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Abstract

Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the
mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway
remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite
(HDM) extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway
inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1
(TGF-b1) levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained
expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (a-SMA) and pro-collagen I. We also observed
increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of
EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway
epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway
remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of
epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously
unknown plasticity of the airway epithelium in allergic airway disease.
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Introduction

Allergic asthma is caused by respiratory exposure to common

aeroallergens like house dust mite (HDM) and results in reversible

airway obstruction, chronic Th2-polarized inflammation and

damage to the airway epithelium [1,2]. These events have been

associated with a dysregulated repair process, which is character-

ized by elevated expression of TGF-b and EGF and ultimately

results in airway fibrosis and lung dysfunction [3]. Epithelial-to-

mesenchymal transition (EMT) is an important mechanism during

development and cancer progression whereby epithelial cells gain

the capacity to migrate out of their context through down-

regulation of epithelial markers, such as junction proteins and

cytokeratins, and gained expression of mesenchymal proteins, such

as vimentin and a-SMA [4,5]. EMT also results in the acquisition

of stem cell features, linking EMT to the generation of cancer stem

cells [6,7]. Transforming growth factor-beta (TGF-b) is a major

inducer of EMT [4,8] and is secreted by various cells including

infiltrating immune cells [9,10]. TGF-b-induced EMT is driven by

transcription factors including Smad, Snail, Zeb, Twist and AP-1,

which form complexes that either repress epithelial genes or

activate mesenchymal genes [6,8,11,12]. TGF-b has also been

shown to synergize with EGF to induce EMT in various cell types

[13,14].

It has been postulated that EMT can be triggered under

inflammatory conditions and contribute to cancer metastasis and

organ fibrosis [4,5,15,16]. Th2 lymphocytes can enhance the

spread of tumor cells to distal sites via the activation of TGF-b-

and EGF-expressing tumor-associated macrophages [3,17] sug-

gesting that a Th2-polarized immune response may promote

tumor cell dissemination [18]. Previous in vitro studies have

demonstrated that HDM proteins can cooperate with TGF-b and

EGF to promote EMT in cultured airway epithelial cells by

stimulating internalization of E-cadherin [19], cleavage of junction

proteins [20] and activation of the protease-activated receptor

PAR-2 [21]. However, it is currently not known whether EMT

contributes to airway remodeling in asthma and whether chronic

allergic inflammation is sufficient to trigger this process.

In this study, we asked if EMT could contribute to airway

remodeling in a chronic Th2-polarized inflammatory microenvi-

ronment driven by respiratory aeroallergen exposure. We

evaluated this process by employing airway epithelial cell-fate

tracking in mice with chronic allergic asthma induced by exposure

to house dust mite extract (HDM), a common environmental

aeroallergen. We have identified EMT as a significant contributor

to airway wall thickening in severe asthma and confirmed the role

of TGF-b and EGF signaling in dysregulated repair processes in

the lung.
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Methods

Animals
Reporter mice were constructed by crossing Rosa26stop-LacZ

reporter mice (B6;129S4-Gt(ROSA)26Sortm1Sor/J; Jackson La-

boratoies) with mice expressing Cre under the surfactant protein C

(SPC) promoter (SPC-Cre, generously provided by Brigid Hogan

at Duke University Medical Center) to generate transgenic mice

stably expressing LacZ in lung epithelial cells (SPC-Cre;R26stop-

LacZ). Male and female mice were bred in-house at the

Karolinska Institutet animal facility at the Department of

Mikrobiologi, Tumör- och Cellbiologi (MTC) and initiated into

experiments at 8–12 weeks of age. Mice were housed under

specific pathogen-free conditions following a 12-h light-dark cycle

and were provided food and water ad libitum. Mice were exposed

to purified HDM whole-body extract (Greer Laboratories, Lenoir,

North Carolina, USA) intranasally (25 mg protein in 10 mL saline)

under inhaled anesthesia (Isoflurane; Baxter Chemical, Kista,

Sweden) for five consecutive days, followed by two days rest, for

five, ten or fifteen consecutive weeks. Negative control animals

were administered 10 mL saline intranasally daily on the same

schedule. No exogenous adjuvant was given at any time. All

experiments described in this study were approved by the

Research Ethics Committee at the Karolinska Institute.

Collection and measurement of specimens
72 hours after the last allergen administration, mice were

anesthetized with fluanison/fentanyl/midazolam (0.1 mL/10 g

body weight i.p.), followed by full-body perfusion with PBS via

the left cardiac ventricle. Bronchoalveolar lavage fluid (BAL) was

collected by dissection of the lungs and cannulation of the trachea

with polyethylene tubing (Becton Dickinson, Sparks, MA). Briefly,

the lungs were lavaged twice with PBS (0.25 mL followed by

0.2 mL). Approximately 0.3 mL of the instilled fluid was

consistently recovered. Total cell counts in BAL fluid were

performed using a Countess automated cell counter (Invitrogen).

After centrifugation, cell pellets were resuspended in PBS and

smears were prepared by cytocentrifugation (Sakura Finetek

Europe BV, Zoeterwoude, the Netherlands) at 300 rpm for 2

minutes. Smears were fixed, stained with hematoxylin and eosin

and differential counts of BAL cells were determined from at least

300 leukocytes using standard hematological criteria to classify

them as mononuclear cells, neutrophils or eosinophils.

Cell Culture
A549 cells (ATCC, Manassas, VA) and 16HBE14o- cells (kindly

provided by Dr. D.C. Gruenert, University of California, San

Francisco) were cultivated in Ham’s F12 medium or Minimum

Essential Medium (MEM; Invitrogen, Stockholm, Sweden),

respectively, supplemented with 1% penicillin/streptomycin, 1%

L-glutamine and 10% fetal bovine serum (FCS; Invitrogen). Prior

to the addition of growth factors, cells were transferred into low

serum medium (1% FCS) and subsequently treated with 10 ng/

mL TGF-b (R&D Systems, Abingdon, UK) and/or 50 ng/mL

EGF (R&D Systems) for 72 h. Cells were then fixed for

immunofluorescent staining or lysed for RNA analysis.

Immunofluorescent staining of cultured cells
Cells which had been grown on coverslips in a 12-well plate

were fixed in absolute ethanol for 15 min at RT (for the detection

of junction proteins) or 3% PFA for 20 min at RT (for the

detection of transcription factors), washed three times with PBS

and quenched with 10 mM glycine for 20 min at RT. Following

two additional PBS washes, cells to be stained for Snail1/pSmad3

were permeabilized with 0.1% Triton-X in PBS for 30 min at RT,

washed twice with PBS, then treated with 8 M urea in PBS for

3 min at RT. Following two more PBS washes, cells were

incubated in blocking buffer (PBS with 0.1% BSA and 5% normal

goat serum) for 30 min RT, then incubated with primary

antibodies diluted in PBS with 0.1% BSA for 60 min RT. The

primary antibodies used in this analysis were: rabbit anti-CAR

(1:500), mouse anti-E-cadherin (1:500; clone 36, BD Biosciences),

mouse anti-vimentin (1:50, 3B4, DAKO), rat anti-occludin (1:3,

clone MOC37), mouse anti-SNAIL1 (1:3) and rabbit anti-

phosphorylated Smad3 (1:100; #9520, Cell Signaling Technolo-

gy, Danvers, MA). Cells were washed twice with PBS with 0.1%

BSA, then incubated with secondary antibodies for 30 min at RT.

The species-specific fluorescently-labeled secondary antibodies

used in this study were: DyLightTM 488-conjugated goat anti-

rabbit IgG, DyLightTM 488-conjugated goat anti-rat IgG and

DyLightTM 549-conjugated goat anti-mouse IgG; all used 1:500

from Jackson ImmunoResearch Europe Ltd., Newmarket, UK.

Following two washes in PBS with 0.1% BSA and two final washes

with PBS, coverslips were removed from the wells, mounted and

imaged on a Nikon Eclipse E800 microscope.

Semi-quantitative real-time PCR
Total RNA was isolated from A549 and 16HBE14o- cells and

purified using the RNeasy Mini Kit (Qiagen, Stockholm, Sweden),

supplemented with the RNase-Free DNase Set (Qiagen). RNA

from blood was purified using the the mouse RiboPureTM-blood

RNA Isolation Kit (Ambion). cDNA was obtained using the

iScript Select cDNA Synthesis Kit (Bio-Rad Laboratories AB,

Stockholm, Sweden), and the absence of DNA contamination was

verified by excluding the reverse transcriptase from subsequent

PCR reactions. cDNA aliquots were subjected to PCR using the

QuantiTect SYBR Green PCR Kit (Qiagen) to amplify human

CAR, occludin, E-cadherin, vimentin, SNAIL1, a-smooth muscle

actin (a-SMA) and GAPDH with primers using QuantiTect

Primer Assays (Qiagen). Each PCR reaction was carried out as

follows: 15 min at 95uC, 15 sec at 94uC, 30 sec at 55uC, and

30 sec at 72uC. Each cycle was repeated 35 times following the

manufacturer’s recommendations using a Rotorgene RG-3000A

thermal cycler, and Rotorgene 6.0 software (Corbett Research,

Umeå, Sweden). Based on the comparative Ct method, gene

expression levels were calculated and GAPDH was used as a

control gene. Untreated control samples for each cell line were set

to 100% and fold change in expression in following treatment are

represented as bar graphs 6 standard error of the mean.

Histology
Lungs were inflated with 1% paraformaldehyde via the trachea

and stored in 1% paraformaldehyde for an additional 30 minutes

before being transferred to PBS. The lungs were dissected away

from the trachea, cryopreserved in 30% sucrose overnight at 4uC,

embedded in OCT (Sakura) and cut at a thickness of 5 mm (for

hematoxylin and eosin staining) or 15 mm (for immunofluorescent

imaging). For hematoxylin and eosin staining, sections were fixed in

100% methanol and stained according to a standard protocol. Forr

immunofluorescent staining, sections were blocked with 5% normal

goat serum in PBS containing 0.1% BSA and 0.3% Triton-X for

1 hour at RT, then stained with the following primary antibodies:

chicken anti-b-galactosidase (1:500; ab9361, Abcam, Cambridge,

UK), rabbit anti-vimentin (1:500; ab45939, Abcam), rat anti-E-

cadherin (1:250; ab11512, Abcam), rabbit anti-occludin (1:500; 71–

1500, Zymed/Invitrogen), rabbit anti-procollagen I (1:500; gener-

ously provided by K. Tryggvason, Karolinska Institutet, Stockholm,

Sweden), rat anti-Snail1 (1:500; generously provided by K.-F.
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Becker, Technische Universität München, Munich, Germany),

rabbit anti-phosphorylated Smad3 (1:100; #9520, Cell Signaling

Technology, Danvers, MA) and CY3-conjugated mouse anti-a-

SMA (1:1000; clone 1A4, Sigma-Aldrich, St. Louis, MO).

The species-specific fluorescently-labeled secondary antibodies

used in this study were: DyLightTM 488-conjugated goat anti-

chicken IgY, DyLightTM 549-conjugated goat anti-rabbit IgG,

DyLightTM 549-conjugated goat anti-rat IgG, DyLightTM 649-

conjugated goat anti-rabbit IgG and DyLightTM 649-conjugated

goat anti-rat IgG; all used 1:500 from Jackson ImmunoResearch

Europe Ltd., Newmarket, UK. Isotype control staining for Snail/

pSmad3 was performed using rat IgG2a (BD Biosciences)

labeled with DyLightTM 549-conjugated goat anti-rat IgG and

an affinity-purified polyclonal rabbit IgG labeled with DyLightTM

649-conjugated goat anti-rabbit IgG. Negative control images

(with omission of the primary antibody) and istotype control

images for lung sections taken from either saline control mice or

from mice exposed to HDM for 15 weeks (as indicated) are shown

in Fig. S1. Tissues were imaged using a Zeiss LSM510 confocal

microscope and evaluated using LSM510 software.

Data analysis
Data were analyzed using GraphPad InStat (GraphPad Software,

Inc., La Jolla, CA), and are expressed as mean 6 SEM, unless

Figure 1. LacZ expression pattern in SPC-Cre;R26stopfl/fl-LacZ mice. (A) Model of chronic respiratory house dust mite (HDM) extract exposure.
Mice were administered sterile saline or 25 mg of HDM extract in a volume of 10 mL 5 days a week for up to 15 consecutive weeks. Mice were sacrificed
after 5, 10 or 15 weeks of HDM exposure. (B) Characterization of the reporter mice used in this study. Cre is expressed by the SPC promoter and removes
the floxed stop sequence in front of the gene for LacZ under the control of the ROSA26 promoter. Thus, all lung epithelial cells stably and irreversibly
express LacZ. (C–E) Enzymatic staining for b-galactosidase activity was performed on 15 mm-thick lung sections from (C) SPC-Cre;R26stopfl/fl-LacZ mice
exposed to saline, (D) R26stopfl/fl-LacZ mice exposed to HDM and (E) SPC-Cre;R26stopfl/fl-LacZ exposed to HDM. Scale bar 10 mm.
doi:10.1371/journal.pone.0016175.g001
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otherwise indicated. Results were interpreted using ANOVA

followed by the Tukey post hoc test (where applicable). Differences

were considered to be statistically significant when p,0.05.

Results

Generation of transgenic mice with permanently labeled
airway epithelial cells

To determine whether chronic allergic airway inflammation

caused by respiratory exposure to HDM extract (Fig. 1A) results

in EMT in vivo, we employed an established transgenic mouse

model in which mice expressing a LacZ reporter gene under the

Rosa26 promoter (B6;129S4-Gt(ROSA)26Sortm1Sor/J) were

crossed with mice expressing Cre recombinase by the human

surfactant protein C promoter (SPC-Cre), which is restrictively

active in bronchiolar and alveolar epithelial cells (Fig. 1B) [22].

This resulted in the generation of double transgenic mice (SPC-

Cre;R26stopfl/fl-LacZ), in which airway epithelial cells were

permanently labeled with LacZ (Fig. 1C), allowing us to track

the acquisition of mesenchymal markers in these cells in the

context of chronic allergic airway inflammation.

Induction of EMT in HDM-induced chronic airway
inflammation

Exposure to HDM extract lead to robust airway inflammation

(Fig. 2A), characterized by eosinophil infiltration after 5 weeks

(Fig. 2B) and neutrophil infiltration after 10 and 15 weeks of

allergen exposure (Fig. 2C), as previously described [23].

Histological analysis of lung tissue from these mice demonstrated

significant inflammation and epithelial damage associated with

HDM exposure (Fig. 2D–G). We also observed marked

thickening of the sub-epithelial contractile smooth muscle layer

tissue in HDM-exposed mice (Fig. 2H–K), a feature of chronic

allergic asthma [24] which can only be partially accounted for by

smooth muscle hyperplasia and infiltration of bone-marrow

derived myofibroblasts [25].

Immunofluorescent staining of lung sections revealed decreased

staining of occludin and E-cadherin and increased expression of

vimentin in the airway epithelium after 5 weeks of HDM exposure

(Fig. 3B, F) compared to control (Fig. 3A, E). These changes

were accentuated after 10 weeks and 15 weeks of HDM exposure

(Fig. 3C, D, G, H). Airway smooth muscle mass as determined

by immunostaining for a-SMA was significantly elevated at all

Figure 2. Prolonged respiratory HDM exposure induces inflammation. Mice were administered sterile saline or 25 mg of HDM extract in a
volume of 10 mL 5 days a week for 5, 10 or 15 consecutive weeks. (A–C) Bronchoalveolar lavage (BAL) analysis was performed to determine total
inflammatory cell infiltrate (A) and to differentiate between eosinophils (B) and neutrophils (C). * p,0.05 compared to saline control animals,
1 p,0.05 compared to mice exposed to HDM for 5 weeks and " p,0.05 compared to mice exposed to HDM for 10 weeks. Data represent mean
6 SEM, n = 10–15 mice per group from two independent experiments. (D–G) Chemical staining for hematoxylin and eosin was performed on 5 mm-
thick lung sections from (D) control mice exposed to saline, (E) mice exposed to HDM for 5 weeks, (F) 10 weeks or (G) 15 weeks. * indicate airway
lumen, closed arrows indicate the epithelium, open arrows indicate airway smooth muscle. (H–K) Immunofluorescent staining for a-smooth muscle
actin (a-SMA) was performed on 15 mm-thick lung sections from (H) control mice exposed to saline, (I) mice exposed to HDM for 5 weeks, (J) 10 weeks
or (K) 15 weeks. * indicate airway lumen. Scale bar 10 mm.
doi:10.1371/journal.pone.0016175.g002
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time points after HDM exposure (Fig. 3I). After 10 and 15 weeks

of HDM exposure, LacZ+/a-SMA+ cells were incorporated into

airway smooth muscle (arrows, Fig. 3C, D) and LacZ+/

vimentin+ cells were present in the sub-epithelium (arrows,

Fig. 3G, H). Quantification of LacZ+/vimentin+ cells demon-

strated that approximately one third of the vimentin-positive cell

population was positive for LacZ (Fig. 3J). Additionally,

expression of pro-collagen I was detected in the airway epithelial

cells of mice following 10 weeks of HDM challenge (Fig. 3K, L).

Chronic HDM exposure leads to TGF-b expression and
activation of TGF-b signaling pathways in the lung
epithelium

Bronchoalveolar lavage (BAL) analysis demonstrated a signifi-

cant and progressive increase in TGF-b1 protein levels in the

lavage fluid from mouse airways with sustained exposure to HDM

(Fig. 4 A). Activation of Smad-dependent TGF-b signaling

pathways was demonstrated by immunofluorescent localization

of phosphorylated Smad3 (p-Smad3) and Snail1 in the nuclei of

airway epithelial cells after 15 weeks of HDM exposure (Fig. 4E–
G) but not under baseline conditions (Fig. 4B–D).

Cooperative induction of EMT in airway epithelial cells by
TGF-b and EGF

Immunofluorescent analysis of 16HBE14o- cells, which usually

express high levels of the epithelial tight junction proteins

coxsackie and adenovirus receptor (CAR) and occludin and the

adherens junction protein E-cadherin, showed dramatically

reduced expression of these epithelial proteins after 72 h of

treatment with TGF-b/EGF (Fig. 5A, B, D, E). However, no effect

of TGF-b/EGF treatment was observed at the transcriptional level

for CAR or occludin (Fig. 5G, H), although E-cadherin mRNA

Figure 3. Prolonged respiratory HDM exposure induces epithelial-to-mesenchymal transition. Lung sections (15 mm thick) were
prepared from control mice and mice exposed to HDM for 5, 10 or 15 weeks and immunofluorescent staining for the co-expression of the LacZ
reporter in airway epithelial cells with a-SMA and occludin (A–D) and with vimentin and E-cadherin (E–H) was performed. Scale bars 10 mm.
Quantification of lung fibrosis was performed by morphometric analysis of lung sections stained for a-SMA (I) or LacZ and vimentin (J). * p,0.05
compared to saline control animals, 1 p,0.05 compared to mice exposed to HDM for 5 weeks. Data represent mean 6 SEM, n = 5 mice per group.
Additional lung sections were stained to detect procollagen I-producing cells in the airway wall in control mice and in mice exposed to HDM for 10
weeks (K, L).
doi:10.1371/journal.pone.0016175.g003
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was significantly reduced in cells treated with TGF-b/EGF

(Fig. 5I),. Expression of the mesenchymal protein vimentin

increased at the protein level (Fig 5E), and vimentin and a-SMA

mRNA levels also increased (Fig. 5J, K) in cells treated with TGF-

b/EGF for 72h. Additionally, nuclear accumulation of p-Smad3

and Snail1 was detected in 16HBE14o- cells during TGF-b/EGF-

induced EMT (Fig. 5F). Increased expression of Snail1 mRNA

was also observed in 16HBE14o- cells treated with TGF-b/EGF

(Fig. 5L).

Compared to 16HBE14o- cells, A549 airway epithelial cells

express significantly lower levels of the epithelial junction proteins

CAR, occludin and E-cadherin, which were further decreased

following treatment with TGF-b/EGF (Fig. 6A, B, D, E). This

decrease in epithelial junction proteins was also observed on the

mRNA level following TGF-b/EGF (Fig. 6G, H, I). A549 cells

also exhibited baseline expression of the mesenchymal protein

vimentin (Fig. 6B), which increased furher following treatment

with TGF-b/EGF on the the protein (Fig. 6E) and mRNA levels

(Fig. 6J). Expression of a-SMA mRNA also increased after TGF-

b/EGF treatment (Fig. 6K). Nuclear accumulation of p-Smad3

and Snail1 was detected in A549 cells at baseline (Fig. 6C) and

increased during TGF-b/EGF-induced EMT (Fig. 6F). More-

over, TGF-b/EGF treatment significantly increased the expression

of Snail1 mRNA in A549 cells (Fig. 6L).

Discussion

In this study, we sought to analyze the contribution of EMT to

airway remodeling in chronic Th2-polarized inflammation caused

by long-term exposure to HDM. We found that airway epithelial

cells gradually lost expression of junction proteins and gained

expression of mesenchymal proteins, indicative of EMT. Airway

epithelial cells undergoing EMT migrated into the subepithelium

of larger airways where they were incorporated in accumulating

smooth muscle bundles suggesting that EMT contributes to airway

remodeling.

The airway epithelium plays a significant role in the pathology

of allergic asthma, since these cells serve as a source of multiple

cytokines, chemokines, growth factors and other mediators that

contribute to the immune response against inhaled allergens

[26,27]. Furthermore, proteolytic components of allergens such as

Der p1 have been shown to damage the epithelial barrier by

cleaving epithelial tight junction components, thereby enhancing

allergen penetration and further exacerbating the immune

response [28]. Epithelial damage is also thought to contribute to

the development of a dysregulated repair phenotype in the lung,

which may lead to airway remodeling in chronic asthma [26,29].

HDM is a complex mixture of several hundred proteins that

represents what human asthmatics are sensitized and exposed to,

and is capable of initiating Th2-polarized allergic airway

inflammation in the absence of an exogenous adjuvant [30,31].

Long-term exposure to HDM in mice recapitulates many features

of human asthma, including airway hyperresponsiveness, airway

wall remodeling and chronic airway inflammation which transi-

tions from a predominantly eosinophilic to neutrophilic inflam-

matory profile as the disease progresses [23,31].

Quantification of the number of vimentin+/LacZ+ cells in the

airway wall indicated that a significant subset of mesenchymal cells

(approximately 30%) was derived from the epithelium. This is in

agreement with other studies, in which similar epithelial cell fate-

tracking experiments were performed to investigate the contribu-

tion of EMT in a mouse model of idiopathic lung fibrosis [32].

Additionally, we observed that, after 10 weeks of HDM exposure,

LacZ+ cells in the airway epithelium and subepithelium were

capable of producing pro-collagen I, showing that epithelial cells

that have progressed through EMT contribute to collagen

deposition and subepithelial fibrosis in asthma. Altogether, the

data demonstrate that EMT-derived mesenchymal cells signifi-

cantly contribute to airway wall remodeling in this mouse model of

asthma.

TGF-b was significantly upregulated in the lung following

allergen challenge, similar to what has been shown in previous

studies involving both humans and mice with allergic airway

disease [33,34,35]. This supports a role for TGF-b signaling in the

induction of EMT in HDM-induced airway inflammation. High

TGF-b levels in the bronchoalveolar lavage were associated with

evidence of EMT in the airway wall. Moreover, a significant

overlap between nuclear staining of p-Smad3 and Snail1 was

observed, suggesting that Snail1-Smad3/4 repressor complexes

could be involved in promoting EMT in airway epithelial cells

Figure 4. Activation of TGF-b signaling pathways following chronic HDM exposure. (A) Analysis of TGF-b levels in mouse bronchoalveolar
lavage (BAL) fluid in saline controls and mice exposed to HDM for 5, 10 or 15 weeks. BAL fluid was collected at the time of sacrifice and analyzed by
ELISA for the expression of mouse TGF-b1. * p,0.05 compared to saline control animals, 1 p,0.05 compared to mice exposed to HDM for 5 weeks.
Data represent mean 6 SEM, n = 8 per group from two independent experiments. (B–G) Immunofluorescent staining for the expression of LacZ, p-
Smad3 and Snail1 in lung sections from control mice and mice exposed to HDM for 15 weeks.
doi:10.1371/journal.pone.0016175.g004
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during HDM induced chronic airway inflammation, similar to

what has been shown in breast epithelial cells [12]. Based on these

findings, we hypothesize that the mechanism by which EMT

occurs during chronic allergic lung inflammation may include

elements important to TGF-b-mediated induction of EMT in both

cancer and fibrotic diseases.

We next investigated the effect of TGF-b stimulation on

cultured airway epithelial cells. In these experiments, TGF-b and

EGF co-stimulation induced EMT in human A549 lung

carcinoma cells, a well-established model of TGF-b-induced

EMT, and, to a lesser extent, in phenotypically normal human

bronchial epithelial (16HBE14o-) cells, a phenomenon which has

been previously shown in similar studies [19]. Interestingly, we

observed that stimulation with TGF-b alone had little effect on the

phenotype of 16HBE14o- cells, while this treatment alone resulted

in rapid progression to a mesenchymal phenotype in A549 cells

(data not shown). However, the addition of EGF to TGF-b
treatment in both cell lines resulted in indications of the acquisition

of mesenchymal characteristics on both the protein and mRNA

levels. Progression into EMT was incomplete in 16HBE14o- cells,

with some decrease of protein expression of the tight junction

components CAR and occludin, although no change was seen in

the mRNA levels of these epithelial markers. Conversely, E-

cadherin levels decreased at both the protein and mRNA levels,

demonstrating differential regulation of tight junctions and

adherens junctions during the initial stages of EMT. These cells

also demonstrated increased expression of the mesenchymal

markers vimentin and a-SMA, and of activated TGF-b signaling

evidenced by nuclear translocation of the EMT-associated

transcription factors Snail1 and phospho-Smad3 in treated cells.

However, these changes, at least on the protein level, were

comparatively mild to what was observed in A549 cells following

TGF-b/EGF treatment. These cells demonstrated profound

downregulation of all three epithelial junction proteins investigat-

ed, both at the protein and mRNA levels, along with a significant

upregulation of vimentin and nuclear translocation of Snail1 and

phospho-Smad3. Compared to changes in the mRNA expression

of mesenchymal proteins, the changes in vimentin, a-SMA and

Snail1 mRNA levels were relatively minor in A549 cells stimulated

with TGF-b/EGF, likely reflecting the already prominent baseline

Figure 5. Partial induction of EMT in 16HBE14o- cells. (A–I) Progression through EMT was evaluated in the phenotypically normal human lung
epithelial cell line 16HBE14o- 72 h after the addition of TGF-b1 (10 ng/mL) and EGF (50 ng/mL) to the culture medium. The epithelial junction
proteins CAR and E-cadherin (A, D), the tight junction protein occludin and the mesenchymal marker vimentin (B, E) as well as the EMT-associated
transcription factors pSmad3 and Snail1 (C, F) were assessed by immunofluorescent staining. Scale bar 10 mm. Quantification of the relative mRNA
expression of CAR (G), occludin (H), E-cadherin (I), vimentin (J), a-SMA (K) and Snail1 (L) was assessed by qPCR. * p,0.05 compared to untreated cells.
Data represent mean 6 SEM, n = 6 from two independent experiments.
doi:10.1371/journal.pone.0016175.g005
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expression of these markers. Taken together, these results

demonstrate that the induction of complete EMT is a gradual,

stepwise process, requiring coordinated action of signaling

pathways and transcription factors, and regulation of target genes

encoding epithelial junction proteins and mesenchymal proteins.

These findings lend support to the kinetics of EMT progression in

vivo, since we observed indications of EMT in the lungs of HDM-

exposed mice only at later, more severe stages of the disease (10

weeks of exposure). Further studies are certainly required to

investigate the mechanisms of airway wall remodeling at earlier

stages of the disease before EMT mechanisms significantly

contribute to the population of subepithelial mesenchymal cells

in the lung.

In summary, the results of this study provide evidence that

EMT contributes to airway remodeling in a mouse model of

asthma. Furthermore, they show that EMT during chronic

inflammation not only drives phenotypic changes in airway

epithelial cells, but also facilitates the migration of these cells to

subepithelial regions of the airway wall. Further investigations into

the altered migratory capacity of epithelial cells as a consequence

of EMT may provide additional mechanistic insight into the role

of inflammation in the metastatic spread of tumor cells.

Supporting Information

Figure S1 Negative control images for immunofluorescent

staining. Lung sections from mice exposed to HDM for 15 weeks

(A–D) and were stained with the indicated secondary antibodies

and imaged under the same conditions as the images in the main

body of the study. Isotype control images were stained and imaged

under the same conditions as the Snail/pSmad3 images in Fig. 4B–

G, but with a rat IgG2a antibody in place of the Snail antibody

and an affinity-purified rabbit polyclonal IgG in place of the

pSmad3 antibody. Scale bars indicate 10 mm.
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