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This review postulates the role of transforming growth factor-beta (TGF-𝛽) and insulin-like growth factor (IGF-I/IGF-II) signaling
in stromal cells during prostate carcinogenesis and progression. It is known that stromal cells have a reciprocal relationship to the
adjacent epithelial cells in the maintenance of structural and functional integrity of the prostate. An interaction between TGF-𝛽
and IGF signaling occupies a central part in this stromal-epithelial interaction. An increase in TGF-𝛽 and IGF signaling will set
off the imbalance of this relationship and will lead to cancer development. A continuous input from TGF-𝛽 and IGF in the tumor
microenvironment will result in cancer progression. Understanding of these events can help prevention, diagnosis, and therapy of
prostate cancer.

1. Introduction

Carcinogenesis is a multistep process which begins with
initiation followed by promotion and progression [1]. The
adjacent stromal cells play an important role in this process
[2–4]. The signaling events of transforming growth factor-𝛽
(TGF-𝛽) and insulin-like growth factor (IGF-I and IGF-II) in
stromal cells occupy a central part in the stromal-epithelial
interaction during cancer development and progression [5–
9]. In this review, we will propose a hypothesis describing a
synergistic role betweenTGF-𝛽 and IGF signaling in stromal-
epithelial interaction in prostate cancer.

2. Biology of TGF-𝛽 Signaling

TGF-𝛽 represents a family of pleiotropic growth factors with
diverse functions, such as embryonic development, wound
healing, organ development, immunomodulation, and can-
cer progression [10–12]. There are three known mammalian
isoforms of TGF-𝛽 (TGF-𝛽1, -𝛽2, and -𝛽3) with significant
homology and similarities in function. The biological effect
of TGF-𝛽 is mediated through type I and type II receptors
[13, 14]. The downstream events include both Smad and non-
Smad signaling pathways [15–17]. The relative importance
and interplay of these pathways of TGF-𝛽 signaling are

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 502093, 8 pages
http://dx.doi.org/10.1155/2014/502093

http://dx.doi.org/10.1155/2014/502093


2 BioMed Research International

still under investigation [18–21]. In general, events mediated
through the Smad pathways are mainly related to growth
arrest and apoptosis, while those mediated through the non-
Smad pathways are mainly related to cell proliferation and
migration [17].

3. Biology of IGF Signaling

The IGF axis consists of two ligands (IGF-I and IGF-II),
two cell surface receptors (IGF-IR and IGF-IIR), 6 binding
proteins (IGFBP-1 to 6), and a group of IGFBP degrading
enzymes [22–24]. Among IGFBPs, IGFBP-3 is the most
abundant in the prostate and is able to bind IGF-I and
thus controls the amount of available IGF-I to interact
with IGF-IR in target cells. IGF-IR is a tyrosine kinase
receptor. Upon engagement with IGF-I or IGF-II, IGF-IR
is activated by phosphorylation and activates downstream
mitogenic signals, including MAPK and PI3K. IGF-IIR does
not have the intracellular kinase domain and its role in
cellular proliferation remains unclear [25]. An important
aspect of IGF signaling in prostate cancer development and
progression is that it is able to activate androgen receptor
nuclear translocation in the absence of androgen [26–28].
Epidemiologic and laboratory evidence strongly suggests that
elevated IGF-I levels are associated with increased risk of
prostate cancer [5, 25, 29].

4. Stromal-Epithelial Interaction in
the Normal Prostate: The Prostatic
Ductal System

During embryogenesis, epithelial cells in the ectoderm
change into mesenchymal cells, which migrate through the
primitive streak and insert themselves between the ectoderm
and the endoderm. Some of these mesenchymal cells will
engage in the establishment and maintenance of a lifelong
relationship with the epithelial cells. The reciprocal relation-
ship between the stroma and epithelia in the urogenital sinus
has created a unique microenvironment which directed the
urogenital sinus to be destined to the development of the
prostate [30].

In the normal prostate, TGF-𝛽 is a gate keeper tomaintain
cellular homeostasis and structural integrity. The cross talk
between two cellular components is mainly centered on the
TGF-𝛽 and IGF signaling. The adult prostate is arranged
as individual ductal systems, consisting of the proximal,
intermediate, and distal regions [31, 32].The integrity of these
regions is maintained in a homeostasis state through a tightly
regulated TGF-𝛽 signaling cross talk between the stromal and
epithelial compartments [33–35].The epithelial compartment
in the distal region contains proliferative cells; the epithelial
cells in the proximal region are undergoing apoptosis. The
majority of the epithelial cells in the ductal system are
located in the intermediate region and are in a differentiated,
proliferative quiescent state [31, 32]. The adjacent stromal
compartment consists of fibroblasts and smoothmuscle cells.
Smooth muscle cells are concentrated in the proximal region

as they produce high levels of TGF-𝛽, while the fibroblasts
are lined in the distal region and produce little or no TGF-
𝛽 [32, 34]. This regional differential production of TGF-𝛽
is critical, in that TGF-𝛽 is a potent inhibitor for prolif-
eration in the adjacent epithelial cells. The maintenance of
cellular homeostasis within this ductal system implemented
by a regional variation in stromal-epithelial cross talk is
mediated by a corresponding regional TGF-𝛽 signaling. A
disturbance of this delicate balance between the stroma and
the epithelia will result in abnormal growth of the prostate,
such as benign prostatic hyperplasia and prostate cancer,
when the IGF signaling system derived from the stromal
cells through a paracrine fashion to play a synergistic role
[23, 29].

5. A Biphasic Effect of TGF-𝛽 on Normal
Prostate Stromal and Epithelial Cells

TGF-𝛽, under normal physiological conditions, is a gate
keeper to maintain cellular homeostasis, including the main-
tenance of the normal integrity of the prostate. A common
notion is that TGF-𝛽 is inhibitory to cell growth andprolifera-
tion in normal cells.This notion needs to bemodified. Results
of our studies have demonstrated a biphasic effect of TGF-𝛽
on both prostatic stromal [36] and epithelial cells [37]. At a
low dose (0.1 𝜂g/mL), TGF-𝛽 can stimulate cell proliferation
through the induction of mitogenic factors [37, 38], while,
at a high dose (10 𝜂g/mL), TGF-𝛽 inhibits cell proliferation
through the induction of CDK inhibitors and inactivation of
Erk [36, 37].The biphasic effect of TGF-𝛽 offers a mechanism
to maintain cellular homeostasis under normal physiological
conditions.

6. The TGF-𝛽 Paradox and Differential Effect
of TGF-𝛽 between Benign and Cancer Cells

It has been known that the effect of TGF-𝛽 is different
between benign and cancer cells. TGF-𝛽 mediates growth
inhibition and apoptosis in benign cells but facilitates pro-
gression and metastasis in cancer cells [37]. The mechanism
for this differential effect of TGF-𝛽 remains unclear. Results
of our studies have observed a differential effect of TGF-𝛽
on Erk activation between benign and cancer cells which
have provided a partial answer to this paradox. At low dose
of TGF-𝛽 (0.1 𝜂g/mL), both benign cells and cancer cells
undergo Erk activation and induction of TGF-𝛽 production
[37]. At high doses (10 𝜂g/mL), TGF-𝛽 inhibits Erk activation
in benign cells, but, in cancer cells, TGF-𝛽 continuously
mediates Erk activation and induction of TGF-𝛽 production
[37, 39].This differential effect of TGF-𝛽 constitutes a critical
event in the TGF-𝛽 paradox and creates a unique tumor
microenvironment that sets off a vicious cycle to promote
tumor progression. In the following paragraphs, we will
discuss the role of adjacent stromal cells in prostate cancer
development, progression, and metastasis.
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7. Reactive Stroma—Myofibroblasts or
Cancer-Associated Fibroblasts (CAFs)

Fibroblast-to-myofibroblast transdifferentiation is a hallmark
of benign prostatic hyperplasia and prostate cancer [40–43].
The presence of myofibroblasts is known to promote prolif-
eration of the adjacent epithelial cells in the prostate [42, 43].
Unlike the normal fibroblasts which do not produce TGF-𝛽,
CAFs produce large amounts of TGF-𝛽, which is the inducing
stimulus for growth of the adjacent epithelial cells [43, 44].
Direct stimulation of fibroblasts with TGF-𝛽 can induce the
transdifferentiation of fibroblasts to myofibroblasts with Erk
activation [41], which may also require activation of Smad3
[40]. Myofibroblasts express and secrete proinvasive factors
significantly increasing the invasive capacity of tumor cells via
paracrine mechanisms. Reactive stroma can also be induced
by down regulating TGF-𝛽 receptors, which will lead to an
increased production of TGF-𝛽. This is illustrated by the
introduction of a dominant negative type II TGF-𝛽 receptor
into prostate stromal cells resulting in an increase in the
simultaneous expression of vimentin and 𝛼-smooth muscle
actin (definition of myofibroblasts) through the activation
of the AKT pathway [44]. Conversely, the myofibroblast
phenotype can be detected adjacent to established cancer
[45]. In the present review, we will use the term cancer-
associated fibroblasts (CAFs) in place of reactive stroma or
myofibroblasts.

8. Role of the Adjacent Stroma in
Prostate Carcinogenesis

Under normal physiological conditions, the homeostasis of
the normal prostate is carefully maintained by the well-
orchestrated stromal-epithelial cross talk through a tightly
regulated TGF-𝛽 signaling in a paracrine fashion [32]. An
imbalance in TGF-𝛽 signaling within this normal stromal-
epithelial interaction will result in abnormal growth of the
prostate. During prostatic carcinogenesis in rats and humans,
the adjacent stroma undergoes progressive loss in smooth
muscle with the appearance of CAFs [43, 46, 47]. Perhaps
the best example is the report by Bhowmick et al. in 2004
[48] in which they introduced a dominant negative type II
TGF-𝛽 receptor into prostate stromal cells resulting in the
loss of TGF-𝛽 responsiveness in these stromal cells, which
assumed amyofibroblast phenotype.These genetically altered
fibroblasts also produce elevated TGF-𝛽 [49]. In retrospect, it
becomes apparent that these CAF cells not only produced an
increased level of TGF-𝛽, but also produced an increased level
of IGF-I [50, 51]. We hypothesize that under the combined
influence of elevated TGF-𝛽 and IGF-I, along with the input
from androgen/estrogen signaling, the adjacent epithelial
cells eventually developed into prostate cancer. This assump-
tion implies that an increased TGF-𝛽 and IGF signaling in the
adjacent stromal cells can lead to the development of prostate
cancer [44]. Indeed, it has been shown that myofibroblasts
contained a reduced level of TGF-𝛽 receptorswhen compared
to that in the normal fibroblasts [52]. Further, it is interesting
that the CAF cells with aberrant TGF-𝛽 signaling events can

also interact with the neighboring normal stromal cells to
jointly impact prostate carcinogenesis [44]. In conclusion,
an imbalance in TGF-𝛽 signaling by a reduction in TGF-𝛽
sensitivity and an increased production of TGF-𝛽 coupled
with an increased IGF-I signaling in the CAF cells is able
to bring about malignant transformation in the adjacent
epithelial cells in the prostate [29, 48, 49].

We postulate that an intricate interaction between TGF-
𝛽 and IGF-I signaling in prostate CAF cells has created a
unique microenvironment which is conducive for cancer
development and progression in the adjacent epithelial cells.
Prostate CAF cells are able to produce IGF-I in response to
TGF-𝛽 [50, 51]. Likewise, CAF cells are able to produce TGF-
𝛽1 in response to IGF-I [53]. Such an interaction has created
a positive feedback loop to stimulate the adjacent epithelial
cells to undergo proliferation and carcinogenesis [29].

9. Role of the Adjacent Stroma in
Tumor Progression

In prostate cancer, both the cancer cells and the adjacent
CAFs will mediate oncogenic signals to fuel the cancer
progression and metastasis [45, 46, 54]. Again, an aberrant
TGF-𝛽 signaling in both the CAF and the adjacent epithelial
compartment sets off a vicious cycle for progression and
metastasis [55–57]. Many paracrine signals promote prostate
cancer cell adhesion in the bone matrix. Fibroblast-to-
myofibroblast transdifferentiation can lead to many activities
of TGF-𝛽 mediated events in cancer. These events include
changes in cytokine balances, EMC proteins, proteases, and
IGF-I production, resulting in cancer invasion and ectopic
survival, angiogenesis, and evasion of host immune surveil-
lance program [55, 57–59]. In addition to contributing to
cytokines, modified ECM, proteases, and protease inhibitors,
myofibroblasts themselves are able to invade into cancer cell
compartment [60]. In a recent paper [61], we observed an
increased expression of TGF-𝛽1, IGF-I, and IGF-II in the
stromal cells adjacent to prostate cancer. These levels corre-
lated with the Gleason score of the disease, suggesting that
expression of TGF-𝛽1, IGF-I, and IGF-II is associated with
cancer progression (Figure 1). In fact, genetic signatures in
the stroma can be used to detect the presence of malignancy
in adjacent epithelial cells [61].

10. Androgen Receptor (AR) and
Androgen Action

AR in the stroma is known to play a role in normal and
malignant prostate [30, 46]. AR is detected in both epithelial
and stromal cells, in cancer, as well as in benign prostate [62].
Both TGF-𝛽 and IGF-I can interact with AR function in the
prostate. IGF signaling can result in AR translocation to the
nucleus in the absence of androgen [26–28]. Androgen can
also upregulate IGF-I production from prostate stromal cells
[63]. Results of many studies indicated that AR signaling can
negatively regulate TGF-𝛽 signaling through the negative AR
response element [64, 65], while TGF-𝛽 signaling represses
AR signaling through Smad3 [66]. However, corroboration
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Figure 1: In a study of diagnosis of prostate cancer using stromal
signatures [61], we identified 18 normal subjects and 37 prostate
cancer patients in whom the biopsy contained no cancer elements.
Microarray analysis was performed on an Affymetrix U133A 2.0
array platform. We extracted the data for TGF-𝛽1, IGF-I, and IGF-
II for these 55 cases. The expression intensities were normalized
against those for GAPDH. The resulting relative values for each
growth factor were plotted on the 𝑦-axis. Results indicated that,
in all three growth factors, the values for the normal subjects
were relatively low. The values for cancer cases increased and were
correlated with Gleason score, suggesting that the expression of
these growth factors is associated with cancer progression.

between TGF-𝛽 and AR signaling in prostate cancer has also
been reported [67, 68]. This discrepancy may be attributed
to a differential interaction between activation of AR coregu-
lator through Samd3 [66, 69] and DNA acetylation through
Samd4 [68, 69].

11. Estrogen Receptors (ER) and
Estrogen Action

17𝛽-Estradiol is a natural estrogen produced in both males
and females. It mediates its action through interaction with
estrogen receptor (ER). There are three types of estrogen
receptors, ER𝛼, ER𝛽, and GPR30 [70]. ER𝛼 and GPR30
promote proliferation, whereas ER𝛽 has proapoptotic and
prodifferentiating functions [70, 71]. Prostate stromal cells
contain mainly ER𝛼 and GPR30 [69]. E2 stimulates produc-
tion of TGF-𝛽 in prostate stromal cells through ER𝛼 [72]. E2

can also upregulate IGF-IR through a nongenotropic pathway
in prostate cancer cells [73]. A recent report indicated that
expression of ER𝛼 in CAF would suppress prostate cancer
invasion [74]. Since cancer cell invasion is mediated by
TGF-𝛽 signaling, this observation supports the notion that
there is a negative interaction between ER-𝛼 and TGF-𝛽
signaling [75]. A unique property of estrogen is its ability
to be metabolized to 2-catechol estrogen, which may react
with DNA to form depurinated adducts [76, 77]. These DNA
adducts will lead to cancer initiation. This is also consistent
with the report that high circulating estrogen is associated
with increased incidence of prostate cancer [78].

12. Combination of Androgen and Estrogen in
Prostate Carcinogenesis

The best example of prostate cancer generation is treating
Noble rats with a combination of androgen and estrogen and
tumors were developed in the dorsal lobe of the prostate
[29, 79, 80]. Prostate cancer can also be generated by a combi-
nation of stromal cells with basal prostatic epithelial cells with
both estrogen and testosterone [81], while testosterone alone
would not induce prostate cancer. A classical study by [82]
has illustrated the significance of a combination of androgen
and estrogen affecting the stromal cells to promote prostate
cancer development. In untreatedmouse hosts,UGM+BPH-
1 recombinants produced solid branched epithelial cords and
ductal structures exhibiting benign growth. In T + E2-treated
hosts, UGM + BPH-1 recombinants formed invasive carci-
nomas. BPH-1 cells lack androgen and estrogen receptors,
whereas rat UGM expresses both of these receptors. IGF-I
signaling is responsible for carcinogenesis as elicited by T +
E2 in the stromal microenvironment [29]. DNA adducts are
observed inNoble rats [83]. Based on this review,we postulate
that the effect of androgen/estrogen causes DNA damage and
is the initiation step for prostate carcinogenesis, while the
impact of TGF-𝛽 and IGF signaling is the promotion step
leading to cancer development and progression.

13. Conclusions: Targeting the Stromal
Cells for Cancer Diagnosis, Prevention,
and Therapy

Based on the above discussion, we understand that contribu-
tions from the adjacent stromal cells can control tumor devel-
opment and progression. As depicted in Figure 2, we propose
the hypothesis that an imbalance in signaling between TGF-
𝛽 and IGF in the stromal cells adjacent to prostate epithelial
cells is responsible for the carcinogenesis process which per-
petuates this imbalance in a vicious cycle to further promote
cancer progression. Initially, the carcinogenesis initiation step
is thought to be the result of androgen/estrogen action. Sub-
sequently, the carcinogenesis promotion step is thought to be
triggered by the TGF-𝛽/IGF signaling. A downregulation of
TGF-𝛽 receptors in the stromal cells will result in an increase
in TGF-𝛽 expression. An increased level of TGF-𝛽 in the
microenvironment will induce the expression of IGF-I/IFG-
II and IGFBP-3. IGFBP-3 will regulate the bioavailability of
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Figure 2: A simplified scheme depicting our hypothesis of the
role of stromal-epithelial interaction in prostate cancer development
and progression. Under the normal condition, signaling events
between TGF-𝛽 and IGF are tightly regulated keeping the epithelial
cells under a homeostatic balance. A reduction in TBRs in the
stromal cells will result in an increase in IGF production, which
has a proliferative effect on the prostate epithelial cells which have
undergone a cancer initiation process as a result of T + E2. TGF-𝛽
and IGF in the stromal cells adjacent to prostate epithelial cells will
perpetuate a vicious cycle to promote cancer progression.

IGF-I/IGF-II. However, IGFBPs can be degraded by PSA
and MMPs [23, 50, 84], as a result of TGF-𝛽 and androgen
receptor signaling, leaving the activation of themitogenic and
carcinogenic action of IFG signaling to the adjacent epithelial
cells. Once the cancer is developed, these cells will produce an
increased level of TGF-𝛽, which will fuel the adjacent stromal
cells to manifest additional TGF-𝛽/IGF synergy leading to
further cancer progression. With this hypothesis, it will be
possible for us to consider targeting a combination of TGF-𝛽
and IGF signaling for treatment of prostate cancer. Inhibitors
that can block the signals of TGF-𝛽 and IGF are either
available or currently in clinical trials [85–87].
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