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Abstract

Obtaining relevant information about gene interactions is critical for understanding disease 

processes and treatment. With the rise in text mining approaches, the volume of such biomedical 

data is rapidly increasing, thereby creating a new problem for the users of this data: information 

overload. A tool for efficient querying and visualization of biomedical data that helps researchers 

understand the underlying biological mechanisms for diseases and drug responses, and ultimately 

helps patients, is sorely needed. To this end we have developed GeneDive, a web-based 

information retrieval, filtering, and visualization tool for large volumes of gene interaction data. 

GeneDive offers various features and modalities that guide the user through the search process to 

efficiently reach the information of their interest. GeneDive currently processes over three million 

gene-gene interactions with response times within a few seconds. For over half of the curated gene 

sets sourced from four prominent databases, more than 80% of the gene set members are 

recovered by GeneDive. In the near future, GeneDive will seamlessly accommodate other 

interaction types, such as gene-drug and gene-disease interactions, thus enabling full exploration 

of topics such as precision medicine. The GeneDive application and information about its 

underlying system architecture are available at http://www.genedive.net.
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1. Introduction

A complete and accurate database of gene interactions (GI) is needed to understand cellular 

processes, disease states, and drug responses. Compiling such a database manually is a 

labor-intensive task, requiring highly-trained curators to identify each gene interaction and 

assess the quality of the supporting evidence. This approach is expensive both in time and in 

effort. Consequently, database curators have to limit scope by starting with key genes, drugs, 

or literature central to a given pathology or species of interest. This focus leads to curation 

bias towards well-studied or high-impact work but may miss important relationships that are 

not well-studied. Modern data mining techniques can scale to meet the challenge, and are 

automating the process of extracting interactions from biomedical literature.1,9,13,15,19,20 

However, the volume of extracted data is large, and the quality is mixed. These extracted 

interactions must thus be made accessible to curators and researchers in such a way as to 

facilitate analysis, curation, exploration, and discovery of well-understood and poorly-

understood disease mechanisms and drug responses and, ultimately, to inform and improve 

patient care.

Current GI curation tools such as Cytoscape17 and VisANT4 have multi-species support for 

integrating and visualizing curated datasets (e.g., GO, KEGG pathways). Literome14 uses 

natural language processing techniques to identify and display GIs extracted from literature. 

Literome provides excerpts from supporting literature, so curators can assess and vote on the 

interaction accuracy. However, these tools lack other features that curators find useful. To 

mitigate curation bias, curators need to be able to to identify GIs that are not well-studied. 

To our knowledge, no current tool offers an automated solution to meet this need. Another 

feature helpful to curators is the ability to investigate local topologies of GI networks around 

a gene of interest. Cytoscape and VisAnt offer comprehensive visualization, interaction 

selection and network analysis, while Literome has more rudimentary features.

To address the challenges of curation bias and provide needed network analysis features, we 

introduce GeneDive, a web-based information retrieval, filtering, topology discovery, and 

visualization tool that is designed to process millions of interactions efficiently. GeneDive 

users can sift through large volumes of data and zoom in onto a small subset of interactions 

of their interest. GeneDive’s graphical rendering leverages Cytoscape’s comprehensive 

visualization library, which is already familiar to many users.

GeneDive is currently powered by a repository of over three million gene-gene interactions 

(GGIs) extracted using DeepDive, a scalable text-mining system.11 The interactions were 

extracted from a corpus consisting of 100,000 PLOS articles and 340,000 PMC articles, and 

training data was extracted from BioGRID, ChEA, and Negatome.9 Each extracted GGI 

includes an article excerpt that mentions a gene pair, and a computed probability that the 

relation is a true interaction. GGIs with probability of 0.9 or higher are typically true 

positive interactions. GGIs with slightly lower probabilities are likely to be true interactions 

that lack strong evidence in literature. In general, these marginal probabilities provide a 

unique mechanism to quickly identify poorly-studied but important GIs. GeneDive also 

provides other supporting evidence, such as the excerpt text, the number of instances 

extracted for a given GGI, and number of articles that mention the GGI.
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In the near future, GeneDive’s capabilities will be expanded beyond GGIs to include gene-

drug and gene-disease interactions. Such a comprehensive and large repository of gene 

interactions can help unlock previously poorly-understood disease mechanisms and drug 

responses. Overall, GeneDive is designed to facilitate data-driven discovery and hypothesis 

testing for precision medicine researchers.

2. GeneDive

GeneDive was developed using the agile software development approach,3 which entails 

iterative development by a cross-functional team consisting of computer scientists, 

developers, biomedical researchers and curators. The high-level goal was to design and 

develop an easy-to-use and scalable web application with powerful search functionality and 

multi-modal result presentation capabilities. The resulting web application and its features 

are described next.

Ambiguity Resolution

GeneDive users can search the interactions database by entering one or more gene symbols 

(from Entrez/NCBI) or gene set names (from Reactome, KEGG and many others). Figure 

1(a) provides an illustration of search input entry. Gene symbols are sometimes ambiguous: 

for example, PSP-A may refer to either of two genes, SFTPA-1 and SFTPA-2, that encode 

distinct pulmonary surfactant proteins. In this case, information about the genes is provided, 

and the user is prompted to choose the intended gene (Figure 1(b)). All gene symbol 

ambiguities, if any, have to be resolved before proceeding.

Topology Search

GeneDive provides four search modes to help users investigate the GGI non-directional 

network topology: 1-hop, 2-hop, 3-hop, and Clique, as shown in Figure 1(c). The default 

mode is 1-hop, which searches for immediate neighbors, that is, genes that interact directly 

with the gene of interest. 1-hop retrieves all neighbors for a single-gene search, and pairwise 

GGIs for searches of two or more genes. For example, if the user has entered genes A, B, 

and C, then 1-hop search will return GGIs for the following gene pairs: AB, AC, and BC. 2-

hop and 3-hop search modes require at least two gene symbols as input and retrieve 

intermediary genes along a pathway. 2-hop shows paths with one or no intermediaries, and 

3-hop shows paths with two or fewer genes between the genes of interest. The intermediate 

genes revealed in 2-hop, 3-hop, and Clique search modes may refine our understanding of a 

pathway or discover new pathways. Clique search mode accepts only one gene symbol, and 

retrieves all the complete networks that contain the input gene. A complete network is 

formed when every member gene directly interacts with every other gene in the network.

Graphical and Tabular Views

Search results are presented in both tabular and graphical views, shown simultaneously and 

in parallel. Figure 2 shows a representative view of the results of a search for gene GATA6 in 

the Clique mode. Users may choose to view the resulting interactions grouped by gene pairs 

(default) or by articles. Grouping by gene pairs collates all GGIs for every unique gene-gene 

pair in the retrieved results into a single row in the Table view. The Interactions column 

Previde et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2018 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specifies the number of GGI mentions over all articles. The number of unique articles from 

which these mentions are extracted is specified under Articles. A histogram of the 

probabilities for the interaction group is shown in the P. Distribution column, with the 

highest value shown in Max Probability. The source sentence from which the highest-

probability GGI mention was extracted is shown in the Sample Excerpt column.

Grouped rows may be expanded to show individual interactions, each with a probability, 

extracted excerpt, name and hyperlink to the source article, and relevant section from the 

article. Nearly all of the columns are sortable in both the grouped and expanded views of the 

table, with descending probability as the default sort order. Gene mentions are color-coded 

by set membership; genes that belong to multiple sets are displayed in multiple colors. 

Color-coding is consistent between the graph and table views. The lower panel presents the 

search results in a graphical format using Cytoscape’s force-directed layout engine, with 

nodes representing genes and edges representing interactions; edge thickness is proportional 

to the number of mentions for retrieved GGIs. Users can modify or change their search 

inputs by clicking on a node to search for that gene, or shift-clicking on one or more nodes 

to search for multiple genes. This allows for easy navigation of the gene interaction network.

Results Filtering and Highlighting

The user may filter the search results using filters for one or more of the following: gene 

name, journal, specific article, document section (e.g., abstract, methods, results), excerpt 

partial text matching, and minimum probability cutoff (the default cutoff is 0.7). Figure 2 

shows the filter controls in the left panel and illustrates the negation filter: interactions 

containing DKK1 as one of the genes will not be retrieved. The filters are additive; users can 

add or remove filters as desired. Users can highlight interactions in both views, calling 

attention to interactions that match the user-provided criteria (e.g., excerpts containing 

specific terms). In the graphical view, edges that match the highlighting criteria are rendered 

with a highlight color; in the tabular view, matching rows are also highlighted in the same 

color. Figure 2 demonstrates highlighting for the term lysates. For example, the first row, 

GATA4 and GATA6, is highlighted because at least one of the excerpts in that group 

contains the term lysates. The edge between the nodes for GATA4 and GATA6 is also 

highlighted in the graphical view.

Saving Results

GeneDive saves the system state; search, filter, and highlight parameters and results; 

graphical views; and table contents as a state file, which can be re-uploaded to resume where 

the user stopped during a prior session. Tabular views can be exported to Excel. Graphical 

views can be saved in scalable vector graphics (SVG) format, providing users with 

publication-ready images of interaction networks.

2.1 System Architecture

GeneDive is a single-page web application following the model-view-controller (MVC) 

architecture. User account management and web services are implemented in PHP. As 

shown in Figure 3, the web service comprises a RESTful API layer to a SQLite relational 

database containing complete interaction and gene data, extracted from Entrez/NCBI, 
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Reactome, KEGG, and DeepDive-identified GGI data. All gene references are mapped to 

Entrez gene IDs, and all gene sets are filtered using the GGI data; if a gene in a set does not 

have a DeepDive-identified interaction with any other gene in the same set, that gene is 

removed from the set. To improve responsiveness, most of the processing is done client-side 

through modules connected in serial, assisted by cached lookup tables. The modules manage 

filtering, coloring, synonym tagging, highlighting, grouping, and view rendering. 

Compressed caches include a GGI adjacency matrix with probabilities, and gene and gene 

set lookup tables for auto-complete.

2.2 Feature Comparison with Other Tools

Table 1 provides a side-by-side comparison of GeneDive features with those of three other 

widely-used search and/or visualization tools: Literome, Cytoscape, and VisANT, all of 

which were discussed in Section 1. This comparison considers 12 different features, such as 

whether the tool provides supporting evidence in the form of the excerpt from which the 

GGI was extracted, or whether the tool can search for GGIs associated with a known 

pathway, or whether it can support various levels of gene network analysis. As shown in 

Table 1, GeneDive supports more features than any of the other tools. GeneDive provides 

features that are traditionally supported by manually-curated databases as well as features 

typical of an automated database created using data mining.

3. Prominent Use Cases of GeneDive

The following use cases demonstrate the features and benefits of GeneDive for research and 

biomedical literature curation: single-gene searches, multi-gene searches, and searches 

involving related genes (gene sets or pathways).

Use Case 1: Single-Gene Query

To demonstrate GeneDive’s features and capabilities for a single-gene search, we queried 

the system for interactions with the gene NOD2. NOD2 is involved in immune system 

pathways and is associated with Crohn’s disease.21 We input NOD2 in the search bar and 

limited the results to probability greater than 0.80. In the gene pair group view, the result 

table contained interactions between NOD2 and 17 other genes. Each individual gene pair 

result row displayed the highest-scoring sentence for the given pair. By expanding an 

interaction row with a single gene, a user can display and browse supporting evidence for the 

interaction. For example, a user can select the row with RIPK2 and read eleven sentences 

that support the interaction from two different articles. In addition, the user can filter the 

results by specific article sections if they are more interested in sentence evidence from 

abstracts or results and discussion. The user also has the option to switch to the article group 

view in order to review all sentences with interactions from individual articles at once. This 

feature can hasten full-article curation. Using the gene pair group view, we discovered genes 

related to immune response (RIPK2,16 TRAF6,10 DUOX25). After uncovering genes 

potentially related to the underlying mechanism for Crohn’s disease, a user can query the 

resulting genes and construct networks with their associations. This example highlights the 

utility of single-gene searches for understanding the underlying mechanisms of a disease.
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Use Case 2: Multi-Gene Query

Given a group of disease-associated genes, we would like to discover potential connections 

between the genes in the query set or between their interacting genes. For this example, we 

focused on genes related to follicular lymphoma. Translocation and subsequent 

overexpression of BCL2 is found in follicular lymphoma,8 but an additional seven genes 

(EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP, and CARD11) are used for 

predicting disease risk.12 We queried the system using their official symbols for the seven 

risk genes. When entering MEF2B in the search bar, a response box is triggered, requesting 

the user to resolve an ambiguous symbol. In this case, MEF2B is a symbol for MEF2B and 

BORC28-MEF2B. For the seven genes, GeneDive returned one sentence for CREBBP and 

EP300 as evidence for an interaction. This sentence described their individual interactions 

with a third gene, c-Myb, but not between themselves. Next we investigated whether any of 

the risk genes had interactions three or less hops (i.e., 3-hop) from the known causative gene 

BCL2. Using a probability cutoff of 0.80, we discovered four risk genes connected to BCL2 

via a 3-hop search (EZH2, EP300, FOXO1, CARD11). From here, users can explore the 

intermediate genes and any interactions with pathway gene sets included in GeneDive.

Use Case 3: Pathway Gene Set Query

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by insulin resistance, 

and over the last decade, a number of genetic variants have been shown to impact disease 

risk.2 To demonstrate GeneDive’s ability to detect potential pathway overlaps with a set of 

disease-related genes, we queried the system for two KEGG pathways included in the 

MSigDB gene sets: KEGG_TYPE_II_DIABETES_MELLITUS and 

KEGG_INSULIN_SIGNALING_PATHWAY. While a user can input a gene set of interest, 

we demonstrate this feature using a pre-loaded gene set for the T2DM pathway in KEGG.b 

From the network view (Figure 4, left), numerous genes and their interactions from the 

T2DM pathway overlap directly with the insulin signaling pathway. This contrasts with the 

KEGG pathway for Type 1 diabetes mellitus (T1DM) 

(KEGG_TYPE_1_DIABETES_MELLITUS). Here, T1DM genes interact with those from 

the insulin signaling pathway, but the T1DM genes are not found in the pathway itself 

(Figure 4, right). The lack of overlap between T1DM genes and the insulin signaling 

pathway is due to T1DM resulting from error in insulin production, not resistance.6 By 

including pathway gene sets in GeneDive, users have the ability to not only query their own 

genes or gene sets of interest, but also to investigate possible disease and biological pathway 

associations.

4. Recall of Curated Gene Sets

While a good user interface is helpful to speed curator efforts, the quality of the underlying 

data is critical. The GeneDive data currently consists of 1,312,685 GGIs extracted from 

340,000 PubMed Central (“PMC”) articles, and 1,322,459 GGIs extracted from 100,000 

Public Library of Science (“PLOS”) articles. To assess the quality of this data, we attempt to 

retrieve curated gene sets using the GGI data. For this evaluation we use the C2 sub-

bhttp://www.kegg.jp.
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collection of the GSEA MSigDB dataset, which consists of 4,731 curated gene setsc. The 

retrieval efficacy of C2 gene sets from GeneDive data is evaluated using precision and recall 

measures, with results shown in Table 2. We count false positives (FP) as follows: for each 

GGI in GeneDive data, if one gene is in any C2 gene set, and the other gene is not in any C2 

gene set, then the other gene is labeled as FP. If both genes in the GGI are in the same C2 

gene set, then they are identified as true positives (TP); each unique gene is counted as TP 

only once, even if it appears in multiple sets. If a gene in any gene set is not labeled as TP, it 

is labeled as a false negative (FN). Precision is calculated as , recall as , 

and F1 score as .

These numbers suggest that the GeneDive data is fairly clean but not complete in the context 

of C2 gene sets, so we investigate further into the sets themselves to better understand the 

completeness gap. 27% of these gene sets are contributed by either the Reactome pathway 

database (674 gene sets contributed), the Biocarta pathway collection (217 sets), the 

Pathway Interaction Database (“PID”, 196 sets), or the Kyoto Encyclopedia of Genes and 

Genomes (“KEGG”, 186 sets). The remaining gene sets are from over nine hundred other 

institutions and individual contributors. C2 gene sets are of highly variable size: the smallest 

contain 5 genes, and the largest 1,972. The median and the mean gene set size are 39.0 and 

93.2, respectively. As a result, we bin the gene sets based on their sizes in the following 

analysis. For each gene set X in C2, its member genes x1 and x2 are labeled true positives if 

GeneDive data contains one or more interactions between x1 and x2.

The results for the gene set recall analysis are given in Figure 5. The left plot shows that for 

half of the gene sets in a bin, about 50% or more of its members are recovered by PMC 

interactions. The recall percentages with PLOS interactions are consistently higher than 

those with PMC. The median recall in the first bin (size: 5 to 10 members) is the lowest for 

both PMC and PLOS. The reason for this observation becomes clearer when the sources of 

the gene sets are factored into this analysis. The probabilities assigned to the interactions 

also significantly influence gene set recall percentages. As such, the remainder of this 

section investigates recall percentages in the context of specific gene set sources and 

probability cutoffs.

The distribution of GeneDive probability scores resembles a normal distribution. If we filter 

out interactions with low probability of accuracy, then at a probability cutoff of 0.5, 563,383 

interactions from PMC qualify, and 524,140 from PLOS. At 0.7 cutoff, only about 10% of 

the original collection remains: 133,567 interactions from PMC, and 112,282 from PLOS. 

Predictably, in regard to matching C2 gene sets, recall percentages decrease as more data is 

filtered out: at 0.5 cutoff, about 30% to 40% to the gene set members are recovered for half 

of the gene sets in the bin. At 0.7 this drops to 10% to 15%.

If we restrict the analysis to the top four gene set contributors (i.e., Reactome, Biocarta, PID, 

and KEGG), then the recall percentages, even when using only the high-quality interactions, 

chttp://software.broadinstitute.org/gsea/msigdb/collections.jsp.
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are substantially higher than when using all the gene sets. At 0.5 cutoff, the recall percentage 

for all the gene sets was 30% to 40%, while for the gene sets from the top four contributors 

it is 70% to 75% (Figure 6). At 0.7 cutoff, the recall percentage for the gene sets contributed 

by the top four sources is about 40% (Figure 7), while for all gene sets it is 10% to 15%. 

This trend also continues in a more fine-grained analysis: at probability cutoff of 0.7, across 

all gene set sizes, 237 gene sets have 70% or greater recall; of those, 207 (87.3%) are 

contributed by Reactome, Biocarta, PID, or KEGG. Conversely, out of the 132 gene sets that 

had a recall percentage of less than 10%, only 2 (1.5%) are contributed by the four sources.

The cause for this trend is illustrated next using two gene sets, one with low recall and the 

other with high. An exemplary six-member gene setd contributed by Kasler et al. relates to 

the set of genes up-regulated in DO11.10 hybridoma cells by expression of HDAC7, a 

signal-dependent repressor of gene transcription during T-cell development. Using either the 

PLOS or PMC interaction data, the recall percentage of this set is 0% at a 0.7 probability 

cutoff. Even the primary publication7 for this gene set does not explicitly mention, by 

symbol or by numerical gene identifier, any of the six genes in that set. Many other articles 

mention the gene set name, but the member genes are rarely mentioned. As such, the text 

mining approach used to extract GIs is unable to discover any of the member genes with 

high confidence.

A high-recall gene set is the Reactome ethanol oxidation set. This ten-member gene set had 

100% recall at 0.7 probability cutoff with PMC interaction data. The Reactome 

documentatione of this gene set includes publications as early as 1949 and as recent as 2007, 

nearly 60 years of research. Thus, the interactions of this gene set’s members are well-

documented, leading to the high recall. The significantly lower recall percentages associated 

with small gene sets (gene sets with 5-10 members) are also explained by consideration of 

gene set sources. Figures 6 and 7 show that recall percentage for small gene sets contributed 

by the top four sources is on par with recall of larger gene sets. The smaller gene sets from 

other sources, however, experience close to 0% recall. Collectively, Reactome, Biocarta, 

PID, and KEGG contribute only 55 small gene sets, while all other sources contribute 379 

small gene sets.

5. Conclusions

We have developed GeneDive, a web application facilitating efficient retrieval and 

exploration of a large number of gene interactions. GeneDive can reveal direct and indirect 

relationships between two or more genes in both tabular and graphical views. Since every 

interaction has a confidence score (probability) and an excerpt from a cited article, the user 

can easily collate evidence to support or refute the hypothesis being tested. GeneDive has 

been designed and developed in a data-agnostic fashion so as to seamlessly process different 

types of interactions. Gene-drug and gene-disease interactions are slated to be integrated in 

GeneDive soon, making GeneDive a powerful tool for precision medicine researchers that 

facilitates better understanding of genetic contributions to disease and treatment outcomes.

dhttp://software.broadinstitute.org/gsea/msigdb/geneset\_page.jsp?geneSetName=KASLER\_HDAC7\_TARGETS\_2\_UP.
ehttp://www.reactome.org/content/detail/71384.
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Fig. 1. 
GeneDive search entry screenshots.
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Fig. 2. 
Tabular (top) and graphical (bottom) views of GGIs. (Search & controls panel on left.)
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Fig. 3. 
GeneDive architecture diagram showing data sources and workflow.
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Fig. 4. 
Comparison of partial network overlap of two gene sets. Genes in the insulin signaling 

pathway set are colored blue. Genes with both colors belong to both sets. Left: Genes in the 

Type 2 diabetes mellitus pathway are pink. Right: Genes in the Type 1 diabetes mellitus 

pathway are pink.
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Fig. 5. 
Gene set recall plots for 4,731 gene sets in the MSigDB C2 collection, using GGIs extracted 

from (a) PMC, and (b) PLOS articles. The gene sets (binned by size) are along the X-axis, 

and recall percentage along the Y-axis. The median recall percentage for each bin is denoted 

by the horizontal line in the corresponding box.
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Fig. 6. 
Gene set recall plots for MSigDB gene sets from Reactome, Biocarta, PID, and KEGG, with 

probability cutoff of 0.5, extracted from (a) PMC, and (b) PLOS collections.

Previde et al. Page 16

Pac Symp Biocomput. Author manuscript; available in PMC 2018 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Gene set recall plots for MSigDB gene sets from Reactome, Biocarta, PID, and KEGG, with 

probability cutoff 0.7, extracted from (a) PMC, and (b) PLOS collections.
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Table 1

Feature matrix of gene interaction visualization tools.

Feature GeneDive Literome Cytoscape VisANT

GGI Probability ✓

GGI Description ✓

Supporting Literature Excerpt ✓ ✓

KEGG Pathways ✓ ✓ ✓

Reactome Pathways ✓ ✓ ✓

GO Term Enrichment ✓ ✓

Tabular View ✓ ✓ ✓

Graphical View ✓ ✓ ✓

Direct GGI (1-hop) ✓ ✓ ✓ ✓

Intermediate GGI (2-hop) ✓ ✓ ✓ ✓

2 Intermediates (3-hop) ✓ ✓ ✓

Clique ✓ ✓ ✓
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