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Simple Summary: The noninvasive differentiation of hepatocellular carcinoma (HCC) from intra-
hepatic cholangiocarcinoma (ICC) remains challenging. In recent years, the number of studies on
the application of radiomics in liver cancer has grown dramatically. However, there have been very
few studies on the differentiation of HCC from ICC based on multisequence magnetic resonance
imaging (MRI) radiomics. This study aimed to investigate the efficacy of a radiomics model based
on pretherapeutic fat suppression T,-weighted imaging (FS-T,WI) and dynamic-contrast-enhanced
MRI (DCE-MRI) features obtained from the arterial phase (AP) and portal venous phase (PVP) for
noninvasively differentiating HCC from ICC.

Abstract: The purpose of this study was to investigate the efficacy of magnetic resonance imaging
(MRI) radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangio-
carcinoma (ICC). The clinical and MRI data of 129 pathologically confirmed HCC patients and 48
ICC patients treated at the Affiliated Hospital of North Sichuan Medical College between April
2016 and December 2021 were retrospectively analyzed. The patients were randomly divided at a
ratio of 7:3 into a training group of 124 patients (90 with HCC and 34 with ICC) and a validation
group of 53 patients (39 with HCC and 14 with ICC). Radiomic features were extracted from axial fat
suppression Tr-weighted imaging (FS-T;WI) and axial arterial-phase (AP) and portal-venous-phase
(PVP) dynamic-contrast-enhanced MRI (DCE-MRI) sequences, and the corresponding datasets were
generated. The least absolute shrinkage and selection operator (LASSO) method was used to select
the best radiomic features. Logistic regression was used to establish radiomic models for each se-
quence (FS-T,WI, AP and PVP models), a clinical model for optimal clinical variables (C model) and
a joint radiomics model (JR model) integrating the radiomics features of all the sequences as well as a
radiomics—clinical model combining optimal radiomic features and clinical risk factors (RC model).
The performance of each model was evaluated using the area under the receiver operating character-
istic curve (AUC). The AUCs of the FS-To,WI, AP, PVP, JR, C and RC models for distinguishing HCC
from ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784, 0.727,
0.802, 0.860 and 0.877 in the validation group, respectively. The results of this study suggest that
MRI-based radiomics may help noninvasively differentiate HCC from ICC. The model integrating
the radiomics features and clinical risk factors showed a further improvement in performance.

Keywords: radiomics; hepatocellular carcinoma; intrahepatic cholangiocarcinoma; differentiation

1. Introduction

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the
most common types of primary liver cancer, with the former accounting for approxi-
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mately 75-85% of cases [1-3], and their morbidity rates are increasing [4-8]. The treatment
strategies for and prognosis of patients with HCC and ICC are very different [2,3,9-19]. If re-
section is considered feasible, resection is the treatment of choice for both entities. However,
only a minority of patients are candidates for curative-intent resection. In non-resectable
cases, HCC mainly responds to transcatheter arterial chemoembolization, targeted therapy
and immunotherapy, while ICC benefits from classical chemotherapy, targeted therapy and
immunotherapy [17,20]. Therefore, accurate pretherapeutic differentiation between HCC
and ICC is essential.

At present, the noninvasive differentiation of HCC from ICC remains challenging.
For example, the sensitivity and specificity of various serum tumor markers, including
alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9), are unsatisfactory [21-24].
The presentation of HCC and ICC on dynamic-contrast-enhanced computed tomography
(CT) and magnetic resonance imaging (MRI) is mostly typical [25-28]. However, both
HCC and ICC may occur in patients with chronic hepatitis, and imaging enhancement
patterns tend to be similar in some patients with both HCC and ICC [3,29-33]. In addition,
the enhancement may be unremarkable or atypical in some HCC cases (especially in
cases of small, hypovascular or sclerosing HCC lesions) [34-36]. Traditional medical
imaging analysis relies heavily on the physician’s subjective judgment and is thus prone
to misdiagnosis [37]. Liver biopsy remains the gold standard for the final diagnosis, but
this invasive procedure is refused by some patients [38]. Therefore, a pretherapeutic
noninvasive method for distinguishing HCC from ICC is urgently needed.

Based on existing medical imaging modalities such as CT and MRI, an emerging
technique called radiomics [39] can be used to convert intrinsic pathophysiological in-
formation that is invisible to the human eye into high-dimensional quantitative image
features, which can then be used to perform tumor classification via an analysis of the
relationship between these features and clinical / genetic data [39-41]. Studies have shown
that radiomics exhibits unique advantages in classifying the disease and predicting the
prognosis of patients with liver cancer [39,42-56]. However, there have been very few
studies on the differentiation of HCC from ICC based on multisequence MRI radiomics to
date. In this paper, the efficacy of a radiomic model based on pretherapeutic fat suppression
Tp-weighted imaging (FS-T,WI) and dynamic-contrast-enhanced MRI (DCE-MRI) features
in the arterial phase (AP) and portal venous phase (PVP) for noninvasively differentiating
HCC from ICC was investigated.

2. Materials and Methods
2.1. Patients

The pretherapeutic MRI and clinical data of HCC and ICC patients treated at the
Affiliated Hospital of North Sichuan Medical College between April 2016 and December
2021 were retrospectively analyzed. The inclusion criteria were as follows: (1) a pathological
diagnosis of HCC or ICC; (2) multisequence MRI of the upper abdomen performed within
4 weeks prior to treatment; and (3) no antitumor-related treatment prior to the MRI scan.
The exclusion criteria were as follows: (1) combined hepatocellular cholangiocarcinoma
(cHCC-CCQC); (2) incomplete data or poor MR image quality; and (3) lesion diameter <2 cm
or unclear lesion contours. The data of 206 patients with primary liver cancer (145 with
HCC and 61 with ICC) were collected, and 177 (129 with HCC and 48 with ICC) met the
inclusion and exclusion criteria and were finally enrolled in this study. The patients were
randomly divided at a 7:3 ratio into a training group (n = 124, 90 with HCC and 34 with
ICC) and a validation group (n = 53, 39 with HCC and 14 with ICC) (Figure 1).

The following clinical data were acquired: age; sex; cirrhosis status; hepatitis B
serological test results; pseudocapsule status; hemorrhagic necrosis status; extrahepatic
metastasis status; portal vein tumor thrombus status; number of tumors; ascites status;
maximum tumor diameter; abnormal prothrombin; AFP level; carcinoembryonic antigen
(CEA) level; and CA19-9 level. The levels of tumor markers were measured within one
week before treatment.
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Patients underwent pretherapeutic abdominal
MRTI from April 2016 to December 2021

(n=206)

Exclusion criteria:

1. Combined hepatocellular—cholangiocarcinoma
(n=3)

> 2. Incomplete imaging data or poor imaging
quality (n=3)

3.Lesion diameter less than 2 cm or unclear
lesion boundary (n=23)

Final study population

(n=177)

\4 \4
Training cohort Validation cohort
(n=124) (n=53)
Figure 1. Flow chart of study population selection.
2.2. MRI Acquisition
MRI scans were performed using a Discovery 750 3.0 T superconductivity MRI scanner
with a 32-channel phased-array surface coil (GE, USA). Prior to the MRI scans, all subjects
fasted for 4 h and received training in breathing exercises. Scan sequences included axial
3D liver acceleration volume acquisition (LAVA), FS-T,WI and axial 3D LAVA dynamic-
contrast-enhanced sequences (Table 1). Gd-DTPA at a dose of 15-20 mL was used as the
contrast agent for dynamic contrast enhancement and injected into the dorsal vein of the
hand at 2-2.5 mL/s using a high-pressure syringe. DCE MR images were obtained in the
AP (18-25 s) and PVP (45-60 s) after injection of the contrast agent.
Table 1. MRI sequence and parameters.
Sequence TR/TE (ms) FA (°) Matrix (mm?) FOV (mm?) ST (mm)
BH Ax LAVA-Flex 4/2 12 260 x 192 320 x 320-360 x 360 2.6
RTr Ax fs T,WI 2609/97 110 384 x 384 320 x 320-380 x 380 5
BH Ax LAVA-Flex+C 4/2 12 224 x 192 320 x 320-360 x 360 5

Notes: TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; ST, section thickness; LAVA-Flex, liver
acquisition with volume acceleration flexible.

2.3. Image Segmentation and Feature Extraction

The MR images of the patients in the FS-T;WI and AP as well as PVP were exported in
digital imaging and communications in medicine (DICOM) format and imported into IBEX
software ($1.0, https:/ /sourceforge.net/projects/ibex-mda/, accessed on 13 November
2021) for tumor image segmentation. Without knowing the pathological results, an observer
with 6 years of experience in abdominal radiology used the IBEX software to delineate the
region of interest (ROI) along the edge of the lesion that contained the tumor layer by layer,
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and the entire tumor volume was manually delineated (Figure 2). After segmenting the
MR images, the gray-level run-length matrix (GLRLM), gray-level cooccurrence matrix
(GLCM), intensity histogram and shape features were extracted and used to construct the
FS-T,WI, AP and PVP datasets.

(A) (B)

Figure 2. Delineation of the ROI along the edge of the lesion: (A) ROI segmentation on FS-T,WI in
the case of HCC and (B) ICC, respectively.

2.4. Feature Selection

Altogether, 61 patients (42 with HCC and 19 with ICC) were randomly selected for
intra- and intergroup consistency analysis. Interobserver consistency was assessed by
comparing the segmentation results of two radiologists (observers 1 and 2, with 5 and
6 years of experience, respectively). Intraobserver consistency was assessed by comparing
the segmentation results obtained by observer 2 more than one week after the initial results
were obtained. The intraclass correlation coefficient was used to assess interobserver consis-
tency, with a coefficient >0.75 being considered to indicate good consistency. To eliminate
discrepancies in the index dimension, all data were standardized via Z-score normaliza-
tion. The dataset generated by each sequence was subjected to intra- and interobserver
consistency tests. Features with an intraclass correlation coefficient <0.75 were eliminated.

From the stable features that remained, features that significantly differentiated HCC
from ICC were selected using one-way statistical analysis (independent-samples ¢t test or
Mann-Whitney U test, according to the characteristics of the data distribution) (p < 0.05).
To avoid overfitting, least absolute shrinkage and selection operator (LASSO) regression
analysis was performed to select the core radiomics features in differentiating HCC from
ICC. The regularization parameter (A) of the selected features was adjusted with 10-fold
cross-validation using the 1-standard-error (1-SE) method.

2.5. Model Establishment and Evaluation

The optimal radiomics features selected from each sequence were used to establish
radiomics models (FS-T,WI, AP and PVP models), and clinical variables were used to
establish the clinical model (C model) with logistic regression. By integrating the optimal
radiomic features from each model, a joint radiomics model (JR model) was established [45].
Finally, the optimal radiomics features and clinical risk factors were combined to establish
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the radiomics—clinical model (RC model). The efficacy of the models was assessed consid-
ering the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and
F1 score as determined from the logistic regression confusion matrix.

2.6. Statistical Methods

R software (4.1.2, https:/ /www.r-project.org/, accessed on 8 December 2021) was
used for statistical data processing. Specifically, the software packages “psych”, “glmnet”
and “pROC” were used to assess the intra- and intergroup consistency in the radiomics
features to perform LASSO regression analysis and to plot the ROC curves, respectively.
The normality and homogeneity of variance of the quantitative data were tested using
the Shapiro-Wilk test and Bartlett test, respectively. The independent-samples ¢ test was
performed for quantitative data with a normal distribution and homogeneous variance;
otherwise, the Mann-Whitney U test was performed. Quantitative data are presented
as the means or medians. Categorical variables were analyzed using the chi-square test
and are presented as percentages. Two-sided p values < 0.05 were considered to indicate
statistical significance.

3. Results
3.1. Patient Characteristics

Among the 177 patients, 129 had HCC (112 men and 17 women) and 48 had ICC
(19 men and 29 women). Cirrhosis occurred in 121 patients (107 with HCC and 14 with ICC),
and multinodular liver cancer occurred in 65 patients (47 with HCC and 18 with ICC). The
maximum tumor diameter was 6.57 £ 3.22 cm (Table 2). The HCC and ICC groups demon-
strated significant differences in gender, serum AFP and extrahepatic metastasis status.

Table 2. Patient clinical characteristics.

Parameter Training Cohort Validation Cohort Value
(n =124) (n = 53) p
Sex
Male 94 38 0.565
Female 30 15
Age
<60 78 32 0.751
>60 46 21
Satellite nodules
Yes 47 18 0.618
No 77 35
Diameter
<5 41 25 0.076
>5 83 28
Ascites
Yes 36 18 0.514
No 88 35
Hemorrhagic necrosis
Yes 86 31 0.162
No 38 22
Pseudocapsule
Yes 26 11 0.975

No 98 42
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Table 2. Cont.

Parameter Training Cohort Validation Cohort Value
(n =124) (n = 53) P
Extrahepatic
metastases
Yes 23 6 0.234
No 101 47
Portal vein tumor
thrombus
Yes 35 18 0.445
No 89 35
Cirrhosis
Yes 83 38 0.533
No 41 15
Hepatitis B or C
Yes 90 39 0.891
No 34 14
AFP (ng/mL)
<20 54 30
20~400 21 8 0.259
>400 49 15
DCP (mAU/mL)
<27.8 11 5 0.905
>27.8 113 48
CA19-9 (U/mL)
<37 68 24 0.244
>37 56 29
CEA (ng/L)
<5 80 32 0.601
>5 44 21
Histologic result
HCC 90 39 0.891
ICC 34 14

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; AFP, alpha-fetoprotein; CA19-9,
carbohydrate antigen 19-9; DCP, des-gamma-carboxy prothrombin; CEA, carcinoembryonic antigen.

3.2. Feature Extraction and Selection

A total of 352 features were extracted from each of the FS-T,WI, AP and PVP datasets.
Features with intra- and intergroup intraclass correlation coefficients <0.75 were eliminated,
and the remaining features were further analyzed (Figure 3).

There were 327, 331 and 319 significantly different features in the FS-To,WI, AP and
PVP datasets, respectively (p < 0.05), according to the independent-samples ¢ test or Mann—
Whitney U test. Finally, one, six and four optimal features, respectively, from these datasets
were selected in LASSO regression (Figure 4 and Table 3).
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Figure 3. Stability assessment of the extracted MRI radiomic features according to inter- and in-
traobserver intraclass correlation coefficients: (A1) intergroup FS-T,WI; (A2) intragroup FS-T,WI;
(B1) intergroup arterial phase; (B2) intragroup arterial phase; (C1) intergroup portal venous phase;
(C2) intragroup portal venous phase.
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Table 3. Radiomics features identifying HCC and ICC selected from each dataset in LASSO regression.

Cohort Feature Name
FS-ToWI Shape features (n = 1) Roundness
Texture features (n = 3)
GLCM (n=1) 45-7InverseDiffMomentNorm
B OLongRunEmphasis
Arterial phase GLRIM (n =2) 90ShortRunLowGrayLevelEmpha
Intensity histogram features (n = 1) InterQuartileRange
- Mass
Shape features (n = 2) Roundness

Portal venous phase

Texture features (n = 2)
GLCM (n=2)

90-1Contrast

45-7InverseDiffMomentNorm

Intensity histogram features (1 = 2)

InterQuartileRange
MeanAbsoluteDeviation

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; FS-T,WI, fat suppression Tp-
weighted imaging; GLCM, gray-level cooccurrence matrix; GLRLM, gray-level run-length matrix. GLCM features
were constructed in four directions (6 = 0°, 45°, 90° and 135°) and three offsets (d = 1, 4 and 7); GLRLM features
were constructed in two directions (6 = 0°, 90°) and one offset (d = 1).

Binomial Deviance

Log Lambda

(A1)

43 41 40 37 35 36 30 30 29 33 34 34 30 27 23 22 20 19 15 14 12 10 9 10 10 7776521111110

Log()
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Figure 4. Cont.
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Figure 4. Feature selection using LASSO. (A1-C1) LASSO coefficient profiles of the radiomics features
in the FS-T, WI, arterial phase and portal venous phase; (A2—C2) mean square error path using 10-fold
cross-validation in the FS-T,WI, arterial phase and portal venous phase, respectively.

3.3. Model Evaluation

The AUC:s of the FS-T,WI, AP, PVP, JR, C and RC models for distinguishing HCC from
ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784,
0.727,0.802, 0.860 and 0.877 in the validation group, respectively (Table 4 and Figure 5).

Table 4. Efficacy of each model in identifying HCC and ICC.

Cohort Model AUC Sen Spe PPV NPV ACC F1 Score
FS-T,WI 0.693 0.147 0.956 0.556 0.748 0.734 0.233
model
Training AP model 0.863 0.588 0.933 0.769 0.857 0.839 0.667
PVP model 0.818 0.588 0.922 0.741 0.856 0.831 0.656
JR model 0.914 0.706 0.922 0.774 0.892 0.863 0.738
C model 0.936 0.706 0.978 0.923 0.898 0.903 0.800
RC model 0.977 0.853 0.978 0.935 0.946 0.944 0.892
FS-ToWI 0.690 0.071 0.974 05 0.745 0.736 0.125
model
Validation AP model 0.784 0.571 0.897 0.667 0.854 0.811 0.615
PVP model 0.727 0.357 0.897 0.556 0.795 0.756 0.435
JR model 0.802 0.571 0.923 0.727 0.857 0.83 0.640
C model 0.860 0.714 0.949 0.833 0.902 0.887 0.769
RC model 0.877 0.714 0.897 0.714 0.897 0.849 0.714

Notes: HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; FS-T,WI, fat suppression Tp-
weighted imaging; AP, arterial phase; PVP, portal venous phase; JR, joint radiomic; C, clinical; RC, radiomics—
clinical; AUC, area under the receiver operating characteristic curve; ACC, accuracy; Sen, sensitivity; Spe,
specificity; PPV, positive predictive value; NPV, negative predictive value.
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——PVP model S ——PVP model

C model C model

Figure 5. Performance of the FS-T,WI model, AP model, PVP model, JR model, C model and RC
model in identifying HCC and ICC in the training group (A) and validation group (B) as detected
using ROC curve analysis.

4. Discussion

MRI is characterized by high soft-tissue contrast, multiparametric and multidirectional
imaging and a lack of radiation, making it the preferred imaging method for identifying and
diagnosing liver nodules [57,58]. Dynamic-contrast-enhanced MRI (DCE-MRI) is superior
to dynamic-contrast-enhanced CT in the detection and diagnosis of small HCC lesions
(maximum diameter < 2.0 cm) [59,60]. Typical HCC displays significant heterogeneous
enhancement in the arterial phase on DCE-MRI and reduced enhancement in the portal
and/or parenchymal phase relative to that of normal liver parenchyma, resulting in a
“fast-in and fast-out” enhancement pattern [25,28]. In contrast, ICC shows less obvious
enhancement or mild heterogeneous enhancement in the arterial phase on DCE-MRI
that gradually increases with time [26,27]. However, it is still difficult to differentiate
HCC from ICC in clinical practice. Studies [30,34-36] have shown that small ICC lesions
(diameter < 3 cm) and some ICC lesions in the setting of cirrhosis (approximately 7%)
show the same enhancement pattern as typical HCC lesions, and approximately 10-20% of
HCC lesions (especially small, hypovascular or sclerosing HCC lesions) show less obvious
enhancement on imaging.

Choi et al. [61] conducted gadoxetic-acid-enhanced MR and dynamic CT scans to
identify HCC and ICC. The results showed that PVP washout instead of conventional
washout in gadoxetic-acid-enhanced MRI can prevent the misidentification of HCC as ICC
in patients with cirrhosis; however, it reduces the sensitivity of the method for identifying
HCC. Diffusion-weighted imaging (DWI) reflects the diffusion of water molecules in tissues
by measuring the apparent diffusion coefficient (ADC). Wei et al. [62] and Lewis et al. [63]
found that the ADC can help differentiate HCC from ICC. However, ICC has multiple
cellular origins and shares similar biological behaviors with HCC to some extent; thus,
the ADC of ICC can partially overlap with that of HCC. Additionally, DWI does not
display small lesions well because of the limited spatial resolution, and conventional DWI
is based on a monoexponential model that cannot differentiate between water molecule
diffusion and blood perfusion [64]. Intravoxel incoherent motion-DWI (IVIM-DWI) can
simultaneously quantify the diffusion of water molecules and microcirculatory perfusion
in living tissues. A previous study [65] showed that both the ADC and Dy, values were
significantly lower in HCC than in ICC, but the Dy, value was significantly higher in
HCC than in ICC; furthermore, Dy,q; was more efficient in the differential diagnosis of
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HCC and ICC, and there was no significant difference in the f value between D¢, and
Dglow- The value of IVIM-DWI in identifying HCC and ICC has also been reported by other
scholars [62,66,67]. However, the conclusion regarding Dg,¢; and f in distinguishing HCC
from ICC remains inconsistent or controversial; thus, further research is needed. As an
effective tumor imaging tool, positron emission tomography (PET)-MRI can play a role in
patient management. Celebi et al. [68] argued that PET-MRI using '8F-fluorodeoxyglucos
('8F-FDG) as a tracer agent can help differentiate between HCC and ICC. However, there is
a need to deeply explore whether there are substantial differences in FDG uptake between
HCC and ICC, the accuracy of identification in certain challenging cases (e.g., specific
subgroups of patients in which the standard uptake value (SUV) is not a determining
factor) and the optimal imaging sequence and model.

To date, few studies have investigated the differentiation of HCC from ICC based on
MRI radiomics [42,44,63,69]. Liu et al. [44] adopted machine-learning-based CT and MR
image features in the identification of cHCC-CC, ICC and HCC. The results showed that
MRI features had the highest efficacy in differentiating between cHCC-CC and non-cHCC-
CC, while CT features were less valuable. Moreover, precontrast- and portal-phase CT
features were superior to enhanced MRI features in differentiating between HCC and non-
HCC (AUC = 0.79-0.81 for MRI, 0.81 for precontrast-phase CT and 0.71 for portal-phase
CT). Wang et al. [69] used MRI radiomics to preoperatively identify cHCC-CC, HCC and
ICC and found that the performance of the higher-order feature-based model exceeded
that of the lower-order feature-based model by approximately 10% and that the former
performed better in identifying HCC in the delayed phase. Lewis et al. [63] extracted
first-order radiomics features from ADC data and evaluated the ability of these features
and the Liver Imaging Reporting and Data System (LI-RADS) classification to differentiate
HCC, ICC and cHCC-CC. The results revealed that the AUCs of the combination of sex,
LI-RADS grade and the fifth percentile of the ADC in diagnosing HCC were 0.90 and 0.89
for two independent observers, respectively. T>*WI can reflect the magnetic susceptibility
variation in tissues and thus be used to assess the biological properties of tumor tissues [70].
Huang et al. [42] extracted radiomic features from T,*W images and then established
radiomic nomogram models combined with clinical risk factors to distinguish between
HCC and ICC. The results showed that the AUCs of the radiomics model were 0.90 and
0.91 in the training and validation groups, respectively, the AUCs of the clinical features
were 0.88 in the training group and 0.83 in the validation group, and the AUCs of the
radiomics nomogram were 0.97 and 0.95 in the training and validation groups, respectively.
Similar results were obtained by Zhou et al. [43]. However, the efficacy of a joint model
incorporating multiple sequence features was not investigated in these studies.

Different kinds of information related to tumor structure can be revealed by different
sequences: ToWI exhibits the underlying tumor morphology and heterogeneity, and en-
hanced scans can reflect differences in the tumor blood supply. In this work, enhancements
in the arterial and venous phases were combined based on ToWI to explore the efficacy
of a joint model according to the blood supply status and enhancement patterns of HCC
and ICC. The results showed that while each model had the potential to identify HCC and
ICC in both the training and validation groups, the joint model incorporating multiple
sequence features showed the highest efficacy [44,69]. Radiomics features based on MRI in
combination with clinical risk factors are valuable for liver tumor differentiation [71]. In this
study, univariate and multivariate analyses indicated that gender, serum AFP and extra-
hepatic metastasis status were independent clinical risk factors. The model integrating the
radiomics features and clinical risk factors showed a further improvement in performance.
The AUC of the T,WI model was relatively low in this study, consistent with the findings of
Liu et al. [72]. Therefore, the value of FS-T,WI-based radiomics in distinguishing between
HCC and ICC remains to be properly determined with further research.

In this study, we used the LASSO for feature selection. The LASSO is a well-known
regularization technique which is popularly used in radiomics studies. One of the most
unique advantages of this technique is that it reduces overfitting without limiting a subset
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of the dataset to only be used for internal validation. However, the LASSO does not
eliminate the need to validate models in external datasets. A corresponding important
disadvantage of the LASSO method is that the regression coefficients may not be reliably
interpretable in terms of independent risk factors, as its focus is on the prediction of
the optimal combination, rather than the accuracy of the estimation and interpretation
of the contribution of individual variables [73]. The radiomics features selected were
mainly GLCM and GLRLM features, textural features used to quantify tumor heterogeneity
by reflecting the relationship between adjacent voxels/pixels [74], which is consistent
with the results of several related studies [42,44,75-80]. Histogram features show the
global distribution of grayscale values in the image and can also be used to assess tumor
heterogeneity [81]. Lewis et al. [63] found that the 5th/10th/95th percentiles of the ADC
could significantly differentiate HCC from ICC and cHCC-CC. Shape features reflect the
geometric characteristics of tumors [74]; Zhao et al. [82] confirmed that HCC tends to be
more spherical than ICC in terms of morphology.

This study had the following limitations. (1) In this retrospective study, many HCC
and ICC patients who did not undergo pretherapeutic MRI scans were excluded, so there
may be a potential selection bias. (2) The sample was small and from a single center,
and cHCC-CC and ICC types other than the mass-forming type were not included in the
study. In the future, the sample size should be expanded to multiple centers for further
external validation. (3) Other relevant MRI sequences were not analyzed, so their potential
contributions might have been ignored.

5. Conclusions

Multisequence MRI radiomics models can be used to pretherapeutically distinguish
between HCC and ICC; the combined model integrating the optimal radiomic features
with clinical risk factors can further improve the identification performance.
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