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Abstract: Depression is characterized by continuous low mood and loss of interest or pleasure in
enjoyable activities. First-line medications for mood disorders mostly target the monoaminergic
system; however, many patients do not find relief with these medications, and those who do suffer
from negative side effects and a discouragingly low rate of remission. Studies suggest that the
endocannabinoid system (ECS) may be involved in the etiology of depression and that targeting the
ECS has the potential to alleviate depression. ECS components (such as receptors, endocannabinoid
ligands, and degrading enzymes) are key neuromodulators in motivation and cognition as well as
in the regulation of stress and emotions. Studies in depressed patients and in animal models for
depression have reported deficits in ECS components, which is motivating researchers to identify
potential diagnostic and therapeutic biomarkers within the ECS. By understanding the effects of
cannabinoids on ECS components in depression, we enhance our understanding of which brain targets
they hit, what biological processes they alter, and eventually how to use this information to design
better therapeutic options. In this article, we discuss the literature on the effects of cannabinoids on
ECS components of specific depression-like behaviors and phenotypes in rodents and then describe
the findings in depressed patients. A better understanding of the effects of cannabinoids on ECS
components in depression may direct future research efforts to enhance diagnosis and treatment.
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1. Introduction

Depression is one of the world’s most common psychiatric disorders, with a prevalence
rate of 3.8%, according to the World Health Organization [1]. The lifetime prevalence of
depression is as high as 20%, with a female-to-male ratio of about 5:2 [2]. Major depressive
disorder (MDD) has been one of the leading causes of years lived with disability during
the last three decades and it is also a major contributor to suicide deaths [1,3].

The Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the guide used
by health care professionals, states that the common feature of depressive disorders is the
presence of sad, empty or irritable mood, accompanied by somatic and cognitive changes
that significantly affect the individual’s capacity to function [4].

Depression is a complex phenomenon with many subtypes and many likely etiologies.
There are multiple treatments with varying success rates, but the efficacy of currently used
drugs is limited, particularly for preventing relapse and recurrence [5]. Selective serotonin
reuptake inhibitors (SSRIs) and cognitive-behavioral therapy (CBT) are the two first-line
treatments for depression [6]. SSRIs are among the most commonly prescribed drugs
worldwide and are better tolerated than their predecessors, the tricyclic antidepressant
family (TCAs); however, they have adverse side effects and when discontinued by the
patient might cause withdrawal and rebound phenomena [7,8].

Many patients do not respond to SSRIs, or show intolerance to the drugs’ undesired
effects [9]. About 60% of MDD patients continue to report residual impairments even
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after treatment with SSRIs [10], and around 33% of MDD patients develop resistance to
antidepressant drugs [11]. Moreover, about 38% of patients suffer from at least one side
effect, the most common of which include impaired sexual functioning, sleeping problems,
and weight gain [12]. These negative side effects are common across antidepressant drug
classes, and can withhold initiation of drug treatment and contribute to discontinuation of
treatment [13,14]. Therefore, extensive efforts have been made to develop new approaches
that treat depression with reduced side effects.

This partial success in treating depression is associated with our insufficient under-
standing of the underlying mechanisms of the disorder. In this sense, there is evidence to
suggest that the endocannabinoid system (ECS) is impaired in MDD, providing a unique
opportunity to identify potential diagnostic and therapeutic biomarkers. The ECS is
a widespread neuromodulatory system involving a combination of endocannabinoids,
enzymes, and cannabinoid receptors that help regulate numerous functions, including
emotions and cognition.

A growing body of evidence suggests that the etiology of MDD may involve the
ECS [15]. Specifically, it has been proposed that ECS deficits might have a depressive and
anxiogenic effect on behavior, while elevation of ECS signaling can have antidepressant
and anxiolytic properties [16,17]. Hence, some cannabis sativa plant compounds, which
target the ECS, have been attracting great interest for their potential therapeutic use [18].
Recent measurements of public opinion suggest that people believe cannabis provides
relief from depression and do not perceive it as harmful [19]. Due to the increase in the
number of people that self-medicate with cannabis to relieve depressive symptoms, it is
essential to determine whether cannabis is effective for managing depression.

Longitudinal studies have reported mixed evidence regarding the association be-
tween cannabis use and depression [20,21]. Some suggest that cannabis use may increase
the risk for developing depression [22,23], while others found that cannabis users and
nonusers were equally prone to develop depression [24,25]. Another longitudinal study
suggests that MDD is associated with future initiation of cannabis use, hence suggesting
self-medication [15].

Overall, it seems that depressed individuals may start using cannabis or increase the
frequency of cannabis use as a way to “self-medicate” and relieve their symptoms; on the
other hand, cannabis use may increase the risk for depression in heavy users who initiated
their consumption in early adolescence [26,27]. Cannabis users who initiated early use
and frequently used cannabis during adolescence might be at risk to develop cannabis use
disorder (CUD) [28]. The estimated chances of becoming addicted to cannabis after lifetime
exposure are 8.9% [29].

Cannabinoids are molecules that act on cannabinoid receptors type 1 and 2 (CB1r
and CB2r) and can be divided into three broad categories: endogenous cannabinoids,
synthetic cannabinoids, and plant-derived cannabinoids. The main endogenous cannabi-
noids are the signaling lipids N-arachidonoylethanolamine (anandamide, AEA) and 2-
arachidonoylglycerol (2-AG). Synthetic cannabinoids are produced by academic laborato-
ries or the pharmaceutical industry for research (e.g., HU-210, WIN 55,212-2, CP 47,497)
or produced as popular recreational drugs [30,31]. They have a pharmacological effect by
binding to CB1r and/or CB2r, with CB1 agonists responsible for the recreational effects of
the synthetic cannabinoids; their effects are considered to be intense and faster than those
observed with cannabis smoking, explained partly by the full agonist activity and high
affinity for cannabinoid receptors [30]. The cannabis plant contains over 500 constituents,
with the main compounds including delta-9-tetrahydrocannabinol (THC) and cannabidiol
(CBD) [32]. THC is the main psychoactive compound in cannabis, which produces the
“high” sensation and could lead to adverse consequences. CBD that is derived directly
from the hemp plant exhibits no effects indicative of any abuse or dependence potential
in humans [33]. The cannabis plant also contains chemicals such as alkaloids, terpenes,
flavonoids, phenolic acids, etc., that may elicit physiological responses in humans, some of
them anxiolytic [34].
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The effects of the cannabis plant have been studied in both humans and rodents in
order to elucidate the involvement of the ECS in the etiology and treatment of psychiatric
disorders (for recent reviews: [35–37]). Furthermore, positive effects have been reported
when using whole plant extracts, where the whole spectrum of cannabinoids and other
bioactive and non-active compounds is present; this is called the “entourage effect” [38].

Human studies for treating different psychiatric disorders have mostly focused on the
cannabis sativa plant and its main compounds THC, CBD or a combination of them [17].
In studies using rodent models, researchers are attempting to isolate new cannabinoid
agonists to examine their potential therapeutic effects [39–42].

When considering the efficacy of cannabis and cannabinoids for depression (or any
other neuropsychiatric condition), it should be taken into consideration that cannabis has
multiple components. There is a high diversity across types and strains of herbal cannabis,
and pharmacological differences across cannabinoids, but only a few studies in humans that
have compared these differences [43]. Hence, assessing the relative effectiveness of different
cannabis strains and different cannabinoids for diverse outcomes requires further research.

In this article, we will provide an overview of the neuromodulatory effects of cannabi-
noid compounds on different components of the ECS (such as receptors and ligands).
While studies on the effects of the whole plant on depression are important, examining
the differential effects of cannabinoids on ECS components may improve our diagnosis
and enhance our treatment options. To that end, we review the current knowledge about
the role played by the various components of the ECS in the etiology and treatment of
depression in animal models and in humans.

In the following sections, we briefly describe the ECS and then review the effects of
cannabinoids on ECS components in rodent models of specific depression-like behaviors
and endophenotypes. We will review the literature about the effects of agonists and an-
tagonists of cannabinoid receptors and then discuss the findings regarding CBD. Next,
we describe the findings in human subjects, specifically, in subjects with a primary diag-
nosis that is not depression and in self-medicating subjects. Then we will review studies
assessing alterations in ECS components in depressed patients (in endogenous ligands and
cannabinoid receptors) and genetic variants of the ECS that are associated with depression.

2. Cannabis and the Endocannabinoid System (ECS)

Cannabis is the most commonly used addictive substance following tobacco and
alcohol, and the number of cannabis users continues to increase [44,45]. Each strain of
the cannabis plant consists of roughly 120 phytocannabinoids, the most studied of which
are CBD and THC [46]. Much of the interaction of these phytocannabinoids with the
mammalian nervous system is through the ECS. The main receptors of the ECS are CB1r
and CB2r, cannabinoid receptors belonging to the category of G-protein-coupled receptors.
CB1r is found primarily in the brain and CB2r is expressed mainly in peripheral organs,
especially cells associated with the immune system [47], though it is also present in the
brain [48]. Other non-CB1r/non-CB2r targets of cannabinoids include transient receptor
potential vanilloid 1 (TRPV1), G-protein-coupled receptor 55 (GPR55), and peroxisome
proliferator-activated receptors (PPARs). As mentioned above, the main endogenous
ligands of CB1r and CB2r are AEA and 2-AG. AEA is a high-affinity, partial agonist of
CB1r that is almost inactive at CB2r; 2-AG is a full agonist of both CB1r and CB2r, with
moderate-to-low affinity; AEA and 2-AG also interact with TRPV1 and GPR55 [49–51].

AEA and 2-AG are produced at postsynaptic neurons and are lipophilic molecules
that are synthesized “on demand” from membrane phospholipids. They are released
immediately and without being stored in vesicles. The enzymes responsible for degrading
AEA and 2-AG are, respectively, the fatty acid amide hydrolase (FAAH) and the monoa-
cylglycerol lipase (MAGL). AEA is hydrolyzed in postsynaptic neurons by FAAH, thus
terminating the AEA action at the time of its synthesis, whereas 2-AG is hydrolyzed in
presynaptic neurons by MAGL, following CB1r activation.
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CBD acts on several targets, including the serotonin 1A receptor (5-HT1A), GPR55 and
TRPV1 [52,53], as well as CB1r and CB2r, with low affinity [54]. It is a GPR55-antagonist [53]
and acts as a negative allosteric modulator of CB1r, modifying the power and efficiency with
which endogenous cannabinoids activate the receptor [55], and as an inverse agonist at very
high concentrations [56]. CBD also inhibits the metabolization of FAAH, which increases
AEA tone; it has been suggested that this is the mechanism by which CBD activates
CB1r [57]. THC is an agonist of both CB1r and CB2r, with lower affinity than several
other synthetic cannabinoids such as WIN55,212-2, CP55940, and the endocannabinoid
2-AG, but with similar affinity as AEA [58]. The characterization of the mode of action of
THC underlies a wide spectrum of pharmacological effects, which encompass euphoria,
calmness, appetite stimulation, sensory alterations, and analgesia [59].

3. Studies of Depression in Rodent Models

Rodent models for depression do not represent the human condition in its entirety [60];
rather, they represent specific features of depression. In this way, they achieve a better
understanding of one critical biological function of the disease to help translate it to the
human condition [61,62]. They also provide a crucial approach to examine neural circuitry
and molecular and cellular pathways in a controlled environment.

Widely used models for depression are chronic mild stress (CMS) or chronic unpre-
dictable mild stress (CUMS), chronic social defeat stress, learned helplessness, and early
life stress (ELS); all cause significant changes in behavior, brain functioning and physiology.
CMS/CUMS comprises a series of trials, such as day and night reversal, tail clipping, and
water or food deprivation, for a period of 3 weeks or more. The model uses repeated
stressors to avoid the stress adaptation that may occur following a single repeated stimula-
tion. The chronic social defeat stress comprises of repeatedly exposing naïve male mice
to aggressor mice. In learned helplessness, animals manifest a low intention to escape in
an environment of uncontrollable and unpredictable injury stimulation. In ELS, adverse
events in early life substantially affect the development of psychiatric illnesses in late life,
such as depression [63,64].

The behavioral outcome measured in rodents is usually despair-like behavior and
anhedonia. Anhedonia, a loss of interest in things that were once pleasurable, is a common
symptom of depression as well as other mental health disorders. These tests are also
used to measure the antidepressant potential of new compounds. In the forced swim test
(FST) and the tail suspension test (TST), a rodent is exposed to a stressful and inescapable
situation (swimming in the FST and suspension by its tail in the TST), and the duration
of its immobility is measured. The FST is based on the assumption that when placing an
animal in a container filled with water, it will first make efforts to escape but eventually will
exhibit immobility that may be considered to reflect a measure of behavioral despair. These
tests have good predictive validity and are able to identify drugs that may be effective
in depressed patients [65]. Another frequently used measure is the saccharine/sucrose
preference test: the consumption of sweetened water or choosing between sweetened
water and plain water in order to measure sensitivity to reward. Decreased consumption
of palatable solutions or decreased preference are considered to reflect the condition of
anhedonia [66].

Most preclinical research on depression has been performed on male rodents [67]. This
is despite the fact that, in humans, depression is more prevalent in women than men [68].
Furthermore, men and women in most cases differ at baseline and in their responses to
stress and drugs [60], which emphasizes the need to study both sexes.

4. The Effects of Cannabinoids on ECS Components in Rodents
4.1. CB1r

CB1r in the central nervous system is distributed densely in limbic regions associated
with stress and cognition, including the nucleus accumbens (NAc), hippocampus, amyg-
dala, and paraventricular nucleus (PVN) of the hypothalamus. CB1r is abundant in the
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prefrontal cortex (PFC), as well as in areas involved in pain transmission and modulation;
in motor regions such as the basal ganglia and cerebellum; and in glial cells and the periph-
ery [69,70]. In this section, we review the effects of cannabinoids on CB1r in rodent models
for depression.

4.1.1. Pre-Clinical Studies of CB1r Knockout and Antagonism

A number of studies have indicated a major role for CB1r in the etiology of depression,
and it is estimated that its intact function is essential for a healthy mood [71]. Several
studies have shown that CB1-knockout or knockdown-mice are prone to depressive-like
behavior [72,73]. For example, CB1-knockout mice that were exposed to CUMS exhibited an
augmented susceptibility to develop an anhedonic state, suggesting increased depressive-
like behavior [73]. In a more recent study, exposure to the chronic social defeat model
selectively potentiated excitatory transmission in cholecystokinin glutamatergic neurons in
the basolateral amygdala (BLA) and D2 medium spiny neurons in the NAc via reduction
of presynaptic CB1r [74]. Importantly, knockdown of CB1r in this circuit increased stress
susceptibility, and the CB1r agonist administered to the NAc had antidepressant-like
effects. This suggests that downregulating CB1r in this circuit is essential for stress-induced
depression [74].

Chronic CB1r-antagonists can also result in a depressed mood. For example, 21-day
intraperitoneal (i.p.) treatment with the CB1r-antagonist rimonabant (10 mg/kg) increased
immobility time in the FST (i.e., elevated levels of despair-like behavior) and decreased
sucrose preference (i.e., anhedonia) [75]. A summary of the effects of CB1 antagonists on
depression-like behavior in rodents is presented in Table 1.

Table 1. A summary of the findings regarding the effects of CB1 antagonists on depression-like
behavior in rodents.

Drug Administration Animals Stress Model Effect Reference

AM251
(CB1

antagonist)

Acute,
1 µg,
i.c.v.

Male
NMRI
mice

- FST Elevated
immobility [76]

Acute,
0.28 ng,

PFC microinjection

Male SD
rats CUS FST Elevated

immobility [77]

Acute,
0.01 ng,

HIPP microinjection

Male
Wistar rats

Sleep
depri-
vation

FST Elevated
immobility [78]

Acute,
0.3, 0.5 mg/kg,

i.p.

Male
NMRI
mice

Foot
shock FST Decreased

immobility [79]

Acute,
0.3, 0.5 mg/kg,

i.p.

Male
NMRI
mice

Foot
shock TST Decreased

immobility [79]

Acute,
0.3, 0.5, 1, 10 mg/kg,

i.p.

C57BL/6
male mice - FST Decreased

immobility [80]

Acute,
0.3, 0.5, 1 mg/kg,

i.p.

C57BL/6
male mice - TST Decreased

immobility [80]

Acute,
0.01 µg,

BLA microinjection

Male SD
rats - FST Decreased

immobility [81]

Rimonabant
(CB1

antagonist)

Chronic (21 days),
10 mg/kg,

i.p.

Male SD
rats

- FST Elevated
immobility [75]

- SPT
Decreased

sucrose
preference

[75]
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Table 1. Cont.

Drug Administration Animals Stress Model Effect Reference

Acute (2 times),
3 mg/kg, 10 mg/kg,

oral

Male SD
and Wistar

rats
- FST Decreased

immobility [82]

Chronic (35 days),
10 mg/kg,

oral
OF1 mice CMS FST Decreased

immobility [82]

rTMS: repetitive transcranial magnetic stimulation; CUMS: chronic unpredictable mild stress; CMS: chronic
mild stress; ELS: early life stress; CHPG: (RS)-2-chloro-5-hydroxyphenylglycine; TST: Tail suspension test; i.c.v.:
intracerebroventricular; CMS: chronic mild stress; HIPP: hippocampus; NMRI: Naval Medical Research Institute;
CCI: chronic constriction injury; NP: neuropathic pain; SD: Sprague–Dawley; SPT: sucrose preference test; SaPT:
saccharine preference test.

In addition, acute or chronic AM251 administration (0.3, 1 mg/kg, i.p.) to rodents
exposed to stress-induced depression can inhibit the antidepressant-like effects induced
by other substances and methods, such as AEA [83], repetitive transcranial magnetic
stimulation [84], the synthetic non-selective cannabinoid receptor agonist WIN55,212-
2 [85], the MAGL inhibitor JZL184 [86], CBD [87], the FAAH inhibitor URB597 [86] and
the AEA reuptake inhibitor AM404 [88]. Acute administration of rimonabant (3 mg/kg,
i.p.) prevented a decrease in immobility time in the FST induced by URB597, AM404 and
CP55,940 [89]. URB597 inhibits AEA degradation and enhances AEA availability in the
synapses, and thus functions as an indirect agonist of CB1r. AM404 is another enhancer
of AEA, as it acts as an AEA reuptake inhibitor. CP55,940 is a potent and non-selective
synthetic cannabinoid agonist. A summary of the effects of CB1 antagonists co-administered
with cannabinoid agonists on depression-like behavior in rodents is presented in Table 2.

Table 2. A summary of the effects of CB1 antagonists co-administered with cannabinoid agonists on
depression-like behavior in rodents.

Drug Administration Animals Stress Treatment Model Effect Reference

AM251
(CB1

antago-
nist)

Acute,
1 mg/kg,

i.p.

Male
Wistar

rats

Streptozotocin
(diabetic) AEA FST Elevated

immobility [83]

7 days,
1 mg/kg,

i.p.

Male SD
rat CUMS rTMS FST Elevated

immobility [84]

3 days,
0.3 mg/kg,

i.p.

Male SD
rats CMS WIN55,212-

2 FST Elevated
immobility [85]

14 days,
0.3 mg/kg,

i.p.
Acute,

1 mg/kg,
i.p.

Male
and

female
SD rats

ELS JZL184 or
URB597 FST Elevated

immobility [86]

Male
Wistar

rats

Streptozotocin
(diabetic) CBD FST Elevated

immobility [87]

Acute,
5 mg/kg,

i.p.

Male
Long-
Evans

rats

- AM404 FST Elevated
immobility [88]

Acute,
0.8 µg,
NAc

microinjection

Male
C57BL/6J

mice
Social defeat CHPG TST Elevated

immobility [90]

Acute,
0.28 ng,

PFC
microinjection

Male SD
rats - URB597 FST Elevated

immobility [91]

Acute,
0.25 mg/kg,

i.p

Male
Albino
Swiss
mice

- Tianeptine FST Decreasedim-
mobility [92]
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Table 2. Cont.

Drug Administration Animals Stress Treatment Model Effect Reference

Rimonabant
(CB1

antago-
nist)

Acute,
3 mg/kg,

i.p.

Male
Wistar

rats
-

URB597,
AM404,

CP55,940
FST Elevated

immobility [89]

rTMS: repetitive transcranial magnetic stimulation; CUMS: chronic unpredictable mild stress; CMS: chronic
mild stress; ELS: early life stress; CHPG: (RS)-2-chloro-5-hydroxyphenylglycine; TST: Tail suspension test; i.c.v..:
intracerebroventricular; CMS: chronic mild stress; HIPP: hippocampus; NMRI: Naval Medical Research Institute;
CCI: chronic constriction injury; NP: neuropathic pain; SPT: sucrose preference test; SaPT: saccharine preference
test; SD: Sprague–Dawley.

Intracerebral injections of AM251 showed similar effects; AM251 (0.8 µg) microinjection
to the NAc inhibited antidepressant-like effects induced by the antidepressant phenylglycine
derivative (RS)-2-chloro-5-hydroxyphenylglycine in mice that underwent the chronic social
defeat stress [90]; intracerebroventricular (i.c.v.) injection of AM251 (1 µg) prevented anti-
depressant effects induced by URB597 [76]. AM251 (0.28 ng) microinjection to the PFC
augmented depressive-like behaviors induced by CUMS [77] and prevented the therapeutic-
like effect of URB597, which decreased immobility time in the FST [91]. AM251 (0.01 ng) to
the CA1 region of the hippocampus induced despair-like behavior in the FST [78,79].

Even though the majority of research shows that CB1r-antagonists enhance depressive-
like behaviors, several studies have found the opposite; two-time oral administration of
rimonabant (3 and 10 mg/kg) reduced immobility time in the FST in naive mice [82], sug-
gesting an antidepressant effect; chronic oral administration of rimonabant (10 mg/kg) for
5 weeks reduced immobility time in CMS mice [82]; acute AM251 (0.3, 0.5, 1 and 10 mg/kg)
reduced immobility time in the FST in mice [80] and 0.3, 0.5 and 1 mg/kg decreased im-
mobility in the TST [80]. AM251 (0.25 mg/kg, i.p.) also augmented the antidepressant
effects of tianeptine (a tricyclic antidepressant) and agomelatine (an atypical antidepres-
sant) in mice [92]. In addition, intra-BLA microinjection of AM251 (0.01µg/ 0.5µL) reduced
immobility time in the FST in rats [81].

It is interesting that rimonabant had opposite effects when administered orally, com-
pared to i.p. and microinjections [75,82]. This suggests that different mechanisms may
mediate its effect when ingested and not injected systemically. As for AM251, acute i.p.
administration decreased depression-like behavior [82]. However, when administered
following AEA treatment, acute AM251 blocked the antidepressant effects induced by
AEA [83]; similarly, when chronically co-administered with other treatments (e.g., CB1r
agonists), it blocked their therapeutic-like effects on behavior [79,80,84–86]. This empha-
sizes the complex mechanisms underlying the effects of CB1r-antagonists on depression.
This complexity is further stressed by the dose-dependent, biphasic effects of CB1 ligation
found in multiple studies regarding different effects on the ECS [93–96].

Taken together, these results propose that CB1r deficiency represents a model for
depressive-like disorders [97], but the diversity of these findings suggests that more study
is needed to fully understand the role played by CB1r-antagonism in depression.

4.1.2. Pre-Clinical Studies of CB1 Receptor Agonism

AEA generally has antidepressant properties. Multiple studies have shown that
chronic i.p. injection of the FAAH-inhibitor URB597 (0.2, 0.3, 0.4, 5.8 mg/kg), which
increases AEA levels, prevents depressive-like behaviors induced by different models
and methods, such as CUMS [98], adolescent THC exposure [99], CMS [100] and chronic
constriction injury (CCI) that induces neuropathic pain and depression-associated behav-
ior [101]. We showed that 14-day administration of URB597 (0.4 mg/kg, i.p.), the MAGL
inhibitor JZL184 (2 mg/kg; i.p) or the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg,
i.p.) during late adolescence decreased depressive-like behaviors induced by ELS in male
and female rats [86,102,103]. However, when administered at mid-adolescence, the same
dose of URB597 did not prevent the deleterious long-term effects of ELS exposure on
depression-like behavior in males and females and induced long-term, depressive-like
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behavior by itself in non-stressed rats [103]. This suggests that URB597 may have deleteri-
ous or ameliorating effects on behavior, depending on the developmental time window of
treatment (i.e., mid- or late adolescence) [103].

Both chronic and acute URB597 (0.3 mg/kg) and AM404 (5 mg/kg) prevented depress-
ive-like behaviors in the FST induced by severe electric shock [40] and nicotine absti-
nence [88], respectively. The same effect was seen in naive rats, in which URB597 (0.1,
0.3, 1, 3.2 mg/kg, i.p.), AM404 (0.3, 1, 3 mg/kg, i.p.), CP55,940 (0.1 mg/kg, i.p.), and the
CB1r-agonist oleamide (10, 20 mg/kg, i.p.) decreased FST immobility time, supporting
the antidepressant-like effects of these compounds [89,104–106]. Oleamide, a fatty amide
derived from oleic acid (5 mg/kg, i.p.), also augmented the antidepressant-like effects of the
atypical antidepressant tianeptine in the FST [78]. The CB1r synthetic agonist arachidonyl-
2′-chloroethylamide (ACEA; 10 mg/kg, i.p.) increased sucrose consumption in post-stroke
depression rats, suggesting decreased anhedonia [107]; post-stroke depression is one of the
most common psychological consequences of stroke.

I.c.v. injection of URB597 (5 and 10 ng) prevented depressive behaviors that were
induced by methamphetamine in mice [76]. Despair-like behavior also was decreased in
mice by i.c.v. administration of URB597 (0.05, 0.1, 1, 5, 10 µg), AM404 (0.1, 1, 5, 10 µg),
and AEA (1, 5, 10, 20 µg) [108], and by microinjection of URB597 (0.01, 0.1, 1 nmol) to the
ventromedial PFC [109]. Microinjection of URB597 (0.01 µg) to the PFC in rats reduced FST
immobility time [91]. No effect on FST performance, however, was seen after microinjection
of URB597 (0.5, 1 µg) to the dentate gyrus of the hippocampus. However, administration
of the CB1/CB2-agonist HU-210 (1, 2.5 µg) to the same region decreased immobility time
in the FST [110]. A summary of CB1-mediated effects of cannabinoids on depression-like
behavior in rodents is presented in Table 3.

Table 3. A summary of CB1-mediated effects of cannabinoids on depression-like behavior in rodents.

Drug Administration Animals Stress Model Effect Reference

URB597
(FAAH

Inhibitor

Chronic,
0.2 mg/kg,

i.p.

C57BL/6J
mice CUS FST Decreased

immobility [98]

Chronic,
0.3 mg/kg,

i.p.

Female
SD rats

Adolescent
THC FST Decreased

immobility [99]

Chronic,
0.3 mg/kg,

i.p.

Female
SD rats

Adolescent
THC SPT

Elevated
sucrose

preference
[99]

Chronic,
0.3 mg/kg,

i.p.

Male
Wistar

rats
CMS SPT

Elevated
sucrose

preference
[100]

Chronic,
5.8 mg/kg,

i.p.
14 days (during

mid-adolescence),
0.4 mg/kg,

i.p.

Male
Wistar

rats

CCI injury
(NP) FST Decreased

immobility [101]

Male
and

female
SD rats

ELS FST Decreased
immobility [86]

14 days (during
late-adolescence),

0.4 mg/kg,
i.p.

Male
and

female
SD rats

ELS FST Elevated
immobility [103]

Acute,
0.3 mg/kg,

i.p.

Male SD
rats

Severe
shock FST Decreased

immobility [40]

Acute,
0.3 mg/kg,

i.p.

Male SD
rats

Severe
shock SaPT

Elevated
saccharine
preference

[40]

Acute,
0.03, 0.1, 0.3 mg/kg,

i.p.

Male
Wistar

rats
- FST Decreased

immobility [89]

Acute,
0.1 mg/kg,

i.p.

Male
C57BL/6

mice
- FST Decreased

immobility [106]
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Table 3. Cont.

Drug Administration Animals Stress Model Effect Reference

Acute,
0.1 mg/kg,

i.p.

Male
C57BL/6

mice
- TST Decreased

immobility [106]

Acute,
1, 3.2 mg/kg,

i.p.

Male SD
rats - FST Decreased

immobility [105]

Acute,
5, 10 ng,

i.c.v.

NMRI
mice

Methamphe-
tamine FST Decreased

immobility [76]

Acute,
0.05, 0.1, 1, 5, 10 µg,

i.c.v.

Male
Swiss
mice

- FST Decreased
immobility [108]

Acute,
0.01, 0.1, 1 nmol,

vmPFC microinjection

Male
Wistar

rats
- FST Decreased

immobility [109]

Acute,
0.01 µg,

PFC microinjection

Male
Wistar

rats
- FST Decreased

immobility [91]

HU-210
(CB1/CB2

agonist)

Acute,
0.5, 1 µg,

dentate gyrus
microinjection

Male
Wistar

rats
- FST Decreased

immobility [110]

AM404
(AEA

reuptake
inhibitor)

Acute,
5 mg/kg,

i.p.
Male
Long-
Evans

rats
Rats

- FST Decreased
immobility [88]

Acute,
0.1, 0.3, 1, 3 mg/kg,

i.p.
- FST Decreased

immobility [89]

Acute,
1 mg/kg,

i.p.

Male SD
rats - FST Decreased

immobility [105]

Acute,
0.1, 1, 5, 10 µg,

i.c.v.

Male
Swiss
mice

- FST Decreased
immobility [108]

CP55,940
(CB1/CB2

agonist)

Acute,
0.03, 0.1, 0.3 mg/kg,

i.p.

Male
Wistar

rats
- FST Decreased

immobility [89]

Oleamide
Acute,

10, 20 mg/kg,
i.p.

Male
Swiss
mice

- FST Decreased
immobility [104]

rTMS: repetitive transcranial magnetic stimulation; CUMS: chronic unpredictable mild stress; CMS: chronic
mild stress; ELS: early life stress; CHPG: (RS)-2-chloro-5-hydroxyphenylglycine; TST: Tail suspension test; i.c.v.:
intracerebroventricular; CMS: chronic mild stress; HIPP: hippocampus; NMRI: Naval Medical Research Institute;
CCI: chronic constriction injury; NP: neuropathic pain; SPT: sucrose preference test; SaPT: saccharine preference
test; SD: Sprague–Dawley; ACEA: arachidonyl-2-chloroethylamide.

All things considered, the data propose that augmenting ECS signaling via CB1r may
be a novel approach to decrease depression-like behavior and that the use of CB1r antag-
onists warrants caution. Specifically, FAAH inhibition, which enhances AEA-mediated
CB1r signaling, has been suggested to generate a more specific and beneficial spectrum of
biological effects than those caused by direct CB1r agonists [111,112].

4.2. CB2r

CB2r was discovered at the beginning of the 1990s, and at first, it was assumed
to be present mainly in peripheral and immune tissues [113]. However, its presence
has been observed in some subsets of neurons in the brain and thus this receptor likely
participates in the modulation of neurotransmission [114]. CB2r is mainly studied in pain
and inflammation, yet a growing number of studies provide evidence of a potential role of
CB2r in the etiology of depression [115]; the main endogenous ligand for CB2r is 2-AG [116].
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4.2.1. Pre-Clinical Studies of CB2 Knockout and Antagonism

The outcomes of CB2-antagonists administration seem to be dose-dependent. On the
one hand, it may enhance depressive-like behaviors, or invert the antidepressant effects
of CB2r-dependent treatments. On the other hand, it may facilitate antidepressant effects
induced by other treatments. For example, the CB2-inverse agonist AM630 (1 mg/kg
i.p.) blocks the antidepressant effects in the FST induced by CBD in diabetic rats [87], but
works as an antidepressant when administered at a lower dose (0.5 mg/kg, i.p.) [104];
diabetic patients are two to three times more likely to develop depression and diabetic
rats demonstrate depression-like behaviors [117]. When administered acutely at a low
dose (0.25 mg/kg, i.p.) in mice, AM630 augments the antidepressant effects of the tricyclic
antidepressant imipramine, the SSRI escitalopram, the norepinephrine reuptake inhibitor
reboxetine, and the atypical antidepressants agomelatine and tianeptine [92,118].

4.2.2. Pre-Clinical Studies of CB2 Agonism

Several studies report that CB2r agonists have antidepressant properties. For example,
the CB2-full agonist β-Caryophyllene (BCP) ameliorated depressive-like behaviors (i.e.,
reduced immobility time in the TST and FST) when acutely administered i.p. (50 mg/kg)
in mice [119] and chronically administered (25, 50, 100 mg/kg) in rats that were subjected
to daily restraint stress [120]. Chronic oral administration of BCP (10 mg/kg) was effective
in reducing immobility in the TST in diabetic mice [121].

An acute low dose of the CB2 agonist JWH 133 (0.25 mg/kg, i.p.), increased the antide-
pressant effects of the tricyclic antidepressant imipramine, the SSRI escitalopram and the
norepinephrine reuptake inhibitor reboxetine in mice [122], while higher doses (0.5, 1 mg/kg,
i.p.) had similar effects on their own [104]. JWH133 significantly decreased anhedonia (i.e.,
increased sucrose consumption) when injected i.p. (5 mg/kg) for 7 days or when microinjected
(3 µg) acutely into the ventromedial hypothalamus of post-stroke depression rats [107].

The CB2-agonist GW 405833 has been mainly studied as a treatment for pain, and was
found to reverse depressive-like behaviors induced by chronic constriction injury (CCI)
in rats (30 mg/kg, i.p.) [122]. Another study found that CB2 agonists and overexpression
of CB2 were correlated with decreased depressive-like behavior in transgenic mice, as
evidenced by the FST and the novelty-suppressed feeding test [123]; the novelty-suppressed
feeding test is sensitive to chronic, but not acute, antidepressant treatment, and is assumed
to mirror the effects of antidepressant treatment in human patients.

Overall, compounds used to activate CB2r seem to intensify the antidepressant-like effects
induced by other drugs. This suggests that CB2r is involved in depression-related behaviors
through interactions with other systems that modulate these responses (e.g., serotonergic).

4.3. GPR55

The GPR55 receptor was cloned in 1999 [124] and was later characterized as part of
the ECS, as it binds AEA and 2-AG as well as THC and CBD [50,51]. There is evidence that
GPR55 plays an important role in depression; a 7-day intravenous (i.v.) treatment with the
GPR55-agonist O-1602 decreased despair-like behavior in female rats subjected to a 14-day
corticosterone treatment [125]. A 10-day chronic social defeat stress lowered hippocampal
GPR55 levels in mice that were susceptible to the model (i.e., showed elevated levels of de-
pression and anxiety), but not in resilient mice. Interestingly, O-1602 treatment (10 mg/kg,
i.p.) during chronic social defeat stress decreased these behaviors [126]. Compared to a
control group, the learned helplessness model decreased GPR55 mRNA levels in the lateral
habenula and the amygdala, with no effects in the hippocampus and medial PFC [127].
To summarize, these studies suggest that exposure to stress-induced depression results in
decreased levels of GPR55 in a region-dependent manner and that the GPR55 agonist has
antidepressant effects on behavior.
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4.4. TRPV1

TRPV1 is a nociceptive receptor that has been thoroughly studied in the context
of pain [128]. Considering the large comorbidity of pain and depression [129], it is not
surprising that there are interesting findings regarding the role of TRPV1 in depression. It
is generally assumed that TRPV1-agonists induce depressive behavior, and that TRPV1-
antagonists may provoke the opposite effect [130].

Three injections (2.5, 5 mg/kg, i.p.) of AA-5-HT (a dual blocker of FAAH and TRPV1)
reduced immobility time in stressed rats [131]. AA-5-HT attenuated despair-like behavior
in rats, also when microinjected (0.25, 0.5 nmol) into the PFC [109,132]. TRPV1 mRNA levels
in the medial PFC of mice that underwent the learned helplessness model of depression
were significantly lower than in control mice [127].

4.5. CBD

CBD has multiple key targets, including cannabinoid receptors, 5-HT1A receptors,
and neurogenesis factors, and hence is addressed separately in this section. Studies have
shown its potential to treat depressive-like behaviors; for example, acute treatment with
CBD (200 mg/kg, i.p.) reduced immobility time in the FST in mice [133]; a 7-day treatment
in adolescent rats, adult rats and mice (10, 30, 100 mg/kg, i.p., respectively) reduced FST
immobility time [134,135]. Moreover, a sub-chronic administration of CBD (30 mg/kg,
i.p.) reduced despair-like behavior in diabetic mice [136]; a chronic, 28-day administration
of CBD (10 mg/kg, i.p.) elevated sucrose intake in CUMS rats [137]. CBD was effective
in lowering depression behaviors in two rat strains genetically modified for depression
research; acute oral CBD (30 mg/kg) reduced immobility time in the FST and elevated
saccharine consumption in male and female Wistar Kyoto rats and reduced immobility in
males of the Flinders Sensitive Line [39,138].

Acute CBD (10 mg/kg, i.p.) lowered FST immobility time in mice, both 30 min and
7 days after administration [139–141]. A lower dose of CBD (7 mg/kg, i.p.) was as ef-
fective in lowering FST immobility time when co-administered with ineffective doses of
the TCA desipramine, the SSRI fluoxetine, and the DNA-methylation inhibitors AzaD
and RG108 [139,141]. The short-term antidepressant effects of CBD were associated with
increased medial PFC expression of synaptophysin, PSD95, and brain-derived neurotrophic
factor (BDNF), as well as elevated hippocampal BDNF [142]. Chronic CBD (15 mg/kg, i.p.)
treatment also increased BDNF levels in the amygdala; a higher dose of CBD (30 mg/kg,
i.p.) produced antidepressant-like effects in the FST when administered acutely and
chronically [142]. Both lower (10 mg/kg, i.v.) and higher doses (100 mg/kg, oral) had
antidepressant properties in CMS mice, in association with increased BDNF and synapto-
physin mRNA in the medial PFC and hippocampus [143]. In addition, microinjection of
CBD (15, 30, 60 nmol) to the pre-limbic division of the medial PFC of neuropathic pain-mice
resulted in lower despair-like behavior in the FST [144].

Although CBD interacts with many ECS receptors (including those for CB1, CB2,
TRPV1, and GPR55), studies of its antidepressant properties have focused mainly on the
serotonergic 5-HT1A receptor as the main receptor that mediates these effects: Acute CBD
(30 mg/kg, i.p.) reduced immobility in the FST in naive mice, an effect that was blocked by
the 5HT1A-antagonist WAY100635 [145]; 7-day administration of CBD (50 mg/kg, i.p.) im-
proved sucrose intake in mice that underwent the olfactory bulbectomy model of depression;
both antidepressant-like effects and enhanced cortical 5-HT/glutamate neurotransmission
induced by CBD were prevented by 5-HT1A receptor blockade [146]; similarly, microinjec-
tion of CBD to the ventromedial PFC (10, 30, 60 nmol to the prelimbic subregion; 45, 60 nmol
to the infralimbic subregion) reduced FST immobility time, an effect that was blocked
by pretreatment with WAY100635; the CB1-antagonist AM251 also blocked the effects of
CBD [147]. Interestingly, a study of the anxiolytic effects of chronic CBD (30 mg/kg, i.p.)
identified a mediating role for CB1r and CB2r but not for 5HT1A receptor. Taken together,
these studies suggest that the effects of CBD on anxiety and depression may be mediated by
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different mechanisms [148]. A summary of the effects of CBD on depression-like behavior
in rodents is presented in Table 4.

Table 4. A summary of the effects of CBD on depression-like behavior in rodents.

CBD Administration Animals Stress Model Effect Reference

Acute,
200 mg/kg,

i.p.

Male Swiss
Webster mice - FST Decreased

immobility [133]

7-day,
100 mg/kg,

i.p.

Male C57BL/6J
mice - FST Decreased

immobility [134]

7-day,
10, 30 mg/kg,

i.p.
Male SD rats - FST Decreased

immobility [135]

Sub-chronic,
30 mg/kg,

i.p.

Male Wistar
rats

Streptozotocin
(diabetic) FST Decreased

immobility [136]

Chronic,
10 mg/kg,

i.p.

Male Wistar
rats CUMS SPT

Elevated
sucrose

preference
[137]

Acute,
30 mg/kg,

oral

Male and
female WKY

rats

WKY (genetic
model) SaPT

Elevated
saccharine
preference

[138]

Acute,
30 mg/kg,

oral

Male and
female WKY
and male FSL

rats

WKY or FSL
(genetic
models)

FST Decreased
immobility [138]

Acute,
30 mg/kg,

oral
Male WKY rats WKY (genetic

model) SaPT
Elevated

saccharine
preference

[39]

Acute,
10 mg/kg,

i.p.

Male Swiss
mice - FST Decreased

immobility [139]

Acute,
7 mg/kg,

i.p.
(co-administered with

fluoxetine)

Male Swiss
mice - FST Decreased

immobility [139]

Acute,
10 mg/kg,

i.p.

Male Swiss
mice - FST Decreased

immobility [141]

Acute,
7 mg/kg,

i.p.
(co-administered with

AzaD or RG108)

Male Swiss
mice - FST Decreased

immobility [141]

Acute,
10 mg/kg,

i.p.

Male Swiss
mice - FST Decreased

immobility [140]

Chronic,
30 mg/kg,

i.p.

Male Wistar
rats - FST Decreased

immobility [142]

Acute,
30 mg/kg,

i.p.

Male Wistar
rats - FST Decreased

immobility [142]

Acute,
10 mg/kg,

i.v.
Male ICR mice CMS FST Decreased

immobility [143]

Acute,
100 mg/kg,

oral
Male ICR mice CMS FST Decreased

immobility [143]

Acute,
15, 30, 60 nmol,

mPFC microinjection

Male Wistar
rats

CCI injury
(NP) FST Decreased

immobility [144]

Acute,
30 mg/kg,

i.p.

Male Swiss
mice - FST Decreased

immobility [145]
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Table 4. Cont.

CBD Administration Animals Stress Model Effect Reference

7 day,
50 mg/kg,

i.p.

Male C57BL6
mice OBX SPT

Elevated
sucrose

preference
[146]

Acute,
10, 30, 45, 60 nmol,

vmPFC microinjection

Male Wistar
rats - FST Decreased

immobility [147]

rTMS: repetitive transcranial magnetic stimulation; CUMS: chronic unpredictable mild stress; CMS: chronic
mild stress; ELS: early life stress; CHPG: (RS)-2-chloro-5-hydroxyphenylglycine; TST: Tail suspension test; i.c.v.:
intracerebroventricular; CMS: chronic mild stress; HIPP: hippocampus; NMRI: naval medical research institute;
CCI: chronic constriction injury; NP: neuropathic pain; SPT: sucrose preference test; SaPT: saccharine preference
test; SD: Sprague–Dawley; ACEA: arachidonyl-2-chloroethylamide; WKY: Wistar Kyoto; FSL: Flinders Sensitive
Line; i.v.: intravenous; OBX: olfactory bulbectomy.

5. The ECS in Human Studies of Depression

There is accumulating preclinical evidence that targeting the ECS could potentially
benefit patients suffering from depression [149]. However, epidemiological and clini-
cal studies do not provide strong evidence to support that cannabis can be used as an
antidepressant [150].

In reviewing the literature, we found very few studies where cannabinoids were
used to treat depression with well-designed, randomized control trials (RCTs). Yet there
are other strong indications from human studies that encourage further research. The
potential role for the ECS in depression comes from a series of studies indicating that
the CB1r antagonist rimonabant is associated with the development of severe adverse
effects, including depression and suicide [151]. Clinical observations showed that cannabis
stimulates appetite (the “munchies”) [152]. Rimonabant was developed as an anti-obesity
treatment. A meta-analysis conducted in 2007 concluded that 20 mg/day of rimonabant
increases the risk of depressive symptoms [153]. A later study, however, found that
rimonabant in the same dosage had no effect on mood [154]. These findings are in line with
an FDA report about the safety of rimonabant, which stated that 26% of the subjects given
20 mg rimonabant daily later developed psychiatric symptoms, compared to 14% of those
given placebo [154].

5.1. Subjects with a Primary Diagnosis That Is Not Depression

There are no published RCTs that examined the direct effect of THC or CBD on
depressive symptoms [155]. However, many published RCTs have examined the effects
of THC or THC:CBD on other conditions, such as pain and multiple sclerosis (MS) [156].
These RCTs did not find improvement in depression symptoms in these patients compared
to placebo. For example, Nabiximols (Sativex; an equal mix of THC and CBD) produced
no effect on symptoms of depression in people with MS or with chronic pain due to
cancer [157,158]. A small RCT that examined the effects of CBD alone in chronic pain, also
found no change in depressive symptoms [159].

It is important to note that these RCTs did not include subjects with a primary diagnosis
of depression (i.e., depression was assessed indirectly); that the patients’ self-reported
depression scores were already low [160–162]; and that psychiatric diagnosis was listed
as an exclusion criterion in some of the studies [157,158]. In total, this makes it difficult to
extrapolate these outcomes to people with clinical depression.

However, there are studies that support an antidepressant effect of cannabinoids
when depression was assessed directly, although not the primary diagnosis. In one study,
a cross-sectional, longitudinal, and experimental design on individuals with social pain
showed that marijuana use predicted lower levels of later depression among participants
who were lonely, and that those individuals who used marijuana relatively frequently
were less likely to have experienced a DSM-IV major depressive event during the previous
12 months [163].
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A similar result was observed in a study that examined the effects of prolonged
CBD administration on psychological symptoms and cognition to a community sample
of regular cannabis users; oral CBD reduced depressive- and psychotic-like symptoms
and improved attentional switching, verbal learning, and memory. Moreover, CBD was
well tolerated with no reported side effects [164]. Similarly, in a randomized, double-blind,
inpatient trial, nabiximols was used as an agonist therapy for reducing the severity and
time course of cannabis withdrawal and for retaining participants in withdrawal treatment;
nabiximols suppressed withdrawal-related irritability, cravings, and significantly reduced
depression [165].

5.2. Self-Medication Studies

There is evidence that pharmacological interventions (specifically, SSRIs) may be
effective in treating depression at the population level, but may not always be visible at
the patient level [155]. The small effect size of SSRIs [17] together with their adverse side
effects, means that some depressed individuals often seek alternative treatments. As a
result, patients with depression are increasingly using medicinal cannabis products to
relieve their symptoms [155].

Some reports of depressed patients self-medicating with cannabis demonstrate lower
levels of depressive symptoms and improved sleep [166–168]. However, other reports
show adverse effects, as depressed patients who self-medicate with cannabis demonstrate
increased mental health problems and lowered improvement in depression symptoms and
suicidal ideation [169].

In a longitudinal, cross-sectional study, medicinal cannabis users reported reduced
depression and improved quality of life compared to a control group that was considering
(but had not yet initiated) medicinal cannabis use [170]. In an observational study, medicinal
cannabis use reduced depressive symptoms in clinically depressed populations [155];
specifically, medicinal cannabis use was associated with better sleep, quality of life, and
less pain. Moreover, the group that initiated cannabis use during the follow-up period
demonstrated fewer depressive symptoms compared to a control group that never initiated
cannabis use [155].

To correctly interpret the therapeutic potential of cannabis, it is important to restrict
and separate the cannabis effects reported under recreational consumption compared to
clinical trials under medical supervision. Although many people report using cannabis
to manage a large variety of medical conditions, including depression, the gathering of
information regarding self-medication makes it hard to draw firm quantitative conclusions
about the effectiveness of treatment.

5.3. ECS Components Altered in Depression

Compelling evidence for the involvement of the ECS in depression comes from studies
assessing alterations in ECS components in depressed patients. Elucidating the effects
of depression on different targets of the ECS is important because the ECS is involved in
eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes,
which are known to be disturbed in depression.

5.3.1. Endogenous Ligands

Accumulating data suggest that depression is strongly associated with deficient endo-
cannabinoid signaling [171], and hence provide compelling evidence for the involvement of
the ECS in the etiology of depression and a rationale for activating the ECS to relieve depres-
sion. For example, serum levels of AEA and 2-AG were found to be decreased in depressed
patients [172]. Interestingly, the reduction in 2-AG serum levels was negatively correlated
with the duration of depressive episodes [173]. Another study found indications of a deficit
in peripheral endocannabinoid activity: basal serum concentrations of AEA and 2-AG were
significantly decreased in women with MDD relative to matched controls [172]. Other
studies have shown increased levels of endocannabinoids following treatment; plasma
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levels of oleoylethanolamide, AEA, and 2-AG were increased in patients with depression
treated with SSRIs compared to a non-depressed control group [174]. Similarly, in men and
women patients with MDD, physical exercise elevated plasma levels of AEA and 2-AG; the
authors suggested that endocannabinoids may contribute to the antidepressant effects of
exercise in MDD [175,176]. Antidepressant treatment by electroconvulsive therapy (ECT)
elevated AEA and to some extent 2-AG levels in the cerebrospinal fluid [177]. These studies
indicate that the ECS is modulated by effective antidepressant treatment.

5.3.2. CB1r

Studies have found indications of increased CB1r availability in depression. Con-
centrations of CB1r and CB1rmediated stimulation of G proteins in the PFC were found
to be increased in subjects with major depression who had died by suicides relative to
controls [178,179]. Similarly, treatment with SSRIs decreased expression of CB1r in the an-
terior cingulate cortex of postmortem MDD patients [180]. However, another study did not
find changes in CB1r protein expression in depressive subjects compared to controls [173].
Increased CB1r availability in depression may be a compensation response to low AEA
levels, as suggested in post-traumatic stress disorder (PTSD) [112].

It should be noted that chronic direct activation of CB1r downregulated CB1r [181,182],
which may in turn result in a depression-like phenotype in certain individuals [75,183].

Taken together, the data suggest that enhancing endocannabinoid signaling may serve
as an antidepressant; CB1r blockade produces depression; and chronic direct activation
of CB1r may produce region-dependent CB1r desensitization and down-regulation that is
associated with depression [21].

5.4. Genetic Studies

Several studies have reported associations between genetic variants of the cannabinoid
receptor type 1 and type 2 genes (CNRs; CNR1 and CNR2) and a susceptibility to develop
depression. However, such studies reported conflicting findings [184]. Genetic variants of
CNRs can affect gene transcription (and, thereby, protein expression and biologic function)
of these cannabinoid receptors [185]. ECS-related polymorphic gene variant alterations
have been reported, which may have both diagnostic and therapeutic implications.

5.4.1. CNR1

The interaction between specific genetic variations in CNR1 and the vulnerability to de-
pression has recently gained great interest. In a population of opiate-dependent outpatients
remitted under stable methadone treatment, subjects with one single nucleotide polymor-
phism (SNP) of the CNR1 (named rs2023239) had a lower prevalence of lifetime MDD [186].
However, two other studies found no relation between CNR1 microsatellite polymor-
phisms and depressive disorders [187] or between CNR1rs1049353 and MDD [188,189].
Another piece of evidence against the relationship between depression and CNR1 is a recent
meta-analysis, which assessed the relation between CNR1 and CNR2 polymorphisms and
depressive disorder susceptibility. This meta-analysis did not find a significant association
of the CNR1rs1049353 SNP with depressive disorders [184].

5.4.2. CNR2

Some studies indicate that dysfunctional CB2r can contribute to greater sensitivity to
childhood trauma, a risk factor for depression; specifically, the CNR2 R63Q polymorphism
was associated with anxious and depressive phenotypes following childhood trauma [190].
In support, the expression of CNR2 Q63R was also found to be higher in Japanese depressed
patients [191] and alcoholics [192] (alcoholism is in high comorbidity with MDD [193]).
One study reported a higher incidence of the CB2 allele Leu133Ile for bipolar disorder
patients [194]. A recent meta-analysis found a significant association of CNR2rs2501432
with depressive disorders [184]; also, in the dorsolateral PFC of suicide victims, CB2 gene
expression was 33% lower, but their levels of CB2 protein were higher, when compared to a
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control group. This difference might stem from a compensatory mechanism that controls
gene half-life and protein turnover [195].

To summarize, genetic variations in CNR2 are associated with the vulnerability to
depression; relating this marker to depression-associated brain dysfunction may potentially
improve the diagnosis and treatment for depression.

5.4.3. FAAH

In the aforementioned study that showed an association between CNR2 R63Q poly-
morphism and depression, the researchers also found that dysfunctional FAAH could
contribute to greater sensitivity to childhood trauma [190]; specifically, the FAAH rs324420
polymorphism (i.e., C385A) was associated with anxious and depressive phenotypes fol-
lowing childhood trauma [196]. The same polymorphism was higher in MDD patients and
bipolar disorder patients [189]. In a study in cannabis users, greater past-year cannabis
use and FAAH rs324420 genotype predicted poor sleep quality, which was mediated by
depressive symptoms. Moreover, participants with higher cannabis use and depressive
symptoms reported more impaired sleep [197].

5.4.4. GPR55

In a study that evaluated alterations of GPR55 in suicide victims compared to corre-
sponding controls, GPR55 gene expression was 41% lower in the dorsolateral PFC of suicide
victims, and GPR55 protein in these subjects were the same as in the control group [195].
The link between suicide and mental disorders (in particular, depression and alcohol
use disorders) is well established, and dysfunctions in the dorsolateral PFC of patients
who attempted suicide are associated with impaired executive functions and increased
impulsivity [198].

To summarize, evidence from longitudinal studies suggests that depression might
increase cannabis use and perhaps vice versa. There is evidence of alterations to the genetic
and ECS components in depression, suggesting that the ECS may be critically involved in
the pathophysiology of depression.

5.4.5. Caveats

There is a growing belief that cannabis and other cannabinoids are harmless drugs
that can decrease anxiety and depression and induce relaxation. Accordingly, the use of
medicinal cannabis and cannabinoids has recently been increasing. However, only a few
registered drugs (usually containing CBD and THC) are of high quality [35]. In fact, in
many of the above studies, the sources of cannabis are unknown or uncontrolled [199].
Moreover, several studies showed that the effects of cannabis on depression symptoms may
be positive or negative, depending on the time course of administration; hence, although
it was found that cannabis provided a brief relief, the long-term effects were worsening
of symptoms [200]. This suggests that the short- and long-term effects of cannabis in
depression should be taken under consideration. Additionally, we should bear in mind the
potential risk for adverse events during cannabinoid usage. There are reports of increased
risk of acute psychotic symptoms [201], and in young adults, chronic daily use of cannabis
might generate cannabis dependence [202].

6. Conclusions

Rodent studies strongly suggest that activating the ECS produces antidepressant-like
responses in a variety of behavioral tests. The effects are dependent on dosing, route of
administration, and other factors, but the overall effect is that both direct and indirect
activation of ECS components and CB1r in particular have an antidepressant potential,
whereas deficits in ECS signaling may have depressive effects.

In humans, most studies addressed a different primary medical disorder (pain, MS)
other than depression, with depression as a secondary condition. In these studies, cannabi-
noids had no effect on depression [17,150], but there is a lack of high-quality studies where
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depression is the primary target of cannabis treatment. Studies that examined patients with
a primary diagnosis of depression included a small sample size and other methodological
flaws [150]. In addition, most studies in human subjects did not compare the efficacy
of cannabinoids with those of existing antidepressant agents. Therefore, high quality,
large-scale RCTs in depressed patients are needed to assess the effectiveness and safety of
cannabinoids and to compare it with placebo and standard treatments.

To conclude, the findings on the effectiveness of cannabis and cannabinoid compounds
in depression reveal inconsistencies in the outcomes obtained in animal models compared to
findings in depressed patients. By elucidating the effects of cannabinoids on ECS components,
we can enhance our understanding of which targets the compounds hit, what processes they
alter, and, eventually, which of these effects are needed for therapeutic efficacy.

Elucidating the role of the ECS in the etiology of depression and revealing the effects
of different cannabinoids on the ECS in depression increase the probability of choosing
cannabinoid compounds that will be effective treatments; this is imperative because un-
derstanding how different cannabinoid compounds work can help stratify clinical trials to
focus them on those patients most likely to respond.
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