- frequency occurs. We used a
model based on Kuramoto oscillators to explore if the CF-PLM
can disentangle these different contributions.

Firstly, we explored the simple synchronization between two
oscillators synchronized in iso-frequency (10–10 Hz). As shown
by the peak centered in 0 in Figure 6A, the synchronization is
correctly captured as expected. Then, we explored the case of
cross-frequency synchronization of Kuramoto oscillators. The
interferometric spectrum displays one peak in correspondence
to the frequency difference of the two oscillators (at -7 Hz in
the example in Figure 6B, since the two originating signals are
oscillating at 10 and 17 Hz, respectively). In the third case,
one oscillator at 10 Hz has been compared to the sum of two
more oscillators at 10 and 17 Hz. This simulation is intended
to create a single signal where some specific components
are synchronized in iso-frequencies, while different ones are
synchronized in cross-frequency. As expected, the components
in iso-frequency produced a peak at 0 Hz in the interferometric
spectrum, while a second peak appears at -7 Hz, capturing
the cross-frequency synchronization. Such results show that
the proposed methodology can disentangle the cases where
multiple components are synchronized simultaneously in iso-
and cross-frequency. Similarly to the previous scheme, the CF-
PLM produces a noise-resilient estimate of synchronization
(despite being based solely on the phase).

Results reported in Figure 8 show that the proposed approach
effectively estimates the frequencies involved in the coupling,
both iso-frequency (Figure 8A), cross-frequency (Figure 8B)
and simultaneous iso and cross-frequency (Figure 8C). More
in details, the centers of all the computed crosses are correctly
positioned and allow the identification of the frequency
components present in the oscillators and involved in the
coupling process.

Real Data
The analysis with the real data is intended to show that such a
cross-frequency-coupling is happening in resting state, and can
be captured by the proposed procedure. Each interferometric
peak has been statistically validated against surrogates, making it
unlikely that it would occur by chance. Furthermore, if the peaks
were occurring by chance, one would expect that no consistent
patterns of cross-frequency coupling in different subjects.
However, observing the CFC analysis, one can appreciate the
cross-frequency-coupling is not a widespread phenomenon
happening in any area, but, rather, specific to some areas. More in
detail, the first row of Figure 11, clearly shows that the strongest
cross-frequency connections do not spread randomly across the
matrix, and a texture appears, indicating that a specific CFC
network is operating involving specific edges, rather than being
randomly spread across the brain, as one would expected for a
random phenomenon. Besides this coherent spatial distribution,
images in the second row of Figure 11 show that also the
frequency components that are correlated are not random, but
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a pattern emerges. Finally, Figure 12 helps the visualization of
the regions where cross frequency coupling occurs consistently.
While a systematic description of these patterns goes beyond
the scope of the current paper, one should notice that temporo-
parietal regions, as well as occipital ones, appear symmetrically
involved in cross-frequency communication. Roughly speaking,
these regions are involved in perceptive streams processing
external stimuli. These findings are in line with previous evidence
showing delta-to-alpha cross-synchronization (Isler et al., 2008).
Furthermore, delta-to-alpha synchronization was also shown to
be influenced by anesthetics (Stankovski et al., 2016), stressing
their physiological meaningfulness. Importantly, as the ground
truth is ultimately unknown, one should be very cautious at
making inference.

Interestingly, in Shahbazi Avarvand et al. (2018) a 10 to 20 Hz
coupling has been found in case of EEG data in the sensor space,
probably due to alpha band harmonics, but the proposed result
did not give this result. This suggests that the two methodologies
handle differently the signal harmonics.

However, one good aspect of the proposed procedure lies in
the fact that a form of “double-check” is possible. In fact, once the
frequency on the peak of the interferometric spectrum is known,
and the related component in signal A has been identified, one
has already a hypothesis about the frequency of the synchronized
component in signal B. Hence, if the procedure is consistent,
the filtering of signal B should confirm this hypothesis. In fact,
as explained previously, the peak of the interferometric signal
appears at a frequency equal to the difference of frequencies
between the two components. In conclusion, with the proposed
procedure we are able to determine the central frequencies of
signals A and B involved in the coupling. We made a number
of tests to explore the behavior of the proposed procedure to
different lengths of acquisitions and different number of epochs,
confirming that this procedure is robust also with little and/or
noisy data. One aspect of interest is that our metrics does not
need the data to be split into trials, hence taking advantage of the

full length of the available data. However, even when only short

or limited data segments are available, the new procedure can still
retrieve reliable results.

CONCLUSIONS

In this manuscript, we propose a new metric that can estimate
cross-frequency coupling from broad-band signals with no a
priori hypothesis on what the information transfers would be.
Since cross-frequency coupling is the only neuronal mechanism
that can allow fast communication between neuronal ensemble
operating at different frequencies, we believe our metric can help
to study the mechanisms of cross-frequency communication in
the resting-state, as well as its topography and topology.
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