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OBJECTIVE—Glucagon-like peptide (GLP)-1 is a regulatory
peptide synthesized in the gut and the brain that plays an
important role in the regulation of food intake. Both GLP-1 and
exendin (Ex)-4, a long-acting GLP-1 receptor (GLP-1r) agonist,
reduce food intake when administered intracerebroventricularly,
whereas Ex4 is much more potent at suppressing food intake
when given peripherally. It has generally been hypothesized that
this difference is due to the relative pharmacokinetic profiles of
GLP-1 and Ex4, but it is possible that the two peptides control
feeding via distinct mechanisms.

RESEARCH DESIGN AND METHODS—In this study, the
anorectic effects of intracerebroventricular GLP-1 and Ex4, and
the sensitivity of these effects to GLP-1r antagonism, were
compared in rats. In addition, the GLP-1r dependence of the
anorectic effect of intracerebroventricular Ex4 was assessed in
GLP-1r�/� mice.

RESULTS—Intracerebroventricular Ex4 was 100-fold more po-
tent than GLP-1 at reducing food intake, and this effect was
insensitive to GLP-1r antagonism. However, GLP-1r antagonists
completely blocked the anorectic effect of intraperitoneal Ex4.
Despite the insensitivity of intracerebroventricular Ex4 to GLP-1r
antagonism, intracerebroventricular Ex4 failed to reduce food
intake in GLP-1r�/� mice.

CONCLUSIONS—These data suggest that although GLP-1rs are
required for the actions of Ex4, there appear to be key differ-
ences in how GLP-1 and Ex4 interact with central nervous
system GLP-1r and in how Ex4 interacts with GLP-1r in the brain
versus the periphery. A better understanding of these unique
differences may lead to expansion and/or improvement of GLP-
1–based therapies for type 2 diabetes and obesity. Diabetes 58:
2820–2827, 2009

G
lucagon-like peptide (GLP)-1 is a product of the
preproglucagon gene (1) that is synthesized in
the distal ileum (2) as well as the caudal
nucleus of the solitary tract (NTS) and ventro-

lateral medulla (3). Although GLP-1 is perhaps best known
for its essential role in the regulation of peripheral glucose
homeostasis, multiple lines of evidence suggest that GLP-1
also acts in the central nervous system (CNS) to regulate
food intake. In support of this hypothesis, long-acting

GLP-1 receptors (GLP-1rs) are expressed in brain regions
known to regulate energy balance, such as the mediobasal
hypothalamus and the caudal brainstem (3,4), and consis-
tent with a role for GLP-1 as a putative satiety signal,
central administration of GLP-1 potently reduces short-
term food intake (5,6). Conversely, central administration
of the GLP-1r antagonist exendin (Ex) (9-39) (Ex9) in-
creases food intake and body weight (7), suggesting that
endogenous GLP-1 has a physiological role in the regula-
tion of energy balance.

Recently, the GLP-1 system has emerged as a novel
therapeutic target for type 2 diabetes, as peripheral GLP-1
infusion effectively lowers blood glucose levels and im-
proves glucose tolerance in humans (8). However, because
circulating active GLP-1 is rapidly degraded by the enzyme
dipeptidyl peptidase-4 (DPP-4) (9–11), alternative strate-
gies for targeting the GLP-1 system have been developed,
including stable GLP-1 analogues and DPP-4 inhibitors.
One such analog is Ex4, a peptide originally isolated from
the saliva of the Gila monster (Heloderma suspectum),
which is a highly potent, DPP-4–resistant GLP-1r agonist
in vitro and in vivo (12,13). Recently, exenatide (a syn-
thetic Ex4) and the DPP-4 inhibitor sitagliptin were Food
and Drug Administration approved as therapies for type 2
diabetes. However, whereas both drugs effectively im-
proved glycemic control in clinical trials (14,15), Ex4, but
not sitagliptin, was also associated with significant weight
loss (14,16).

The above finding is compelling in that it raises the
possibility that Ex4, at doses used clinically, may have in
vivo actions that are substantively different from those of
intact GLP-1 achieved through DPP-4 inhibition. Although
studies using GLP-1r knockout (GLP-1r�/�) mice provide
strong evidence that the GLP-1r is necessary for the in vivo
actions of Ex4 (17–21), other studies using GLP-1r antag-
onists suggest that Ex4, particularly in the brain, may act,
at least in part, independently of GLP-1r (22–24). There-
fore, we tested the hypothesis that the central anorectic
effect of Ex4 is different from that of GLP-1.

RESEARCH DESIGN AND METHODS

Adult male Long-Evans rats (Harlan, Indianapolis, IN), GLP-1r�/� mice, and
their wild-type C57BL/6J littermates were housed individually in plastic rodent
cages and maintained on a 12-h light/dark cycle with ad libitum access to
water and pelleted rodent diet (Harlan Teklad). Rats and mice were outfitted
with cannulas (Plastics One, Roanoake, VA) aimed at the third cerebral
ventricle, and correct cannula placement was verified as previously described
(25,26). All procedures were approved by the University of Cincinnati Insti-
tutional Animal Care and Use Committee.
Peptides. GLP-1 and Ex4 were obtained from Bio Nebraska (Lincoln, NE) and
American Peptide (Sunnyvale, CA), respectively. The GLP-1r antagonists His1,
Glu8 Ex4 (dHEx), and Ex (9-39) (Ex9) were obtained from Baylor College of
Medicine Protein Synthesis Core (Houston, TX) and Tocris (Ellisville, MO),
respectively. All peptides were dissolved in saline and administered either
intracerebroventricularly in a volume of 1.0 �l or intraperitoneally in a volume
of 1.0 ml/kg.
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Food intake studies. Rats and mice were fed ad libitum at all times except
for the mornings of study days. During this time, food was removed from the
animals’ cages and weighed 4 h before lights off, and animals were assigned to
weight-matched groups. Pretreatment (saline or GLP-1r antagonist) injections
commenced 1 h before lights off, and treatment (saline or GLP-1r agonist)
injections commenced 30 min before lights off. Injection order was counter-
balanced across all experimental groups to evenly distribute subtle variations
in timing of injections. Food was returned to the animals’ cages at lights off,
and food intake and body weight were measured at selected time points.

First, dose-response curves for anorexia induced by intracerebroventricu-
lar GLP-1 (0, 0.3, 1.0, 3.0, and 10.0 �g) and Ex4 (0, 0.01, 0.03, 0.1, and 0.3 �g)
were established. Based on these results, time courses of anorexia induced by
intracerebroventricular GLP-1 (3.0 nmol, �10.0 �g) and Ex4 (0.03 nmol, �0.1
�g) were compared, and conditioned taste aversion (CTA) to the same doses
of intracerebroventricular GLP-1 and Ex4 was assessed as previously de-
scribed (27).

To assess the ability of central GLP-1r antagonism to block anorexia
induced by central GLP-1 and Ex4, rats were pretreated with intracerebro-
ventricular saline, dHEx (10.0 �g, [28]), or Ex9 (100.0 �g) and then treated
with intracerebroventricular saline, GLP-1 (10.0 �g), or Ex4 (0.1 �g). To
assess the ability of peripheral GLP-1r antagonism to block anorexia induced
by peripheral Ex4, rats were pretreated with intraperitoneal saline or dHEx
(1.0 mg/kg) and then treated with intraperitoneal saline or Ex4 (10.0 �g/kg).
Finally, to assess the ability of central Ex4 to reduce food intake in GLP-1r�/�

mice, mice were treated with intracerebroventricular saline or Ex4 (1.0 �g).
c-Fos immunohistochemistry. To assess the ability of central GLP-1r
antagonism to block neuronal activation induced by central GLP-1 and Ex4,
rats were pretreated with intracerebroventricular saline or dHEx (10.0 �g)
and then treated with intracerebroventricular saline, GLP-1 (10.0 �g), or Ex4
(0.1 �g). Two hours later, rats were deeply anesthetized with sodium
pentobarbital and perfused transcardially with 0.1 mol/l PBS followed by 4.0%
paraformaldehyde/PBS. Brains were postfixed at 4°C for 24 h in 4.0% parafor-
maldehyde/PBS and stored at 4°C in 30.0% sucrose/PBS. Serial coronal
forebrain sections and longitudinal hindbrain sections were collected at 35
�m using a freezing microtome and stored at �20°C in cryoprotectant.

After washing with PBS, sections were incubated in 1.0% hydrogen
peroxide/PBS for 10 min, followed by 1.0% sodium borohydride/PBS for 30
min. Sections were blocked for 1 h in 0.1% BSA/0.4% Triton-X-100/PBS and
incubated overnight at room temperature in blocking solution containing
rabbit anti–c-Fos diluted at 1:5,000 (sc-52; Santa Cruz Biotechnology, Santa
Cruz, CA). The next morning, sections were washed and incubated at room
temperature for 1 h in blocking solution containing biotinylated goat anti-
rabbit IgG diluted at 1:200 (BA-1000; Vector Laboratories, Burlingame, CA)
followed by 1 h in ABC solution diluted 1:800 in PBS (PK6100; Vector
Laboratories) and 10 min in DAB-nickel solution. Finally, sections were
washed with 0.1 mol/l phosphate buffer, mounted on gelatin-coated slides, and
cover slipped.

For quantification of c-Fos immunoreactivity in the central nucleus of the
amygdala (CeA), paraventricular nucleus of the hypothalamus (PVN), and
nucleus of the solitary tract (NTS), digital images of sections were acquired
using a digital camera attached to a Zeiss microscope (Zeiss, Thornwood, NY).
For each brain, two sections per area were analyzed, and special care was
taken to compare only sections within the same plane along the rostro-caudal
(CeA and PVN) or dorso-ventral (NTS) axis. c-Fos immunoreactivity was
quantified as optical density using the National Institutes of Health program
Scion Image.
Tissue culture studies. INS-1 cells were seeded in 35-mm six-well plates at
a density of 2 � 105 cell/well in 1.5 ml of media consisting of RPMI-1640
supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1.0 mmol/l
sodium pyruvate, 2.0 mmol/l L-glutamine, 50.0 �mol/l �-mercaptoethanol, and
0.5 mg/ml gentamicin sulfate and grown in a 37°C incubator in an atmosphere
of 5% CO2 and 95% air and 100% humidity for 3 days until nearly confluent. On
day 4, cells were washed with PBS and replaced with fresh media. On day 5,
cells were preincubated for 2 h in 2.0 ml of buffer consisting of Krebs-Ringer
bicarbonate buffer (KRB) supplemented with 0.1% BSA and 30 mg/dl glucose
and then washed twice with 2.0 ml of the same buffer solution. Cells were then
incubated for 1 h in 1.0 ml of KRB supplemented with 0.1% BSA, 200 mg/dl
glucose, and 1.0 nmol/l GLP-1, 0.01 nmol/l Ex4, or 1.0 nmol/l Ex4 with or
without 100 nmol/l dHEx. Finally, incubation buffer was harvested, centri-
fuged, decanted, and stored at �20°C for immunoreactive insulin (IRI) assay,
and cells were washed once with 1.0 ml of preincubation buffer and then
extracted with 1.0 ml of acid ethanol for 2 h at �20°C, after which acid ethanol
was diluted 1:200 with Tris assay buffer for IRI assay in cell layer. IRI was
measured using a radioimmunoassay as previously described (29).
Statistical analysis. All values are reported as means � SE. Data were
analyzed using one- or two-way ANOVA or two-way repeated-measures

ANOVA. Post hoc multiple comparisons were made using Tukey’s post hoc
test. Significance was set at P � 0.05 for all analyses.

RESULTS

Comparison of intracerebroventricular GLP-1– and
Ex4-induced anorexia. Consistent with previous re-
ports, intracerebroventricular GLP-1 and Ex4 elicited po-
tent, dose-dependent reductions in 4-h food intake (Fig. 1A
and B; P � 0.05, one-way ANOVA with Tukey’s post hoc
test). However, Ex4 significantly reduced food intake at
doses much lower than those of GLP-1. Specifically, 10.0
�g of GLP-1 and 0.1 �g of Ex4 produced comparable
degrees of anorexia, reducing food intake to 56 and 45% of
control values, respectively. These data indicate that,
when administered into the third ventricle, Ex4 is roughly
100-fold more potent than GLP-1 at reducing food intake.

Figure 1C illustrates the time course of intracerebroven-
tricular GLP-1– and Ex4-induced anorexia. Whereas 3.0
nmol (�10.0 �g) of GLP-1 and 0.03 nmol (�0.1 �g) of Ex4
both actively suppressed food intake up to 4 h, only Ex4
elicited persistent anorexia that remained detectable
throughout the 24 h of observation (P � 0.05, two-way
repeated-measures ANOVA with Tukey’s post hoc test).
Furthermore, these doses of GLP-1 and Ex4 both led to the
formation of a CTA (Fig. 1D; P � 0.05, one-way ANOVA
with Tukey’s post hoc test). Interestingly, there was a
strong trend toward a significantly lower preference ratio
of Ex4-treated rats versus GLP-1–treated rats (P � 0.052),
suggesting that the aversive effects of Ex4 were more
pronounced than those of GLP-1.
Sensitivity of intracerebroventricular GLP-1 and Ex4
to GLP-1r antagonism. Although previous studies have
reported an inability to block certain effects of Ex4 with
GLP-1r antagonists, these studies did not necessarily ac-
count for the significantly greater potency of Ex4 over
GLP-1. Therefore, we sought to compare the ability of
GLP-1r antagonists to block anorexia and neuronal activa-
tion induced by doses of intracerebroventricular GLP-1
and Ex4 that produce effects of comparable magnitude.
Pretreatment with either 10.0 �g of dHEx or 100.0 �g of
Ex9 caused near-complete blockade of anorexia induced
by 10.0 �g of GLP-1 (Fig. 2A and C; P � 0.05 by two-way
ANOVA with Tukey’s post hoc test). However, whereas 0.1
�g of Ex4 and 10.0 �g of GLP-1 elicited comparable
degrees of anorexia, the doses of dHEx and Ex9 that
nearly abolished GLP-1–induced anorexia failed to block
the anorectic effect of Ex4 (Fig. 2B and D), although a
nonsignificant trend was observed with dHEx (P � 0.148).

To determine whether neuronal activation in response
to GLP-1 and Ex4 was also differentially sensitive to
GLP-1r antagonism, the effect of intracerebroventricular
dHEx to block c-Fos immunoreactivity induced by intra-
cerebroventricular GLP-1 and Ex4 was compared. At the
same doses as used above, GLP-1 and Ex4 both induced
c-Fos immunoreactivity in identical brain regions, includ-
ing the CeA, PVN, and the NTS (Fig. 3A–C; P � 0.05 by
two-way ANOVA with Tukey’s post hoc test). The magni-
tude of c-Fos immunoreactivity induced by GLP-1 and Ex4
was similar in the PVN and NTS, whereas GLP-1 induced
slightly more c-Fos immunoreactivity than Ex4 in the CeA.
In the CeA, dHEx significantly blocked c-Fos immunore-
activity induced by GLP-1 (P � 0.05); however, in the PVN
and the NTS, this difference failed to reach statistical
significance. Nonetheless, for all three regions, the amount
of c-Fos immunoreactivity in brains treated with dHEx and
Ex4 was significantly greater than that of brains treated
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with saline, dHEx alone, or dHEx and GLP-1 (P � 0.05).
These results, combined with the food intake data,
suggest that CNS actions of Ex4 are relatively insensi-
tive to competitive GLP-1r antagonism.
Potency of Ex4 and sensitivity to GLP-1r antagonism
in vitro. Because dHEx, a validated but lesser used
GLP-1r antagonist (28,30,31), failed to block anorexia and
neuronal activation induced by intracerebroventricular
Ex4, we sought to determine whether dHEx is an effective
antagonist of Ex4 in vitro by assessing its ability to block
insulin secretion induced by Ex4 in the rat pancreatic islet
cell line INS-1. As expected, 1.0 nmol/l GLP-1 significantly
augmented insulin secretion above that of glucose alone,
and this effect was completely blocked by coincubation
with 100 nmol/l dHEx (Fig. 4; P � 0.05 by two-way ANOVA
with Tukey’s post hoc test). However, in contrast to our in
vivo data, 0.01 nmol/l Ex4 failed to augment insulin
secretion, whereas 1.0 nmol/l Ex4 had an effect that was
comparable to 1.0 nmol/l GLP-1. Moreover, this effect was
completely blocked by coincubation with 100 nmol/l dHEx
(P � 0.05).
Sensitivity of intraperitoneal Ex4 to GLP-1r antago-
nism. To determine whether the insensitivity of Ex4 to
GLP-1r antagonism was specific to CNS administration, we
assessed the ability of dHEx to block anorexia induced by
intraperitoneal Ex4. As expected, 10 �g/kg of intraperito-

neal Ex4 significantly reduced food intake at 4 h (Fig. 5;
P � 0.05 by two-way ANOVA with Tukey’s post hoc test).
Surprisingly, pretreatment with 1.0 mg/kg i.p. dHEx, the
same 100-fold excess of antagonist that failed to block
anorexia induced by intracerebroventricular Ex4, signifi-
cantly attenuated this effect (P � 0.05).
Effect of intracerebroventricular Ex4 in wild-type
and GLP-1r�/� mice. The insensitivity of CNS Ex4 effects
to GLP-1r antagonism raises the possibility that Ex4 may
act in part via a GLP-1r–independent mechanism. To
determine whether the GLP-1r is required for the central
anorectic effect of Ex4, intracerebroventricular Ex4 was
administered to wild-type and GLP-1r�/� mice. In wild-
type mice, 1.0 �g of intracerebroventricular Ex4 elicited
profound anorexia such that daily food intake and body
weight were significantly reduced for up to 48 and 72 h,
respectively (Fig. 6A and B; P � 0.05 by two-way repeated-
measures ANOVA with Tukey’s post hoc test). Conversely,
this same high dose of intracerebroventricular Ex4 had no
effect on food intake or body weight in GLP-1r�/� mice
(Fig. 6C and D).

DISCUSSION

Because Ex4 (14), but not the DPP-4 inhibitor sitagliptin
(16), produces weight loss in patients, it is critical that we
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better understand the unique anorectic properties of Ex4.
To this end, we report key distinctions between the central
anorectic effects of Ex4 and native GLP-1. Not only do our
data confirm that central GLP-1 and Ex4 differ significantly
in potency and duration of action, but they also reveal
novel differences between the two peptides regarding
sensitivity to GLP-1r antagonism.

Ex4, when administered into the CNS, reduces food
intake in a manner distinct from that of GLP-1. Consistent
with previous reports (32,33), central Ex4 reduced 4-h
food intake at doses 30- to 100-fold lower than those
required by GLP-1 to cause equivalent anorexia. Impor-

tantly, this difference in potency at 4 h cannot simply be
explained by differences in duration of action, as both 3.0
nmol of GLP-1 and 0.03 nmol of Ex4 reduced food intake
to a comparable extent from 0 to 2 h and 2 to 4 h. However,
in contrast to GLP-1, Ex4 dynamically reduced food intake
over 24 h of observation, indicating that even at signifi-
cantly lower doses, central Ex4 exhibits a significantly
longer duration of action.

Consistent with our food intake data, 0.1 �g of central
Ex4 produced an almost identical degree of neuronal
activation as 10.0 �g of GLP-1 in the PVN and the NTS but
interestingly not in the CeA. It is possible that because
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100-fold less Ex4 than GLP-1 was administered, less pep-
tide diffused through the neuropil to the CeA, which,
unlike the PVN and the NTS, does not abut the ventricular
system. Despite producing less neuronal activation in the
CeA, an area important for the formation of GLP-1–
mediated CTA (34), central Ex4 produced a lower prefer-
ence ratio for saccharin than GLP-1, suggesting that Ex4
induced a greater visceral illness response. Although a
proportional relationship between GLP-1r–mediated neu-
ronal activity and behavioral responses has yet to be
established, these data are significant because they suggest
that enhanced visceral illness or aversive learning may in part
underlie the potent anorectic effect of central Ex4.

The above data and those of others support a role for
Ex4 as a highly potent, long-acting CNS GLP-1r agonist, yet
the mechanism for this unique pharmacological profile
remains unknown. One possibility is that GLP-1 and Ex4
bind differently to CNS GLP-1r. However, in vitro and ex
vivo comparisons of binding affinity have yielded equivo-
cal results (35–38), and it remains unclear whether GLP-1
and Ex4 remain bound to CNS GLP-1r for different periods
of time. A second possibility is that GLP-1 and Ex4
differentially desensitize CNS GLP-1r. However, data from
Baggio et al. (39) revealed no difference in the ability of
GLP-1 and Ex4 to desensitize the GLP-1r in vitro. More-
over, because GLP-1 and Ex4 were administered as bo-
luses, this hypothesis fails to adequately explain the present
results. Finally, it is possible that differential clearance
and/or degradation of GLP-1 versus Ex4 account for their
distinct pharmacological profiles within the CNS.

Perhaps the most striking difference between central
GLP-1 and Ex4 revealed by our data are their sensitivity to
GLP-1r antagonism. Whereas dHEx almost completely
blocked anorexia and neuronal activation induced by
GLP-1, it failed to significantly block that induced by an
equipotent dose of Ex4. This phenomenon is not specific
to dHEx, as Ex9 also failed to block anorexia induced by
central Ex4. However, dHEx is an effective antagonist of
Ex4 in vitro, as it completely blocked the enhancement of
glucose-stimulated insulin secretion induced by Ex4 in
INS-1 cells. In addition, dHEx is an effective antagonist of
Ex4 in vivo, as intraperitoneal dHEx completely blocked
anorexia induced by intraperitoneal Ex4. Taken together,
these data indicate that compared with GLP-1, Ex4 is
relatively insensitive to GLP-1r antagonism. Moreover, this

phenomenon seems to be specific for central effects but
not peripheral effects, many of which have been reported
to be blocked by Ex9 (40–42).

Certainly, previous studies (22–24) have reported an
inability to block Ex4 effects with GLP-1r antagonists.
However, they may not have adequately accounted for the
increased potency of Ex4 versus GLP-1. Here, we closely
controlled for this difference and found that pretreatment
with GLP-1r antagonists significantly blocked anorexia
induced by central GLP-1 but not an equipotent and,
importantly, 100-fold lower dose of Ex4. Moreover, this
phenomenon is not secondary to differences in agonist
duration of action, as it was observed at early time points
when both GLP-1 and Ex4 dynamically reduced food
intake. Nor is it secondary to the antagonist duration of
action, as timing of pretreatment and treatment injections
was consistent across all experiments, and similar trends
were observed with both c-Fos and food intake (data not
shown) at 2 h.

While intriguing, these data are difficult to reconcile
with our other experiments. Specifically, we found no
differences between GLP-1 and Ex4 in either potency or
sensitivity to dHEx in vitro, although this discrepancy
might easily be explained by obvious differences between
animal models and immortalized cell lines. More difficult
to explain, however, is the comparison to our peripheral
Ex4 food intake study, in which the same 100-fold excess
of dHEx, this time administered intraperitoneally, com-
pletely blocked intraperitoneal Ex4-induced anorexia.
Consequently, it is possible that fundamental differences
exist between central and peripheral GLP-1r, which may
occur at the level of posttranslational processing, protein–
protein interactions, or coupling to second-messenger
systems.

Perhaps the most obvious explanation for the discrep-
ancies between central GLP-1 and Ex4 is that the latter
acts in part independently of the GLP-1r. However, con-
sistent with previous reports (18), central Ex4 had no
effect on either food intake or body weight in GLP-1r�/�

mice, suggesting that the GLP-1r is required for these
effects. Although the lack of Ex4 effects in GLP-1r�/� mice
provides a strong basis to rule out GLP-1r independence,
there is some evidence for both functional (43) and structural
(44) differences between the GLP-1 systems of mice and
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FIG. 5. Effect of intraperitoneal dHEx (1.0 mg/kg) on anorexia induced
by intraperitoneal Ex4 (10.0 �g/kg). Cumulative 4-h food intake is
shown. Data are represented as means � SE. *P < 0.05 vs. Sal/Sal. #P <
0.05 vs. Sal/Ex4.
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FIG. 4. Effect of dHEx (100 nmol/l) on insulin secretion induced by
GLP-1 (1.0 nmol/l) and Ex4 (0.01 and 1.0 nmol/l) in the presence of
glucose (200 mg%). Data are represented as means � SE. *P < 0.05 vs.
glucose. #P < 0.05 vs. glucose � GLP-1 (1.0 nmol/l) or glucose � Ex4
(1.0 nmol/l). �, Saline; f, 100 nmol/l dHEx.
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rats. Recently, Sowden et al. (20) reported that Ex4
increases heart rate in rats but not mice. Finally, other
studies reporting an inability to block Ex4 effects with
GLP-1r antagonists have all been conducted in rats (22–
24). Although none of these observations provides defini-
tive evidence for GLP-1r–independent effects of Ex4, they
do raise the possibility that Ex4 may interact with the
GLP-1r in a species-dependent manner.

Although difficult to reconcile with the above data, our
findings regarding central Ex4 and GLP-1r antagonists are
consistent with several reports of in vivo effects of Ex4
that are insensitive to GLP-1r antagonists (22–24). Re-
cently, it was reported that central Ex4 decreases ghrelin
secretion in fasted rats (24). Not only was this effect
insensitive to Ex9 blockade, it was also elicited by Ex9
alone, consistent with several in vitro reports of indepen-
dent Ex9 effects (45–50). Whereas these data, like ours, fail
to prove GLP-1r independence of Ex4, they are nonethe-
less significant in that they provide potential mechanistic
insight into the unique anorectic properties of central Ex4,
particularly its duration of action. For instance, ongoing
GLP-1r signaling by Ex4 may prevent circulating ghrelin
levels from rising in response to Ex4-mediated reductions
in food intake, leading to an attenuation or delay in the
subsequent drive to eat and thus a prolonged duration of
anorexia. However, because our experiments used ad
libitum–fed rats, whose circulating ghrelin levels should

be low, and because Ex4 is more efficacious in fed versus
fasted rats (51), it seems unlikely that Ex4’s effects on
ghrelin secretion underlie either its increased potency
acutely or its insensitivity to GLP-1r antagonists in the
present studies.

Because studies have generally found no effect of Ex4
in GLP-1r�/� mice (17–21), it seems reasonable to cite
strictly pharmacological differences when explaining dis-
crepancies between in vivo effects of GLP-1 and Ex4.
However, in many ways, the existing data fail to ade-
quately support this hypothesis. For instance, some in
vitro studies have found Ex4 to have greater potency and
affinity for the GLP-1r than native GLP-1 (35), but these
differences, at least in potency, are significantly smaller
than those reported here. Regarding antagonist sensitivity,
one potential explanation for our findings is that Ex4 is
more able to displace antagonists from the GLP-1r. How-
ever, studies have generally reported little to no difference
in the ability of GLP-1 versus Ex4 to displace radio-labeled
Ex9 (52–55). Taken together, our data, combined with the
existing literature, provide conclusive evidence for dis-
tinct pharmacological profiles of GLP-1 and Ex4, yet
further studies are needed to understand whether pharma-
cological differences alone are sufficient to explain the
unique in vivo effects of Ex4.

In conclusion, our data indicate that the central, but not
peripheral, anorectic effect of Ex4 is insensitive to GLP-1r
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FIG. 6. Effect of intracerebroventricular Ex4 in wild-type and GLP-1r�/� mice. A and B: Wild-type mice received intracerebroventricular saline
(�) or Ex4 (1.0 �g) (f). Food intake (A) and body weight change (B) were measured over 96 h. C and D: GLP-1r�/� mice received
intracerebroventricular saline or Ex4 (1.0 �g). Food intake (C) and body weight change (D) were measured over 24 h. Data are represented as
means � SE. *P < 0.05 vs. saline.
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antagonism, yet GLP-1r is required for this effect. These
data suggest that there are important differences between
the in vivo pharmacological properties of GLP-1 and Ex4
within the CNS. Moreover, they underscore the need for a
greater understanding of how these ligands interact with
CNS GLP-1r, particularly in light of recent data revealing
novel roles of CNS GLP-1r activity in the regulation of
peripheral glucose homeostasis and cardiovascular func-
tion (56,57). Such an understanding is critical if we are
to maximize the therapeutic benefit of Ex4 and other
GLP-1–based therapies.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health
(NIH) Grant RO1 DK54890 (to R.J.S.), American Diabetes
Association Physician Scientist Training Award 7-06-PST-02
(to J.G.B.), NIH Grant RO1 DK57900 (to D.A.D.), Juvenile
Diabetes Research Foundation Grant 1-2006-796 (to D.J.D.),
and research funding from Amylin Pharmaceuticals.

D.J.D. has served as an advisor or consultant to Amylin
Pharmaceuticals, Arena Pharmaceuticals, Arisaph Phar-
maceuticals, Conjuchem, Eli Lilly, Emisphere Technologies,
GlaxoSmithKline, Glenmark Pharmaceuticals, Hoffman La-
Roche, Isis Pharmaceuticals, MannKind, Merck Research
Laboratories, Metabolex, and Novartis Pharmaceuticals.
Neither D.J.D. nor his family members hold stock directly
or indirectly in any of these companies. No other potential
conflicts of interest relevant to this article were reported.

We thank Kathleen Smith, Joyce Sorrell, and Jeanette
Teague for their expert technical assistance.

REFERENCES

1. Lopez LC, Frazier ML, Su CJ, Kumar A, Saunders GF. Mammalian
pancreatic preproglucagon contains three glucagon-related peptides. Proc
Natl Acad Sci U S A 1983;80:5485–5489

2. Varndell IM, Bishop AE, Sikri KL, Uttenthal LO, Bloom SR, Polak JM.
Localization of glucagon-like peptide (GLP) immunoreactants in human
gut and pancreas using light and electron microscopic immunocytochem-
istry. J Histochem Cytochem 1985;33:1080–1086

3. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and
glucagon-like peptide-1 receptor messenger RNAs in the rat central
nervous system. J Comp Neurol 1999;403:261–280

4. Shimizu I, Hirota M, Ohboshi C, Shima K. Identification and localization of
glucagon-like peptide-1 and its receptor in the brain. Endocrinology
1987;121:1076–1082

5. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ,
Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA,
Herbert J, Bloom SR. A role for glucagon-like peptide-1 in the central
regulation of feeding. Nature 1996;379:69–72 [see comments]

6. Tang-Christensen M, Larsen PJ, Goke R, Fink-Jensen A, Jessop DS, Moller
M, Sheikh SP. Central administration of GLP-1-(7-36) amide inhibits food
and water intake in rats. Am J Physiol 1996;271:R848–R856

7. Meeran K, O’Shea D, Edwards CM, Turton MD, Heath MM, Gunn I,
Abusnana S, Rossi M, Small CJ, Goldstone AP, Taylor GM, Sunter D, Steere
J, Choi SJ, Ghatei MA, Bloom SR. Repeated intracerebroventricular
administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39)
alters body weight in the rat. Endocrinology 1999;140:244–250

8. Kreymann B, Ghatei MA, Williams G, Bloom SR. Glucagon-like peptide-1
7-36: a physiological incretin in man. Lancet 1987;2:1300–1303

9. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses
gastric inhibitory polypeptide, glucagon-like peptide-1 (7-36) amide, petide
histidine methionine and is responsible for their degradation in human
serum. Eur J Biochem 1993;214:829–835

10. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both
subcutaneously and intravenously administered glucagon-like peptide I are
rapidly degraded from the NH2-terminus in type II diabetic patients and in
healthy subjects. Diabetes 1995;44:1126–1131

11. Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent
insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro
and in vivo by dipeptidyl peptidase IV. Endocrinology 1995;136:3585–3596

12. Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, Denaro

M. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in
obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic
rhesus monkeys (Macaca mulatta). Diabetes 1999;48:1026–1034

13. Greig NH, Holloway HW, De Ore KA, Jani D, Wang Y, Zhou J, Garant MJ,
Egan JM. Once daily injection of exendin-4 to diabetic mice achieves
long-term beneficial effects on blood glucose concentrations. Diabetologia
1999;42:45–50

14. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS,
Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30
weeks in patients with type 2 diabetes treated with metformin and a
sulfonylurea. Diabetes Care 2005;28:1083–1091

15. Herman GA, Bergman A, Stevens C, Kotey P, Yi B, Zhao P, Dietrich B,
Golor G, Schrodter A, Keymeulen B, Lasseter KC, Kipnes MS, Snyder K,
Hilliard D, Tanen M, Cilissen C, De Smet M, de Lepeleire I, Van Dyck K,
Wang AQ, Zeng W, Davies MJ, Tanaka W, Holst JJ, Deacon CF, Gottesdie-
ner KM, Wagner JA. Effect of single oral doses of sitagliptin, a dipeptidyl
peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral
glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol
Metab 2006;91:4612–4619

16. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy
and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as mono-
therapy in patients with type 2 diabetes mellitus. Diabetologia 2006;49:
2564–2571

17. Hansotia T, Baggio LL, Delmeire D, Hinke SA, Yamada Y, Tsukiyama K,
Seino Y, Holst JJ, Schuit F, Drucker DJ. Double incretin receptor knockout
(DIRKO) mice reveal an essential role for the enteroinsular axis in
transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes
2004;53:1326–1335

18. Baggio LL, Huang Q, Brown TJ, Drucker DJ. Oxyntomodulin and glucagon-
like peptide-1 differentially regulate murine food intake and energy expen-
diture. Gastroenterology 2004;127:546–558

19. Baggio LL, Huang Q, Brown TJ, Drucker DJ. A recombinant human
glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptider-
gic activation of GLP-1 receptor-dependent pathways coupled with satiety,
gastrointestinal motility, and glucose homeostasis. Diabetes 2004;53:2492–
2500

20. Sowden GL, Drucker DJ, Weinshenker D, Swoap SJ. Oxyntomodulin
increases intrinsic heart rate in mice independent of the glucagon-like
peptide-1 receptor. Am J Physiol Regul Integr Comp Physiol 2007;292:
R962–R970

21. Baggio LL, Huang Q, Cao X, Drucker DJ. An albumin-exendin-4 conjugate
engages central and peripheral circuits regulating murine energy and
glucose homeostasis. Gastroenterology 2008;134:1137–1147

22. Malendowicz LK, Nowak KW. Preproglucagon derived peptides and thy-
rotropin (TSH) secretion in the rat: robust and sustained lowering of blood
TSH levels in exendin-4 injected animals. Int J Mol Med 2002;10:327–331

23. Malendowicz LK, Nussdorfer GG, Nowak KW, Ziolkowska A, Tortorella C,
Trejter M. Exendin-4, a GLP-1 receptor agonist, stimulates pituitary-
adrenocortical axis in the rat: investigations into the mechanism(s)
underlying Ex4 effect. Int J Mol Med 12:237–241, 2003

24. Perez-Tilve D, Gonzalez-Matias L, Alvarez-Crespo M, Leiras R, Tovar S,
Dieguez C, Mallo F. Exendin-4 potently decreases ghrelin levels in fasting
rats. Diabetes 2007;56:143–151

25. Chavez M, Kaiyala K, Madden LJ, Schwartz MW, Woods SC. Intraventric-
ular insulin and the level of maintained body weight in rats. Behav
Neurosci 1995;109:528–531

26. Brown LM, Clegg DJ, Benoit SC, Woods SC. Intraventricular insulin and
leptin reduce food intake and body weight in C57BL/6J mice. Physiol
Behav 2006;89:687–691

27. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley
RJ. Hypothalamic mTOR signaling regulates food intake. Science 2006;312:
927–930

28. Montrose-Rafizadeh C, Yang H, Rodgers BD, Beday A, Pritchette LA, Eng
J. High potency antagonists of the pancreatic glucagon-like peptide-1
receptor. J Biol Chem 1997;272:21201–21206

29. D’Alessio DA, Fujimoto WY, Ensinck JW. Effects of glucagonlike peptide
I-(7-36) on release of insulin, glucagon, and somatostatin by rat pancreatic
islet cell monolayer cultures. Diabetes 1989;38:1534–1538

30. Seeley RJ, Blake K, Rushing PA, Benoit SC, Eng J, Woods SC, D’Alessio D.
The role of CNS GLP-1-(7-36) amide receptors in mediating the visceral
illness effects of lithium chloride. J Neurosci 2000;20:1616–1621

31. Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME,
Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK. Glucagon-
like peptide-1 receptor stimulation increases blood pressure and heart rate
and activates autonomic regulatory neurons. J Clin Invest 2002;110:43–52

32. Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen JA,
Maestre O, Gomez R, Munoz RM, Eng J, Blazquez E. Peripheral versus

CENTRAL GLP-1 AND EXENDIN-4

2826 DIABETES, VOL. 58, DECEMBER 2009 diabetes.diabetesjournals.org



central effects of glucagon-like peptide-1 receptor agonists on satiety and
body weight loss in Zucker obese rats. Metabolism 2000;49:709–717

33. Navarro M, Rodriquez de Fonseca F, Alvarez E, Chowen JA, Zueco JA,
Gomez R, Eng J, Blazquez E. Colocalization of glucagon-like peptide-1
(GLP-1) receptors, glucose transporter GLUT-2, and glucokinase mRNAs
in rat hypothalamic cells: evidence for a role of GLP-1 receptor agonists as
an inhibitory signal for food and water intake. J Neurochem 1996;67:1982–
1991

34. Kinzig KP, D’Alessio DA, Seeley RJ. The diverse roles of specific GLP-1
receptors in the control of food intake and the response to visceral illness.
J Neurosci 2002;22:10470–10476

35. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Goke B.
Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an
antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-
secreting beta-cells. J Biol Chem 1993;268:19650–19655

36. Fehmann HC, Jiang J, Schweinfurth J, Wheeler MB, Boyd AE 3rd, Goke B.
Stable expression of the rat GLP-I receptor in CHO cells: activation and
binding characteristics utilizing GLP-I(7-36)-amide, oxyntomodulin, ex-
endin-4, and exendin(9-39). Peptides 1994;15:453–456

37. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Identification of specific
binding sites for glucagon-like peptide-1 on the posterior lobe of the rat
pituitary. Neuroendocrinology 1995;62:130–134

38. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding
sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1
binding sites. Eur J Neurosci 1995;7:2294–2300

39. Baggio LL, Kim J-G, Drucker DJ. Chronic exposure to GLP-1r agonists
promotes homologous GLP-1 receptor desensitization in vitro but does not
attenuate GLP-1r–dependent glucose homeostasis in vivo. Diabetes 2004;
53(Suppl. 3):S205–S214

40. Kolligs F, Fehmann HC, Goke R, Goke B. Reduction of the incretin effect
in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39)
amide. Diabetes 1995;44:16–19

41. Barragan JM, Rodriguez RE, Eng J, Blazquez E. Interactions of exendin
(9-39) with the effects of GLP-1 (7-36) amide and of exendin-4 on arterial
blood pressure and heart rate in rats. Reg Peptides 1996;67:63–68

42. Benito E, Blazquez E, Bosch MA. Glucagon-like peptide-1-(7-36)amide
increases pulmonary surfactant secretion through a cyclic adenosine 3	,
5	-monophosphate-dependent protein kinase mechanism in rat type II
pneumocytes. Endocrinology 1998;139:2363–2368

43. Lachey JL, D’Alessio DA, Rinaman L, Elmquist JK, Drucker DJ, Seeley RJ.
The role of central glucagon-like peptide-1 in mediating the effects of
visceral illness: differential effects in rats and mice. Endocrinology 2005;
146:458–462

44. Huo L, Gamber KM, Grill HJ, Bjorbaek C. Divergent leptin signaling in
proglucagon neurons of the nucleus of the solitary tract in mice and rats.
Endocrinology 2008;149:492–497

45. Montrose-Rafizadeh C, Yang H, Wang Y, Roth J, Montrose MH, Adams LG.

Novel signal transduction and peptide specificity of glucagon-like peptide
receptor in 3T3-L1 adipocytes. J Cell Physiol 1997;172:275–283

46. Yang H, Egan JM, Wang Y, Moyes CD, Roth J, Montrose MH, Montrose-
Rafizadeh C. GLP-1 action in L6 myotubes is via a receptor different from
the pancreatic GLP-1 receptor. Am J Physiol 1998;275:C675–C683

47. Sancho V, Trigo MV, Gonzalez N, Valverde I, Malaisse WJ, Villanueva-
Penacarrillo ML. Effects of glucagon-like peptide-1 and exendins on kinase
activity, glucose transport and lipid metabolism in adipocytes from normal
and type-2 diabetic rats. J Mol Endocrinol 2005;35:27–38

48. Sancho V, Nuche B, Arnes L, Cancelas J, Gonzalez N, Diaz-Miguel M,
Martin-Duce A, Valverde I, Villanueva-Penacarrillo ML. The action of
GLP-1 and exendins upon glucose transport in normal human adipocytes,
and on kinase activity as compared to morbidly obese patients. Int J Mol
Med 2007;19:961–966

49. Gonzalez N, Acitores A, Sancho V, Valverde I, Villanueva-Penacarrillo ML.
Effect of GLP-1 on glucose transport and its cell signalling in human
myocytes. Regul Pept 2005;126:203–211

50. Arnes L, Gonzalez N, Tornero-Esteban P, Sancho V, Acitores A, Valverde I,
Delgado E, Villanueva-Penacarrillo ML. Characteristics of GLP-1 and
exendins action upon glucose transport and metabolism in type 2 diabetic
rat skeletal muscle. Int J Mol Med 2008;22:127–132

51. Williams DL, Baskin DG, Schwartz MW. Leptin regulation of the anorexic
response to glucagon-like peptide-1 receptor stimulation. Diabetes 2006;
55:3387–3393

52. Lopez de Maturana R, Donnelly D. The glucagon-like peptide-1 receptor
binding site for the N-terminus of GLP-1 requires polarity at Asp198 rather
than negative charge. FEBS Lett 2002;530:244–248

53. Lopez de Maturana R, Willshaw A, Kuntzsch A, Rudolph R, Donnelly D. The
isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor
binds exendin peptides with much higher affinity than GLP-1. J Biol Chem
2003;278:10195–10200

54. Al-Sabah S, Donnelly D. A model for receptor-peptide binding at the
glucagon-like peptide-1 (GLP-1) receptor through the analysis of truncated
ligands and receptors. Br J Pharmacol 2003;140:339–346

55. Runge S, Schimmer S, Oschmann J, Schiodt CB, Knudsen SM, Jeppesen
CB, Madsen K, Lau J, Thogersen H, Rudolph R. Differential structural
properties of GLP-1 and exendin-4 determine their relative affinity for the
GLP-1 receptor N-terminal extracellular domain. Biochemistry 2007;46:
5830–5840

56. Cabou C, Campistron G, Marsollier N, Leloup C, Cruciani-Guglielmacci C,
Penicaud L, Drucker DJ, Magnan C, Burcelin R. Brain glucagon-like
peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity.
Diabetes 2008;57:2577–2587

57. Knauf C, Cani PD, Ait-Belgnaoui A, Benani A, Dray C, Cabou C, Colom A,
Uldry M, Rastrelli S, Sabatier E, Godet N, Waget A, Penicaud L, Valet P,
Burcelin R. Brain glucagon-like peptide 1 signaling controls the onset of
high-fat diet-induced insulin resistance and reduces energy expenditure.
Endocrinology 2008;149:4768–4777

J.G. BARRERA AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 58, DECEMBER 2009 2827


